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Abstract

Information on rice phenological stages from Synthetic Aperture Radar (SAR)images is of prime interest for in-season monitor-
ing. Often, prior in-situ measurements of phenology are not available. In such situations, unsupervised clustering of SAR images
might help in discriminating phenological stages of a crop throughout its growing period. Among the existing unsupervised
clustering techniques using full-polarimetric (FP) SAR images, the eigenvalue-eigenvector based roll-invariant scattering-type
parameter, and the scattering entropy parameter are widely used in the literature. In this study, we utilize a unique target
scattering-type parameter, which jointly uses the Barakat degree of polarization and the elements of the polarimetric coherency
matrix. In particular, the degree of polarization attributes to scattering randomness from a target. The scattering randomness
in crops increases with advancements in its growth stages due to the development of branches and foliage. Hence, the degree
of polarization varies with changes in the crop growth stages. Besides, the elements of the coherency matrices are directly
related to the crop geometry as well as soil and crop water content. There-fore, this complementarity information captures the
scattering randomness at each crop growth stage while taking into account diverse crop morphological characteristics. Likewise,
we also utilize an equivalent parameter proposed for compact-polarimetric (CP) SAR data. These scattering-type parameters
are analogous to the Cloude-Pottier’s parameter for FP SAR data and the ellipticity parameter for CP SAR data. Besides
this, we also introduce new clustering schemes for both FP and CP SAR data for segmenting diverse scattering mechanisms
across the phenological stages of rice. In this study, we use the RADARSAT-2 FP and simulated CP SAR data acquired over
the Indian test site of Vijayawada under the Joint Experiment for Crop Assessment and Monitoring (JECAM) initiative. The
temporal analysis of the scattering-type parameters and the new clustering schemes help us to investigate detailed scattering
characteristics from rice across its phenological stages.
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Abstract

Information on rice phenological stages from Synthetic Aperture Radar (SAR)

images is of prime interest for in-season monitoring. Often, prior in-situ mea-

surements of phenology are not available. In such situations, unsupervised

clustering of SAR images might help in discriminating phenological stages of

a crop throughout its growing period. Among the existing unsupervised clus-

tering techniques using full-polarimetric (FP) SAR images, the eigenvalue-

eigenvector based roll-invariant scattering-type parameter, and the scattering

entropy parameter are widely used in the literature. In this study, we utilize

a unique target scattering-type parameter, which jointly uses the Barakat

degree of polarization and the elements of the polarimetric coherency ma-

trix. In particular, the degree of polarization attributes to scattering ran-

domness from a target. The scattering randomness in crops increases with

advancements in its growth stages due to the development of branches and
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foliage. Hence, the degree of polarization varies with changes in the crop

growth stages. Besides, the elements of the coherency matrices are directly

related to the crop geometry as well as soil and crop water content. There-

fore, this complementarity information captures the scattering randomness at

each crop growth stage while taking into account diverse crop morphological

characteristics. Likewise, we also utilize an equivalent parameter proposed

for compact-polarimetric (CP) SAR data. These scattering-type parameters

are analogous to the Cloude-Pottier’s parameter for FP SAR data and the

ellipticity parameter for CP SAR data. Besides this, we also introduce new

clustering schemes for both FP and CP SAR data for segmenting diverse

scattering mechanisms across the phenological stages of rice. In this study,

we use the RADARSAT-2 FP and simulated CP SAR data acquired over

the Indian test site of Vijayawada under the Joint Experiment for Crop As-

sessment and Monitoring (JECAM) initiative. The temporal analysis of the

scattering-type parameters and the new clustering schemes help us to in-

vestigate detailed scattering characteristics from rice across its phenological

stages.

Keywords: Unsupervised clustering, Entropy, RADARSAT-2, Crop

monitoring, PolSAR, Roll-invariant parameter

1. Introduction1

Variations in crop phenological stages can be characterized by Synthetic2

Aperture Radar (SAR) data due to its high sensitivity to the dielectric and3

geometrical structure of the canopy. However, depending on the frequency4

of the transmitted electromagnetic (EM) wave, the interaction with crop5
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canopy layers and the underlying soil varies significantly (Davidson et al.,6

2000). Previous studies reported that phenological changes could be ade-7

quately captured with high-frequency SAR sensors utilizing backscattered8

information from vegetation canopy (Wiseman et al., 2014; De Bernardis9

et al., 2015; McNairn and Shang, 2016; McNairn et al., 2018). In general, the10

SAR backscatter signal might be affected by the underlying surface during11

early vegetative growth stages when the canopy was sparse and open (Palos-12

cia, 2002).13

In particular, for rice monitoring, Le Toan et al. (1989) investigated the14

temporal backscatter response of σ0
HH and σ0

V V from dual-polarized airborne15

SAR data. It was noticed that the dynamic ranges of σ0
HH and σ0

V V for rice16

fields were higher (up to ≈10 dB) than any other crop fields, possibly due to17

the flooding condition in those fields. In another study, Kurosu et al. (1995)18

reported that ERS-1 C-band SAR data had a second-order polynomial rela-19

tionship of the backscatter values with the number of days after transplant-20

ing. Besides, a high correlation of rice biomass with radar backscatter values21

was also apparent. Although these satellites have low revisit time and coarse22

resolution, the temporal pattern of HH and VV backscatter has been shown23

to adequately capture the phenological growth of rice (Le Toan et al., 1997;24

Koay et al., 2007; Bouvet et al., 2009). The discrimination of rice fields from25

non-rice fields was conducted using the C-band HH/VV ratio, which shows26

a distinct variation from the beginning of the season until the crop maturity27

stage. Besides, several other SAR systems (e.g., RADARSAT-2, ALOS-2,28

TerraSAR-X) have been exploited for crop growth monitoring by correlating29

the backscatter changes to the crop morphological characteristics (Canisius30
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et al., 2018; Torbick et al., 2017).31

