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Monitoring forest health using hyperspectral imagery: Does feature

selection improve the performance of machine-learning techniques?
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Abstract

This study analyzed highly-correlated, feature-rich datasets from hyperspectral remote sensing data using multiple machine

and statistical-learning methods.

The effect of filter-based feature-selection methods on predictive performance was compared.

Also, the effect of multiple expert-based and data-driven feature sets, derived from the reflectance data, was investigated.

Defoliation of trees (%) was modeled as a function of reflectance, and variable importance was assessed using permutation-based

feature importance.

Overall support vector machine (SVM) outperformed others such as random forest (RF), extreme gradient boosting (XGBoost),

lasso (L1) and ridge (L2) regression by at least three percentage points.

The combination of certain feature sets showed small increases in predictive performance while no substantial differences between

individual feature sets were observed.

For some combinations of learners and feature sets, filter methods achieved better predictive performances than the unfiltered

feature sets, while ensemble filters did not have a substantial impact on performance.

Permutation-based feature importance estimated features around the red edge to be most important for the models.

However, the presence of features in the near-infrared region (800 nm - 1000 nm) was essential to achieve the best performances.

More training data and replication in similar benchmarking studies is needed for more generalizable conclusions.

Filter methods have the potential to be helpful in high-dimensional situations and are able to improve the interpretation of

feature effects in fitted models, which is an essential constraint in environmental modeling studies.
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Abstract—This study analyzed highly-

correlated, feature-rich datasets from

hyperspectral remote sensing data using multiple

machine and statistical-learning methods. The

effect of filter-based feature-selection methods on

predictive performance was compared. Also, the

effect of multiple expert-based and data-driven

feature sets, derived from the reflectance data,

was investigated. Defoliation of trees (%) was

modeled as a function of reflectance, and variable

importance was assessed using permutation-

based feature importance. Overall support vector

machine (SVM) outperformed others such as

random forest (RF), extreme gradient boosting

(XGBoost), lasso (L1) and ridge (L2) regression by

at least three percentage points. The combination

of certain feature sets showed small increases

in predictive performance while no substantial

differences between individual feature sets were

observed. For some combinations of learners

and feature sets, filter methods achieved better

predictive performances than the unfiltered

feature sets, while ensemble filters did not have a

substantial impact on performance.

Permutation-based feature importance esti-

mated features around the red edge to be most

important for the models. However, the presence

of features in the near-infrared region (800 nm -

1000 nm) was essential to achieve the best perfor-

mances.

More training data and replication in similar

benchmarking studies is needed for more gener-

alizable conclusions. Filter methods have the po-

tential to be helpful in high-dimensional situations

and are able to improve the interpretation of fea-
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Monitoring forest health using hyperspectral

imagery: Does feature selection improve the

performance of machine-learning techniques?

I. Introduction

The use of machine learning (ML) algorithms

for analyzing remote sensing data has seen a huge

increase in the last decade [1]. Naturally, this co-

incided with the increased availability of remote

sensing imagery, especially since the launch of the

first Sentinel satellite in the year 2014. At the same

time, the implementation and usability of learning

algorithms has been greatly simplified with many

contributions from the open-source community. Sci-

entists can nowadays process large amounts of (en-

vironmental) information with relative ease using

various learning algorithms. This makes it possible to

extend the benchmark comparison matrix of studies

in a semi-automated way, possibly stumbling across

unexpected findings of process settings that would

never have been explored otherwise [2].

Machine-learning methods in combination with

remote sensing data are used in many environmental

fields such as vegetation cover analysis or forest

carbon storage mapping [3], [4]. The ability of pre-

dicting into unknown space qualifies these tools as

a promising toolset for such tasks. One aspect of

this research field is to enhance the understanding

of biotic and abiotic stress triggers, for example by

analyzing tree defoliation [5].

Other approaches for analyzing forest health in-

clude change detection [6] or describing the current

health status of forests on a stand level [7]. In such

studies, the defoliation of trees serves as a proxy for

forest health by describing the impact of biotic and

abiotic pest triggers [7], [8].