One of the primary parameters associated with the changes in the SAR32

backscatter coefficient is the crop canopy distribution (e.g., tillers, leaves,33

and panicles) at each phenological stage. Moreover, this distribution in the34

crop fields also leads to randomness in scattering (Yuzugullu et al., 2015).35

In such situations, polarimetric entropy (H) is an important parameter to36

quantify this randomness. In Cloude and Pottier (1997), an unsupervised37

classification scheme (H/α) was proposed usingH and the average scattering-38

type parameter (α).39

Lopez-Sanchez et al. (2011) reported the importance of the H/α plane to40

discriminate phenological stages of rice along with the temporal correlation41

of HH and VV and their ratio. The clustering results show that at the42

beginning of the cultivation period of rice, the data cluster was denser in43

the region with medium entropy and low alpha, which was primarily due to44

the presence of sparse vegetation in the fields. However, at the advanced45

phenological stages, the cluster density shifted towards the region of high46

entropy and high alpha in the H/α plane.47

In another study, Lopez-Sanchez et al. (2012) utilized the dominant scattering-48

type information (α1) instead of α. In this study, the temporal behaviour of49

α1 and the scattering entropy was shown with the phenological stages of rice.50

At the initial stage, α1 and entropy were both within low to medium values,51

and they jointly increased during the plant emergence stage. During the52

advanced vegetative stage, both parameters show the dominance of multiple53

scattering from the fields. In contrast, at the harvest stage, α1 < 30◦ and54

the scattering entropy remained high due to the field roughness condition.55
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Praks et al. (2009) proposed alternative scattering-type and randomness56

parameters equivalent to α and H for clustering PolSAR data. These pa-57

rameters can be directly obtained from the elements of the coherency matrix58

without utilizing the eigenvalues and the eigenvectors. It was shown that in-59

stead of α and H, the surface scattering fraction and the scattering diversity60

that are equivalent polarimetric descriptors can be utilized for classification,61

visualization, or interpretation. Later, Yin et al. (2015) proposed a new62

parameter, αB, defined by the co-polarization ratio and their coherence to63

capture various scattering mechanisms. This new parameter was able to dis-64

tinguish scattering from oriented and randomly distributed targets. In their65

study a new ∆αB/αB plane was proposed which showed better separation ca-66

pability than the H/α clustering plane. It was also stated that the stability67

of the proposed method was better with multi-temporal SAR data.68

In another work, Ratha et al. (2019) proposed a roll-invariant scattering-69

type parameter (αGD), the helicity parameter (τGD), and the purity parame-70

ter (PGD) using a geodesic distance between two Kennaugh matrices. A new71

PGD/αGD unsupervised classification scheme is proposed whic is analogous72

to H/α. However, the PGD/αGD clustering plane showed better performance73

than earlier proposed schemes.74

The study using compact-polarimetric (CP) SAR data holds promise75

due to the upcoming constellation of satellites such as the Canadian RAD-76

ARSAT Constellation Mission (RCM), SAOCOM (TOPSAR with experi-77

mental CP-mode), and the NISAR (the NASA-ISRO SAR) L- and S-band78

mission. Similar to the full-polarimetric (FP) case, scattering-type clustering79

assessment using compact polarimetric (CP) SAR data and its decomposition80
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parameters (Raney, 2007; Cloude et al., 2011; Raney et al., 2012) are lately81

gaining interest (Ainsworth et al., 2009; Charbonneau et al., 2010; Ballester-82

Berman and Lopez-Sanchez, 2011; Sabry and Vachon, 2013). Brisco et al.83

(2013) assessed hybrid-compact, circular, and linear polarimetric SAR data84

for rice and wetlands mapping. Also, different dual-channel combinations and85

m − δ decomposition parameters for CP data were assessed in their study,86

where the classification accuracy for CP data was comparatively better than87

linear dual-polarimetric SAR data.88

Lopez-Sanchez et al. (2014) used the radar backscatter coefficients and89

the H/α plane to investigate the dynamics of rice phenological changes for90

full, dual, and compact polarimetric SAR data. In this study, the dominant91

scattering-type parameter (αs) for CP data is used instead of α. For CP data,92

the entropy, in particular, is equivalent to the Barakat degree of polarization.93

It was noticed that the pattern of αs was similar for full, dual, and compact94

polarimetric SAR data for rice crops. Alongside this, it was also observed95

that αs precisely provides similar information like the FP mode, throughout96

the phenological cycle of rice. On the contrary, among other decomposition97

parameters, δ provides quite noisy information.98

Subsequently, Yang et al. (2014) showed improved classification accuracy99

in discriminating transplanted and direct-sown rice fields. In this study, the100

use of the m − χ decomposition parameters along with αs, the degree of101

polarization (m), relative phase (δ) and conformity coefficient (µ) improved102

the classification accuracy from 88 % to 95 %. Besides, the classification103

accuracy confirmed the advantage of CP data over other dual-polarized SAR104

data. Several other studies (Xie et al., 2015; Uppala et al., 2015; Guo et al.,105
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2018; Kumar et al., 2020) also indicated the potential of CP SAR data for106

rice mapping and monitoring.107

Recently, Yin et al. (2019) proposed a new parameter, αBCP , for improve-108

ment in the clustering results for land-cover features. In particular, αBCP is109

rotation-invariant and ∆αBCP/αBCP resembles the existing ∆αB/αB clus-110

tering for FP SAR data. However, the differences between αBCP and αB111

depend on the polarization of the received wave. Moreover, the derivation112

of specific scattering models is needless for separate CP modes. It was also113

observed that circular CP data provides almost similar results as FP data114

for various scattering targets.115

The literature, as mentioned above, provides a vital foundation for the116

utilization of H and the scattering-type parameters (i.e., α and αs) for rice117

crop monitoring and mapping using FP and CP SAR data. Nevertheless,118

these techniques are formulated either by fitting scattering models or by di-119

agonalizing the coherency (or covariance) matrix of the received wave. Hence,120

these techniques might miss the received antenna basis invariant information121

while characterizing various targets. The importance of the received antenna122

basis invariant information in terms of the degree of polarization helps to123

effectively exploit complete information from SAR data (Touzi et al., 2015,124

2018). In this regard, a new scattering-type parameter is derived by jointly125

using the received antenna basis invariant information and elements of co-126

herency (or, covariance) matrix for both FP and CP SAR data.127

In this study, our main objective is to characterize changes in scattering128

mechanisms utilizing the temporal series of full- and compact polarimet-129

ric SAR data across the growth stages of rice. In this regard, we propose130
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roll-invariant scattering-type parameters using the received antenna basis in-131

variant information along with the elements of the coherency (or, covariance)132

matrices. The received antenna basis invariant information, i.e., in particular,133

the Barakat degree of polarization (Barakat, 1977, 1983) is useful to capture134

changes in scattering randomness due to crop foliage development. At the135

same time, the elements of the coherency (or, covariance) matrices provide136

information about crop canopy geometry as well as the soil and vegetation137

water content. Hence, jointly utilizing these information might be helpful138

in better monitoring the crop growth stages. Alongside this, we present a139

comparative study of the performance of novel clustering schemes for FP and140

CP data for rice phenology mapping.. It is noteworthy that the formulation141

of this new scattering-type parameter is equivalent for both FP and CP SAR142

data. This parameter is comparable to the Cloude and Pottier α (Cloude143

and Pottier, 1997) for FP. It may be noted that θFP consider the Barakat144

degree of polarization in its formulation unlike α, and hence, it additionally145

utilizes the received antenna basis invariant information. We have proposed146

new clustering schemes using θFP and θCP along with H for both FP and147

CP SAR data, respectively. Unlike the H/α plane, the proposed segmen-148

tation scheme utilizes a polar representation, which offers a natural choice.149

Suitable entropy apportionment (radially) together with angular extent of150

θX ∈ [−90◦, 90◦] (where X is either FP or CP) provides a reliable target151

discrimination strategy. The segmentation scheme produces 12 feasible clus-152

tering zones that better characterize natural and human-made targets. The153

usefulness and performance of the scattering-type parameters θFP and θCP,154

along with the new clustering schemes, are assessed by utilizing them with155
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the time-series C-band RADARSAT-2 data for monitoring rice.156

2. Study area and dataset157

The study area is located near Vijayawada in the state of Andhra Pradesh,158

India (16◦24′6.2′′N, 8◦41′2.4′′E) as shown in Figure 1 (Mandal et al., 2019).159

The climatic zone of this area varies from sub-humid to humid, with mostly160

clayey soil texture. Areal coverage of this test site is ≈ 25 × 25 km2. Rice161

is one of the primary and major crops cultivated in this area. The sowing162

period of rice varies from mid of June to mid of July depending on the163

variety and cultivation practices. Majorly, the cultivation starts after the164

pre-monsoon rain and is harvested during mid-December. The average size165

of each field was ≈ 60 × 60 m2, and in each field, two sampling locations166

were chosen for in-situ measurements. Information about the crop growth167

stages, management practices, and biophysical parameters was noted during168

the field campaign from June to December 2018.169

A total number of 14 in-situ field measurements were considered in this170

study. We measured soil moisture at each field in two sampling locations,171

arranged in two parallel transects along the row direction. The separation172

between each transect was ≈ 80 m. We measured the pointwise soil moisture173

using theta-probe. Nevertheless, the soil underlying the rice crops was satu-174

rated during the majority of the growth stages due to irrigation and rainfall175

events. We measured vegetation samples at two points of each field due to176

the spatial heterogeneity within the field, which is due to the irregular growth177

pattern of rice. Vegetation sampling included the measurement of PAI, plant178

height, and phenology through non-destructive methods. The PAI is mea-179
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sured using the notion of hemispherical digital photography. During each180

measurement day, we took ten photos along two transects which are sepa-181

rated by 2m in each sampling point, using a wide-angle lens mounted on a182

digital camera. All images were post-processed using the CanEYE software183

to provide an estimate of PAI. The overall phenology of rice is usually ex-184

pressed with three major stages: vegetative, reproductive, and mature (or185

ripening). The statistics of bio-physical and soil parameters are given in186

Table 1.187

Figure 1: The Google Earth image of the JECAM test site over Vijayawada, India is
overlaid with a Pauli RGB image obtained from SAR data acquired on 29 Jul 2018. The
samples from region 1 and 2 are used for temporal analysis and clustering. The distribution
of five in-situ data points is shown in the sampling unit of region 1 and region 2.

3. Satellite data pre-processing188

We acquired RADARSAT-2 images in Fine Quad (FQ) wide mode from189

July to November 2018 over the test site as shown in Table 2. We then190

apply a multi-look factor of 2× 3 pixels in the range and azimuth directions,191
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Table 1: Statistics (mean ± standard deviation) of bio-physical and soil parameters at
different phenology stages of rice. Here, PH: plant height, PAI: plant area index, SM: soil
moisture and Nan: Not a number

Date PH (cm) PAI (m2 m−2) SM(%) Growth stage

05/07/2018 Nan Nan 35.92 ± 6.6 Bare field
29/07/2018 26.30 ± 5.21 0.40 ± 0.20 Saturated Early tillering

22/08/2018 46.26 ± 9.12 1.76 ± 0.26 Saturated
Advanced
tillering

09/10/2018 92.16 ± 5.76 4.03 ± 0.20 Saturated Flowering
02/11/2018 95.93 ± 7.76 4.06 ± 0.16 47.60 ± 0.42 Early dough
26/11/2018 98.32 ± 6.82 3.86 ± 0.22 45.16 ± 6.04 Maturity

respectively, to generate ≈ 15m square pixel images. In general, the parcel192

sizes in this test area are small. However, during rice cultivation, many fields193

are cultivated alongside the field boundaries. Therefore, the fields seem to194

be quasi-homogeneous, depending on cultivation practices. Since the area is195

quasi-homogeneous, we apply a 3×3 boxcar filter (Lee and Pottier, 2009) to196

each coherency matrix (T) in the images for speckle reduction. Furthermore,197

we generate simulated compact polarimetric (CP) SAR data from the FP198

data with 0◦ orientation angle and −45◦ ellipticity angle. We co-register all199

FP and CP images with the RMSE ≤ 0.25 m.200

4. Methodology201

In this section, we present the newly proposed scattering-type parameters202

for both full- and compact-pol SAR data (Dey et al., 2020) for monitoring203

rice crop. Alongside this, we propose an unsupervised clustering scheme204

utilizing these new parameters along with the scattering entropy parameter205

(i.e., a measure of randomness) derived from full (FP) and compact-pol (CP)206
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Table 2: Specification of the C-band full-pol RADARSAT-2 acquisitions over the test site
during the field campaign (az: azimuth resolution and rg: range resolution)

Acquisition
date

Beam
mode

Incidence angle
range (deg.)

Orbit az(m)× rg(m)

05/07/2018 FQ15W 33.73–36.65 Ascending 4.73× 5.11
29/07/2018 FQ15W 33.73–36.65 Ascending 4.73× 5.11
22/08/2018 FQ15W 33.73–36.65 Ascending 4.73× 5.11
09/10/2018 FQ15W 33.73–36.65 Ascending 4.73× 5.11
02/11/2018 FQ15W 33.73–36.64 Ascending 4.73× 5.11
26/11/2018 FQ15W 33.73–36.64 Ascending 4.73× 5.11

SAR data.207

4.1. Full-polarimetry208

In FP SAR, the 2×2 complex scattering matrix S encompasses complete209

polarimetric information about backscattering from targets for each pixel.210

It is expressed in the backscatter alignment (BSA) convention in the linear211

horizontal (H) and linear vertical (V) polarization basis as,212

S =

 SHH SHV

SVH SVV

 (1)

Each element of the matrix represents the backscattering response of the tar-213

get at a specific polarization. The diagonal elements of the matrix represent214

the co-polarized scattering information, while the off-diagonal terms repre-215

sent the cross-pol information. In the monostatic backscattering case, the216

reciprocity theorem constrains the scattering matrix to be symmetric, i.e.,217

SHV = SVH.218

To reduce the speckle effect in S, the multi-looked Hermitian positive
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semi-definite 3×3 coherency matrix T is obtained from the averaged outer

product of the target vector kP (derived using the Pauli basis matrix, ΨP )

with its conjugate (Lee and Pottier, 2009).