Vegetation indices have shown the potential to

provide valuable information when analyzing forest

health [9], [10]. Most vegetation indices were devel-

oped with the aim of being sensitive to changes of

specific wavelength regions, serving as a proxy for

underlying plant processes. However, often enough

indices developed for different purposes than the

one to be analyzed can help to explain complex

relationships. This emphasizes the need to extract

as much information as possible from the available

input data to generate promising features which can

help to understand the modeled relationship. A less

known index type which can be derived from spectral

information is the normalized ratio index (NRI). In

contrast to most vegetation indices, NRIs do not

use an expert-based formula following environmental

heuristics but instead makes use of a data-driven

feature engineering approach by combining (all possi-

ble) combinations of spectral bands. Especially when

working with hyperspectral data, thousands of NRI

features can be derived this way.

Despite their popularity in environmental model-
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ing, there are no studies so far which used machine-

learning algorithms in combination with remote sens-

ing data to analyze defoliation at the tree level. This

study aims to close this gap by analyzing tree defoli-

ation in northern Spain using airborne hyperspectral

data. The methodology of this study uses machine-

learning methods in combination with feature selec-

tion and hyperparameter tuning. In addition, feature

importance and feature effects are evaluated. Incor-

porating the idea of creating data-driven NRIs, this

study also discusses the practical problems of high

dimensionality in environmental modeling [11], [12].

Even though ML algorithms are capable of han-

dling highly correlated input variables, model fit-

ting becomes computationally more demanding, and

model interpretation more complex. Feature selection

approaches can help to address this issue, reducing

possible noise in the feature space, simplify model

interpretability and possibly enhance predictive per-

formance [13].

This study shows how high-dimensional datasets

can be handled effectively with machine-learning

methods while still being able to interpret the fitted

models. The predictive power of non-linear methods

and their ability to handle highly correlated predic-

tors is combined with common and new approaches

for assessing feature importance and feature effects.

However, this study clearly focuses on investigating

the effects of filter methods and feature set types on

predictive performance rather than on interpreting

feature effects.

Considering these opportunities and challenges,

the research questions of this study are the following:

• Do different (environmental) feature sets show

differences in performance when modeling defo-

liation of trees?

• Can predictive performance be substantially im-

proved by combining feature sets?

• How do different feature selection methods influ-

ence the predictive performance of the models?

• Which features are most important and how

can these be interpreted in an environmental

context?

II. Data and study area

Airborne hyperspectral data with a spatial res-

olution of one meter and 126 spectral bands was

available for four Monterey Pine (Pinus radiata D.

Don) plantations in northern Spain. The trees in

the plots suffer from infections of invasive pathogens

such as Diplodia sapinea (Fr.) Fuckel, Fusarium

circinatum Nirenberg & O’Donnell, Armillaria mel-

lea (Vahl) P. Kumm, Heterobasidion annosum (Fr.)

Bref, Lecanosticta acicola (Thüm) Syd. and Doth-

isthroma septosporum (Dorogin) M. Morelet causing

a spread of cankers or defoliation [14], [15]. The last

two fungi are mainly responsible for the foliation

loss of the trees analyzed in this study [16]. In-

situ measurements of defoliation of trees (serving as

a proxy for tree health) were collected to serve as

the response variable defoliation which ranges from

0 - 100 (in %) (Figure 1). It is assumed that the

fungi infect the trees through open wounds, possibly

caused by previous hail damage [16]. The dieback of

these trees, which are mainly used as timber, causes

high economic damages [17].

A. In-situ data

The Pinus radiata plots of this study, namely

Laukiz1, Laukiz2, Luiando and Oiartzun, are located

in the northern part of the Basque Country (Fig-

ure 2). Oiartzun has the most observations (n =

559) while Laukiz2 shows the largest area size (1.44

ha). All plots besides Luiando are located within

August 12, 2020 DRAFT
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Fig. 1. Response variable defoliation at trees for plots Laukiz1,

Laukiz2, Luiando and Oiartzun. n corresponds to the total

number of trees in the plot, x̄ refers to the mean defoliation.
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Fig. 2. Information about location, size and spatial distribu-

tion of trees for all plots used in this study.

100 km from the coast (Figure 2). In total 1808

observations are available (Laukiz1 = 559, Laukiz2 =

451, Luiando = 301, Oiartzun = 497). Field surveys

were conducted in September 2016.

TABLE I

Specifications of hyperspectral data.