ΨP =

√2

1 0

0 1

 ,√2

1 0

0 −1

 ,√2

0 1

1 0


kP =

1

2
Tr(SΨP ) =⇒ kP =

1√
2

[SHH + SV V , SHH − SV V , 2SHV ]T

T =
1

N

N∑
i=1

kPik
∗T
Pi

where N denotes the square window size for spatial averaging and Tr is the219

sum of the diagonal elements of the matrix.220

When a polarized electromagnetic (EM) wave scatters from a random221

mixture of targets, it becomes partially polarized. The state of polarization222

of a partially polarized EM wave is characterized in terms of the degree of223

polarization (0 ≤ m ≤ 1). The degree of polarization is defined as the ratio224

of the (average) intensity of the polarized portion of the wave to that of the225

(average) total intensity of the wave. For a completely polarized EM wave,226

m = 1 and for a completely unpolarized EM wave, m = 0. In between these227

two extreme cases, the EM wave is said to be partially polarized, 0 < m < 1.228

Barakat (Barakat, 1977) provided an expression of m for the N × N229

coherency matrix. This expression is used in this study to obtain the degree230

of polarization mFP from the 3× 3 coherency matrix T for FP SAR data as,231

mFP =

√
1− 27|T|(

Tr(T)
)3 , (2)
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where | · | is the determinant of a matrix.232

From the interpretation of the Huynen parameters in terms of certain233

general properties of the target geometry, it can be inferred that T11 is the234

generator of target symmetry and represents the scattered power from a235

regular, smooth and convex parts of the scatterer. Similarly, (T22 + T33) is236

the generator of the target structure and represents the scattered power from237

an irregular, uneven and non-convex parts of the scatterer (Lee and Pottier,238

2009). Therefore, with respect to the total polarized scattered power (i.e.,239

mFPSpan) from a scatterer, let us denote,240

tan η1 =
T11

mFP Span
and tan η2 =

T22 + T33
mFP Span

, (3)

where, T11 = 〈|SHH + SVV|2〉, T22 = 〈|SHH − SVV|2〉, and T33 = 4〈|SHV|2〉241

are the diagonal elements of the T matrix with T11 and T22 + T33 being242

roll-invariant quantities. The total power, Span is defined in terms of the243

elements of the T matrix as,244

Span = T11 + T22 + T33. (4)

We define:245

tan γFP = tan (η1 − η2) , (5)

where γFP can be related to the average roll-invariant scattering-type pa-246

rameter, Cloude α ∈ [0◦, 90◦] (Cloude and Pottier, 1997). However, in order247

to compare the two parameters within the same range, they are suitably248
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modified as, α̂ = 90◦ − 2α and θFP = 2γFP, which is given as,249

θFP = 2 tan−1
(
mFP Span (T11 − T22 − T33)
T11 (T22 + T33) +m2

FP Span2

)
∈ [−90◦, 90◦]. (6)

It can be noticed from equation (6) that when T11 = 0 and mFP = 1,250

then Span = T22 + T33 and θFP = −90◦. Similarly, when T22 + T33 = 0 and251

mFP = 1, then Span = T11 and θFP = 90◦. Besides, as θFP approaches 0,252

scattering randomness increases and at θFP = 0◦, the scattering is purely253

random (or depolarized).254

The eigen-decomposition of T can be expressed as,255

T = U3ΣU−13 (7)

where Σ is the 3× 3 diagonal matrix with non-negative elements, λ1 ≥ λ2 ≥256

λ3 ≥ 0, which are the eigenvalues of T. The pseudo probabilities, pi obtained257

from the eigenvalues are defined as,258

pi =
λi∑3
k=1 λk

, (8)

which are then used to define the scattering entropy (Lee and Pottier, 2009)259

as,260

HFP = −
3∑

k=1

pk log3 (pk), (9)

However, in this study, we use the quantity HFP = 1 − HFP to suitably261

represent the clusters in the HFP/θFP polar plane.262

The feasible regions for HFP/θFP clustering plane can be represented by263

15



Figure 2: The HFP/θFP clustering plane displayed in polar plot. Curve I and Curve II
represent the azimuthal symmetry lines. No scattering mechanisms exist in the dashed
portion of the plane. Two half-circles at 0.5 and 0.7 divide the HFP into high, medium
and low entropy regions while −90◦ to −10◦ represents even bounce scattering, −10◦ to
20◦ represents multiple bounce scattering and 20◦ to 90◦ represents odd bounce scattering.

two bounding curves, Curve I and Curve II as shown in Figure 2.264

Curve I, [T]I =


1 0 0

0 m 0

0 0 m

 0 ≤ m ≤ 1 (10)

Curve II, [T]II =


2m− 1 0 0

0 1 0

0 0 1

 0.5 ≤ m ≤ 1 (11)
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4.2. Compact-polarimetry265

The CP mode measures a projection of the 2 × 2 complex scattering266

matrix S as,267  ECH

ECV

 =
1√
2

 SHH SHV

SV H SV V

 1

±i


=

1√
2

 SHH ± iSHV

SV H ± iSV V

 (12)

where the subscript C can be either the left-hand circular (L) transmit with268

a + sign or the right-hand circular (R) transmit with a − sign. The 2 × 2269

covariance matrix is then obtained from the elements of the scattering vector270

as,271

C2 =

 〈|ECH |2〉 〈ECHE
∗
CV 〉

〈ECVE
∗
CH〉 〈|ECV |2〉

 . (13)

For CP-SAR data, the 4 × 1 Stokes vector ~g can be written in terms of272

the elements of the 2× 2 covariance matrix C2 as,273

~g =


g0

g1

g2

g3

 =


C11 + C22

C11 − C22

C12 + C21

±j (C12 − C21)

 , (14)

where ± corresponds to left and right circular polarization respectively.274

From the elements of ~g, the backscatter power in the same sense (SC =275

g0−g3
2

) and opposite sense (OC = g0+g3
2

) to the transmitted circular polariza-276
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tion is utilized to derive the roll-invariant scattering-type parameter (θCP)277

for the compact-polarimetric SAR data similar to the FP case. Here, OC is278

the generator of target symmetry and represents the scattered power from279

a regular, smooth and convex parts of the scatterer. Similarly, SC is the280

generator of the target structure and represents the scattered power from an281

irregular, uneven and non-convex parts of the scatterer:282

tan ζ1 =
OC

mCP Span
, and tan ζ2 =

SC

mCP Span
(15)

where the total power Span is defined as,283

Span = SC +OC (16)

Similar to FP, we define:284

tan γCP = tan (ζ1 − ζ2) (17)

where γCP can be analogously related to the polarization ellipticity parameter285

χ ∈ [−45◦, 45◦]. However, in order to compare, the two parameters within286

the same range, they are suitably scaled as, χ = −2χ and θCP = 2γCP which287

is given as,288

θCP = 2 tan−1
(
mCP Span (OC − SC)

OC × SC +m2
CP Span2

)
∈ [−90◦, 90◦] (18)

Similar to θFP, it can be noticed from (18) that for a pure dihedral scat-289

terer, i.e., when OC = 0 and mCP = 1, then Span = SC and θCP = −90◦.290

Similarly, for a pure trihedral scatterer, i.e., when SC = 0 and mCP = 1,291
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then Span = OC and θCP = 90◦. Besides, as θCP approaches 0, scattering292

randomness increases and at θCP = 0◦, the scattering is purely random (or293

depolarized).294

The expression for the Barakat degree of polarization for the compact-295

polarimetric case is given as,296

mCP =

√
1− 4|C2|(

Tr(C2)
)2 . (19)

The eigen-decomposition of C2 can be expressed as,297

C2 = U2ΣU−12 , (20)

where Σ is a 2× 2 diagonal matrix with non-negetive elements, λ1 ≥ λ2 ≥ 0,298

which are the eigenvalues of C2. The pseudo probabilities, pi obtained from299

the eigenvalues are defined as,300

pi =
λi∑2
k=1 λk

, (21)

which are then used to define the scattering entropy (HCP) for CP-SAR data301

as,302

HCP = −
2∑

k=1

pk log2 (pk). (22)

As mentioned earlier for the FP case, we use the quantity HCP = 1 − HCP303

to suitably represent the clusters in the HCP/θCP polar plane.304

Similar to FP, the feasible regions for HCP/θCP clustering plane can be305

represented by two bounding curves, Curve I and Curve II, as shown in306
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Figure 3: The HCP/θCP clustering plane displayed in polar plot. Curve I and Curve II
represent the azimuthal symmetry lines. No scattering mechanisms exist in the dashed
portion of the plane. Two half-circles at 0.5 and 0.7 divide the HCP into high, medium
and low entropy regions while −90◦ to −10◦ represents even bounce scattering, −10◦ to
20◦ represents multiple bounce scattering and 20◦ to 90◦ represents odd bounce scattering.

Figure 3.307

Curve I, [C]I =

 2m+1
4

i2m−1
4

−i2m−1
4

2m+1
4

 0 ≤ m ≤ 0.5 (23)

Curve II, [C]II =

 2m+1
4

−i2m−1
4

i2m−1
4

2m+1
4

 0 ≤ m ≤ 0.5 (24)

4.3. Clustering308

Cloude and Pottier (Cloude and Pottier, 1997) proposed a clustering309

scheme H/α, for FP SAR data based on the average scattering-type pa-310

rameter (α) and the scattering entropy (H). The H/α plane is sub-divided311
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into nine zones to suitably cluster various scattering mechanisms. The prop-312

erties of different scattering mechanisms determine the boundaries between313

the zones. Hence certain assumptions are utilized in the proper setting of314

these boundaries. Subsequently, the 2D clustering plane is extended to 3D315

H/A/α space by introducing the scattering anisotropy parameter A. This316

parameter, which is complementary to H, is useful to discriminate targets317

when H > 0.7. However, for lower values of H, this parameter is noisy318

and could introduce inaccuracies in determining the clusters. In the litera-319

ture, this clustering scheme is extended for dual-pol SAR data (HH-HV or320

VV-VH) by suitably modifying the zone boundaries (Ji and Wu, 2015).321

In our study, we propose a clustering scheme equivalently for both FP322

and CP SAR data by utilizing the 2D HFP/θFP and HCP/θCP planes respec-323

tively. Besides, the zones and the boundaries of both the clustering planes324

are identical. From analysis with scattering model (random volume model),325

it has been observed that the scattering-type from vegetation lies approxi-326

mately in the range −10◦ to 20◦ (Antropov et al., 2011). The upper bound327

for multiple scattering (θX = 20◦) is characterized by equal contributions328

from the ensemble of horizontal and vertical dipole scattering components329

from vegetation structure. In contrast, the lower bound (θX = −10◦) is330

the characteristic of multiple scattering phenomena predominantly described331

by vertical vegetation structure. Hence, this region is subdivided for multi-332

ple scattering mechanisms. Unlike the H/α plane, the proposed clustering333

scheme divides the plane into twelve zones. The scattering-type parameter334

θX (where X refers to both FP and CP) divides the HX − θX plane into four335

sub-planes (P1:(Z1, Z2, Z3); P2:(Z4, Z5, Z6); P3:(Z7, Z8, Z9); P4:(Z10, Z11,336
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Z12)) which consists of (1) pure even-bounce scattering (−90◦ to −10◦) in P1;337

(2) even-bounce with multiple scattering (−10◦ to 0◦) in P2; (3) odd-bounce338

with multiple scattering (0◦ to 20◦) in P3; (4) pure odd-bounce scattering339

(20◦ to 90◦) in P4. The quantity HX = 1−H divides the plane into (1) high340

entropy (0 to 0.3); (2) medium entropy (0.3 to 0.5); (3) low entropy (0.5 to341

1). The H/α and the HX/θX clustering plane along with the zones are given342

in Figure 4.

Figure 4: (a) H/α clustering plane for FP SAR data and (b) HX/θX plane for both FP
and CP SAR data.

343

The difference between the geometrical structures of theH/α andHFP/θFP344

2D clustering planes can be observed in Figure 4. As stated earlier, it may345

be noted that the parameter α is scaled to α̂ = 90◦ − 2α solely for the346

sake of qualitative comparison. The ability of the two clustering planes, i.e.,347

HFP/θFP and HCP/θCP to classify different landcover classes is apparent in348

this figure. Region A, B and C in Figure 5 are respectively the oriented349

urban area, forest area and ocean areas. The dashed white box in Figure 5350
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Figure 5: The scattering type parameters, α, θFP, θCP and the H/α, HFP/θFP, HCP/θCP

clustered image of San Francisco Bay, USA using C-band RS-2 SAR data. Region A
represents the oriented urban area, region B and C represents forest and ocean areas,
respectively. The white box shows the oriented urban area where the major change during
clustering occured. H/α identified it as scattering from vegetation while HFP/θFP and
HCP/θCP correctly identified it as scattering from urban region.

highlights distinct changes in the scattering types as well as the clustering351

zones for differently oriented targets.352

It can be observed from Figure 6 that in the H/α plane, the even-bounce353

scattering mechanism over oriented urban area (A) is only 17 % while the354

odd-bounce and multiple-bounce scattering mechanism are 38 % and 45 %,355

respectively. In contrast, the contribution of even-bounce dominant scatter-356

ing mechanism in HFP/θFP and HCP/θCP are 84 % and 79 %, respectively. On357

the other hand, over the forest area (B), the multiple-bounce scattering mech-358

anism is 8 % higher for HFP/θFP and 6 % higher for HCP/θCP as compared359
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(a) Rotated urban

(b) Forest

(c) Ocean

Figure 6: A comparison of the percentages of even, odd and multiple bounce scattering
over (a) rotated urban, (b) forest and (c) ocean surfaces for the C-band RS-2 San Francisco
Bay area image using H/α, HFP/θFP and HCP/θCP clustering techniques.

to H/α. Similarly, over the ocean area (C) the odd-bounce scattering mech-360

anism has increased marginally by 2 % and 1 % for HFP/θFP and HCP/θCP,361
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respectively. This suggests that the discriminating ability of HFP/θFP and362

HCP/θCP scheme is by and large higher than H/α. This marked ability might363

be due to 1) the joint utilization of the Barakat degree of polarization along364

with essential information from elements of the coherency matrix in deriv-365

ing the scattering-type parameters, 2) the notion of an extended clustering366

procedure (i.e., 12 clusters) using entropy and the scattering-type parame-367

ters. Hence, we use the proposed clustering schemes with θFP and θCP, for368

the temporal analysis of two different varieties of rice crops over Vijayawada,369

India using FP RADARSAT-2 data and simulated CP SAR data. In this370

study, we analyze the phenological changes of rice using these parameters371

and the new clustering scheme.372

5. Results and Discussion373

The study area in Vijayawada is well facilitated with water for crop cul-374

tivation throughout the year. The temporal analysis of θFP and θCP along375

with HFP/θFP and HCP/θCP clustering plane for rice will be discussed in this376

section.377

5.1. Temporal variation of θFP and θCP for FP and CP data378

The temporal variation of θFP and θCP for FP and CP SAR data, respec-379

tively, are shown in Figure 7. As stated earlier, for any deterministic target,380

θFP and θCP lie at the extremities of the range, i.e., −90◦ to 90◦. For both381

θFP and θCP, −90◦ indicates pure dihedral scattering, while 90◦ indicates382

pure trihedral scattering. For pure diffused scattering, θFP and θCP ≈ 0◦.383

However, for any other distributed targets, θFP and θCP varies within these384

limits.385
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Figure 7: Variation of θFP and θCP images for FP and CP over the study area. The growth
stages are: 5-Jul: Bare field, 29-Jul: Early tillering, 22-Aug: Advanced tillering, 9-Oct:
Flowering, 2-Nov: Early dough, and 26-Nov: Maturity

During the first week of July, there was no crop in most of the rice fields.386

Hence, the SAR response was primarily dominated by the soil character-387
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istics in this period. On 29 Jul, a significant difference in θFP values can388

be observed in those fields. In that particular area, transplantation of rice389

was mostly completed, while certain fields entered the early tillering stage.390

Hence, majority of the rice fields showed even-bounce multiple scattering391

with θFP varies from 0◦ to −20◦. Additionally, the rice fields, which were at392

the end of the tillering stage, showed moderate even-bounce scattering with393

θFP varies from −30◦ to −50◦.394

On 22 Aug, most of the rice fields were at the advanced tillering stage.395

Therefore, high even-bounce multiple scattering is prominent in these fields.396

Around 09 Oct, rice fields reached the end of the vegetative stage, and thus397

θFP for the area showed even-bounce multiple scattering mechanisms. On 26398

Nov, rice reached the maturity stage. At this time, crop water content got399

reduced, and the canopy geometry appeared complex due to the randomly400

oriented stem with grains that are evident from in-situ measurements. Thus,401

this complex structure generated a random-volume scattering mechanism402

from most of the fields in that area.403

Similarly, θCP shows changes from high odd-bounce to even-bounce mul-404

tiple scattering within the growing season of rice. However, few minor differ-405

ences in the response of θCP from θFP can be noticed mainly during the higher406

phenological growth stages. These differences might be due to the formula-407

tion of the compact polarimetric Stokes vector that is obtained from the408

projection of the scattering matrix with reduced polarimetric information.409

Due to this reason, for high cross-pol components, the difference between SC410

and OC powers becomes negligible, and θCP exhibits high diffused scattering.411

As stated earlier, on 5 Jul, most of the fields were empty. Hence, like θFP,412
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θCP also exhibits a high amount of odd-bounce scattering in those fields.413

On 29 Jul, a notable change in the response of θFP and θCP for a few414

fields must be due to different sowing date. During this period, rice was415

transplanted and progressed to the early tillering stage, which shows dom-416

inant even-bounce multiple scattering. From 09 Oct to 26 Nov, dominant417

even-bounce multiple scattering is evident due to numerous branch and fo-418

liage development with an increase in the plant area index. However, the419

range of θCP for even-bounce multiple scattering is higher than θFP. This420

high value of θCP might be because of the high cross-pol component due to421

which the difference between SC and OC power is almost negligible. For the422

quantitative temporal analysis of θFP and θCP, five different field points were423

selected from the fields.424

In this study, both qualitative and quantitative analyses of the temporal425

variations in θFP and θCP utilizing data from five in-situ points (viz., P012,426

P054, P064, P034, P053) are shown in Figure 8. The values of θFP and θCP on427

05 Jul indicate dominant odd-bounce scattering from bare soil. However, on428

29 Jul, a sudden change in θFP and θCP values are noticed. During this period,429

θFP ranges from −17◦ to −51◦ while θCP ranges from −23◦ to −62◦. These430

sudden changes in the values of θFP and θCP are due to the early tillering431

stage of rice. At this point, the soil was highly saturated, and the vertical432

stems acted like a dihedral scatterer which leads to even-bounce scattering433

from the rice fields. A similar response of rice during the tillering phase was434

also reported by Lopez-Sanchez et al. (2014).435

Contrarily, we observe an increasing trend in the plots between 22 Aug436

and 2 Nov due to the reduction in even-bounce multiple scattering. During437
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(a) FP (b) CP

Figure 8: Temporal variation of θFP and θCP for rice using FP and CP data. The growth
stages are: 5-Jul: Bare field, 29-Jul: Early tillering, 22-Aug: Advanced tillering, 9-Oct:
Flowering, 2-Nov: Early dough, and 26-Nov: Maturity

this time, rice advanced from advance tillering to early dough stage, and438

hence, we observe increased multiple scattering from these fields. Therefore,439

the coherence between the co-polarized channels decreased significantly. The440

range of θFP value during this period was 2◦ to −25◦ and θCP value was 0◦ to441

−30◦. However, towards the end of the season, randomness in θFP and θCP442

values are observed due to complex scattering from the rice stem and grains.443

5.2. HFP/θFP and HCP/θCP clustering planes for rice444

As discussed earlier, the HFP/θFP and HCP/θCP planes are divided into445

12 zones based on different scattering-type information. In this study, these446

clustering zones (Figure 11) are utilized to monitor the growth stages of rice447

using full (Figure 9) and simulated compact (Figure 10) polartimetric SAR448

data.449

In Figure 9 and Figure 10, the θFP and θCP values are majorly within the450

odd-bounce scattering region on 05 Jul due to the nearly smooth soil surface451

condition. Hence, dense clusters are seen in Z10, Z11, and Z12, which corre-452
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sponds respectively to low entropy even-bounce scattering, medium entropy453

even-bounce scattering, and high entropy even-bounce scattering regions.454

Moreover, a few data points lying in region Z3 is due to the early trans-455

plantation stage. Besides, tillage operation in some fields has produced soil456

surface roughness, which increased the entropy, and hence, a sparse cluster457

can also be seen in Z9 and Z6. The proportion of pixels over different scat-458

tering regions at each phenological stage is shown in Table 3. To characterize459

different changes in scattering mechanisms, we have considered (Z1, Z2, Z3)460

as even bounce scattering, (Z10, Z11, Z12) as odd bounce scattering and (Z4,461

Z5, Z6, Z7, Z8, Z9) as multiple bounce scattering. High odd bounce scatter-462

ing (86.26 %) was noted for FP data. Besides, due to the slight roughness a463

small component of multiple bounce scattering (12.24 %) is observed during464

this period, whereas even bounce scattering contribution was only 0.90 %.465

A significant change in the data cluster is seen on 29 Jul. During this466

period, most of the rice fields were in the early tillering stage, while other467

non-cultivated fields had moist soil with high roughness that is evident from468

in-situ data. This highly rough soil surface during this period has generated469

a high degree of randomness in the received EM wave, which resulted in470

an increased entropy. Hence, a shift from low entropy zone (Z10) to high471

(Z12) and medium (Z11) entropy zones is evident on 29 Jul. Also, some data472

points in zones Z11 and Z12 are θFP ≤ 30◦, which is due to the scattering from473

the water surface in the rice fields (Lopez-Sanchez et al., 2014). However,474

compared to θFP, the values of θCP are 5◦ to 10◦ higher in this period.475

The density of the data points in Z6 and Z9 zones has also increased476

on 29 Jul, while rice transplantation was undergoing in some other fields.477
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Therefore, a moderately high accumulation of data points can also be seen478

in Z3 (Figure 9 and Figure 10). Moreover, the previously sown rice fields479

had achieved a higher vegetative stage due to which the areal coverage by480

the crop canopy had increased, thereby slightly decreasing the scattering481

entropy. Due to this aspect, a few data points are sparsely clustered in the482

Z2 region on 29 Jul. Furthermore, in zones Z2 and Z3, the values of θCP is483

2◦ to 5◦ higher than θFP. Hence, the even bounce scattering had increased484

by 75.89 % and multiple scattering had increased by 16.49 %. A noteworthy485

decrease in the odd bounce scattering (82.38 %) is observed which is most486

likely due to the increase of double-bounce for the presence of stems, which487

also helps to reduce the surface roughness and the contribution from the488

ground.489

On 22 Aug, dense clusters can be seen in Z3 for FP and CP data, which is490

due to the tillering stage of rice. During this stage, the fields are flooded with491

water, and the stems are almost vertical, which acts as dihedral scatterers.492

During this period, HCP is lower than HFP, which might be due to less493

polarimetric information content. Similar to 29 Jul, θCP is higher than θFP494

at this time. Additionally, due to the variation in the θCP and HCP values495

according to crop morphology, significant change among Z5, Z6, Z8, and496

Z9 zones can be observed compared to 29 Jul. Moreover, in HFP/θFP plot,497

cluster formation in Z5 and Z8 zones is seen, whereas, in HCP/θCP plot, no498

such clusters are found due to the high entropy in the CP SAR data.499

In general, the occurrence of flooding in rice fields generates even-bounce500

scattering (Yonezawa et al., 2012). Hence, a significant shift in the scatter-501

ing mechanism from odd-bounce to even-bounce is visible during 22 Aug.502
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Figure 9: The HFP/θFP scatter plane for rice fields using FP SAR data. The growth
stages are: 5-Jul: Bare field, 29-Jul: Early tillering, 22-Aug: Advanced tillering, 9-Oct:
Flowering, 2-Nov: Early dough, and 26-Nov: Maturity

However, the orientation, shape, and size of each crop were not the same,503

and hence there was also a possibility of rough soil surface stretching out504

from the water surface. Therefore, these phenomena could induce high ran-505

domness in the scattered EM wave. Besides, similar to 29 Jul, some fields506

progressed to a higher vegetative stage due to which a cluster can be seen in507

Z2. Furthermore, fields that reached the booting stage display even-bounce508

multiple scattering with medium entropy characteristics (Z5). However, the509

even-bounce scattering mechanism is evident throughout the tillering stage.510

Hence, the even bounce scattering power had decreased by 11.19 %, while511
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multiple bounce scattering had marginally increased by 3.67 %.512

Figure 10: The HCP/θCP scatter plane for rice fields using simulated CP SAR data. The
growth stages are: 5-Jul: Bare field, 29-Jul: Early tillering, 22-Aug: Advanced tillering,
9-Oct: Flowering, 2-Nov: Early dough, and 26-Nov: Maturity

On 09 Oct, both HFP/θFP and HCP/θCP planes show a shift towards the513

medium entropy region (i.e., Z2 and Z5 zones) which is evident in Figure 9.514

During this period, most of the rice fields were in the inflorescence emergence515

stage, with θFP and θCP indicating even-bounce and even-bounce multiple516

scatterings. Moreover, the amount of cross-pol components has increased517

during this period. A similar type of increase in cross-pol components from518

transplantation to maturity stages was reported by He et al. (2018). The shift519

towards the Z2 and Z5 zones indicates an even-bounce scattering mechanism520
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of the scattered EM wave. Such a response might be due to the extinction521

of the vertical polarization due to the canopy structure. Also, the amount of522

odd-bounce scattering reduced during this period, and rice foliage generated523

moderate odd-bounce multiple scattering due to which dense cluster in the524

Z8 zone is noticed in Figure 9 and Figure 10. The contribution of multiple525

bounce scattering was 40.02 % due to the full-grown rice crop with differently526

oriented stem, leaf structures and flowers.527

Around 02 Nov, the rice fields reached the early dough stage, during528

which, the milky white substance begins to accumulate in rice panicle. Si-529

multaneously, the crop water content during this period remains very high,530

while leaf and stem produce overall complex canopy structure, which leads531

to high randomness in the SAR backscatter. Due to this fact, the values of532

HFP and HCP are low, which is apparent in Z2, Z5, and Z8 zones. Moreover,533

at this point, the clusters in Z3 and Z2 zones are due to the scattering from534

compound leaf and stem structure. In contrast, clusters in Z6, Z5, Z8, and535

Z9 zones are due to multiple scattering contribution from the intermediate536

complex rice canopy layer. The cluster in the Z12 zone corresponds to the537

scattering of the wave directly from the leaves of the uppermost canopy layer.538

During this time further decrease in even bounce scattering is evident.539

On 26 Nov, the rice fields reached the maturity stage, and the grains540

become firm and heavy. At this point, the crop becomes dry, whereas the541

moisture content in grains remains ≈20 %. Due to the weight of the grains,542

lodging of rice is usually visible in the fields due to which the morphological543

condition becomes further complicated than the dough stage. Hence, an544

additional increase in the scattering entropy during this period is apparent545
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for both FP and CP SAR data. High densities of clusters in Z3, Z6, Z9,546

and Z12 zones can be noticed, which is due to scattering from the complex547

geometrical structure of rice at this stage. However, a small cluster can548

also be observed in the Z11 zone, which might be due to fully or partially549

harvested rice fields. At this stage, the highest contribution of multiple550

scattering mechanisms (73.23 %) is profound due to the increase in scattering551

randomness within the SAR resolution cell.552

Table 3: Changes in the scattering mechanisms across different dates and between FP and
CP data. we have considered (Z1, Z2, Z3) as even bounce scattering, (Z10, Z11, Z12) as
odd bounce scattering and (Z4, Z5, Z6, Z7, Z8, Z9) as multiple bounce scattering. The
dominant scattering mechanism(s) at each date is highlighted in bold font.

Dates Modes
Even bounce

scattering
Odd bounce
scattering

Multiple bounce
scattering

Growth
Stage

05/07/2018
FP 0.90% 86.86% 12.24%

Bare field
CP 0.60% 88.28% 11.12%

29/07/2018
FP 76.79% 4.48% 28.73%

Early tillering
CP 64.60% 2.10% 33.30%

22/08/2018
FP 65.60% 2% 32.40% Advanced

tilleringCP 63.87% 2% 34.13%

09/10/2018
FP 58.10% 1.88% 40.02%

Flowering
CP 56.33% 1.88% 41.79%

02/11/2018
FP 39.40% 3% 57.60%

Early dough
CP 31.60% 2% 66.40%

26/11/2018
FP 25.61% 1.16% 73.23%

Maturity
CP 16.76% 0.92% 82.30%

It is noteworthy that the differences in the characterization capability be-553

tween FP and CP SAR data depends on the type and geometry of the targets.554

Moreover, the spatial heterogeneity induces the changes in the intensity of555

the co-pol and cross-pol components. Hence, a change in the scattered EM556

wave is sometimes evident between FP and CP SAR data.557
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Figure 11: Variation of HFP/θFP and HCP/θCP clustered images for FP and CP over
the study area. The growth stages are: 5-Jul: Bare field, 29-Jul: Early tillering, 22-Aug:
Advanced tillering, 9-Oct: Flowering, 2-Nov: Early dough, and 26-Nov: Maturity

6. Conclusions558

In this study, we have proposed two scattering-type parameters, θFP and559

θCP for identifying target scattering mechanism for both full (FP) and com-560
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pact polarimetric (CP) SAR data. These quantities are roll-invariant and561

vary in the range, −90◦ to 90◦. In particular these two scattering-type pa-562

rameters jointly utilize the received antenna basis-invariant parameters, i.e.,563

the Barakat degree of polarization and the total scattering power (Span) and564

the elements of the coherency matrix. The two extreme values of their range565

correspond to even-bounce (−90◦), and odd-bounce (90◦) scattering mech-566

anisms, while θFP = 0 and θCP = 0 denotes diffused scattering mechanism.567

Furthermore, θFP and θCP within the range, −10◦ to 0◦ indicates even-bounce568

multiple scattering components, and 0◦ to 20◦ denotes the odd-bounce mul-569

tiple scattering components.570

In this study, we have suitably fulfilled our primary objective to char-571

acterize changes in the scattering mechanism with the advancement of crop572

phenological stages. We have used the scattering-type parameters for the573

temporal analysis of rice over the Vijayawada test site in India using FP and574

CP SAR data. The sensitivities of θFP and θCP with growth stages of rice575

are significantly evident from this study.576

During the initial period of the growing season, both θFP and θCP show577

odd-bounce scattering due to bare ground conditions. Subsequently, changes578

in the scattering-type from those fields were noticed depending on the sowing579

time, and morphological characteristics of rice. Changes in the scattering-580

type from odd-bounce to even-bounce at the beginning of the tillering stage581

from 29 Jul is adequately captured by θFP, and θCP values.582

We observed the saturation in θFP and θCP values during the advanced583

reproductive stage, which was due to weak alteration of crop canopy geome-584

try. Later, close to the senescence stage, the response of θFP and θCP became585
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random due to the complex distribution of crop canopy and partial harvest586

condition.587

We have introduced novel new clustering schemes, HFP/θFP and HCP/θCP588

in this study by utilizing θFP, θCP, and the scattering entropies, HFP and589

HCP. The clustering plane is split into 12 zones, where each zone represents590

a distinct dominant scattering mechanism. In this regard, the HFP/θFP and591

HCP/θCP clustering planes provide necessary information about targets with-592

out any apriori knowledge of the scene.593

In this context, these clustering planes was utilized to characterize phe-594

nological stages of rice. During the initial period of the growing season, a595

dominant odd-bounce scattering with high entropy is evident from the clus-596

ters formed in HFP/θFP and HCP/θCP plots due to the exposed soil layer597

for those fields. With the completion of the tillering phase, the dominant598

cluster density moved from the high-entropy odd-bounce scattering zone to599

the medium and multiple-even bounce high entropy scattering zones. This600

transition among the zones could be due to the stem water interaction with601

the incident EM wave and complex morphological characteristics of the crop602

canopy. At the end of the crop cycle, the entropy started to increase due to603

the complex canopy geometry. In contrast, the density of the clusters started604

shifting from even-bounce to odd-bounce zones due to partial harvest of the605

fields.606

This study presents a meticulous analysis of θFP and θCP individually607

along with HFP/θFP and HCP/θCP clustering planes for rice phenology anal-608

ysis. Hence, these parameters are quite useful to monitor the development609

of rice at each phenological stage. Besides, they also provide information610
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about changes in the scattering mechanism at different crop phenological611

stage. These parameters could be beneficial in providing essential infor-612

mation about crop conditions for engaging different cultivation measures.613

Therefore, further investigation to track and map crop growth stages could614

be conducted for different crop-types around the globe. The sensitivity of615

these parameters for different crop geometry could be examined for differ-616

ent incident angles using both FP and CP SAR data. We could adequately617

utilize these parameters for the newly launched RADARSAT Constellation618

Mission (RCM) and several upcoming missions.619
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