Characteristic Value

Geometric resolution 1 m

Radiometric resolution 12 bit

Spectral resolution 126 bands (404.08 nm — 996.31 nm)

Correction: Radiometric, geometric, atmospheric

B. Hyperspectral data

The airborne hyperspectral data was acquired dur-

ing two flight campaigns which took place at noon on

September 28th and October 5th 2016. The images

were taken by an AISAEAGLE-II sensor. All prepro-

cessing steps (geometric, radiometric, atmospheric)

were conducted by the Institut Cartografic i Geologic

de Catalunya (ICGC). The first four bands were

corrupted, leaving 122 bands with valid information.

Additional metadata information is available in Ta-

ble I.

III. Methods

A. Derivation of indices

To use the full potential of the hyperspectral data,

all possible vegetation indices supported by the R

package hsdar (89 in total) as well as all possible NRI

combinations were calculated from the reflectances.

The following formula was used for the NRI calcula-

tion:

NRIi,j =
bandi − bandj
bandi + bandj

(1)

with i and j being the respective band numbers.

To account for geometric offsets within the hy-

perspectral data, which were reported with up to 1

m from ICGC, a buffer of two meters around the

centroid of each tree was used when extracting the
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reflectance values. A pixel was considered to fall into

a tree’s buffer zone if the centroid of the respective

pixel was touched by the buffer. All of those pixels

formed the final reflectance value of a single tree

and were used as the base information to derive all

additional feature sets. In total, 121∗122
2 = 7471 NRIs

were calculated.

B. Feature selection

High-dimensional, feature-rich datasets come with

several challenges for both model fitting and evalua-

tion.

• Model fitting times increase.

• Noise is possibly introduced into models by

highly correlated variables [18].

• Model interpretation and prediction become

more challenging [18].

To reduce the feature space of a dataset, concep-

tually differing approaches exist: wrapper methods,

filters, penalization methods (lasso and ridge) or

principal component analysis (PCA) [19]–[22]. In

contrast to wrapper methods, filters can be added

to the hyperparameter optimization step and have

a lower computational footprint. Due to the focus

on filter methods in this manuscript, only this sub-

group of feature selection methods will be introduced

in greater detail in the following subsections.

1) Filter methods: The concept of filters originates

from the idea of ranking features following a score

calculated by an algorithm [21]. Some filter methods

can only deal with specific types of variables (numeric

or nominal). Filters only rank features, they do not

decide which covariates to drop or keep [23]. The

selection which features to keep for model fitting is

usually done within the optimization phase of the

model fitting, along with the hyperparameter tuning.

Essentially, the number of covariates in the model is

treated as a additional hyperparameter of the model.

The goal is to optimize the number of ranked features

to the point at which the model achieves the best

performance.

Besides the concept of choosing a specific filter

method to rank variables, studies showed that com-

bining several filters using statistical operations such

as ’minimum’ or ’mean’ can enhance the predictive

performance of the resulting models, especially when

applied to multiple datasets [24], [25]. This approach

is referred to as ’ensemble filtering’ [26]. Ensemble

filters align with the recent rise of the ’ensemble’

approach in machine learning which uses the idea

of stacking to combine the predictions of multiple

models, aiming to enhance predictive performance

[27]–[29]. In this work the ’Borda’ ensemble filter was

applied [25]. Its final feature order is determined by

the sum of all single filters ranks.

Filter methods can be grouped into groups which

are formed out of three binary classes: multivariate or

univariate feature use, correlation or entropy-based

importance weighting and linear and non-linear filter

methodology. Care needs to be taken to not weigh

certain classes more than others in the ensemble

as otherwise the final ranking result will be biased.

In this study this was taken care of by checking

the rank correlations (Spearman’s correlation) of the

generated feature rankings of all methods against

each other. If filter pairs showed a correlation of 0.9

or higher, only one of the two was included into

the ensemble filter, selected at random. This ensured

that the ensemble filter composition was not biased

towards a certain group of filter methods.

2) Description of used filter methods: Filter meth-

ods can be classified as follows (Table II):

• Univariate/multivariate (scoring based on a sin-

gle variable / multiple variables).
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• Linear/non-linear (usage of linear/non-linear

calculations).

• Entropy/correlation (scoring based on deriva-

tions of entropy or correlation-based ap-

proaches).

The filter ’Information Gain’ is only defined for

nominal response variables:

H(Class)+H(Attribute)−H(Class,Attribute) (2)

where H is the conditional entropy of the response

variable (class) or the feature (attribute), respec-

tively. In order to use this method with a numeric

response (percentage defoliation of trees), the vari-

able was discretized into equal bins and treated as

a class variable. After feature rank correlations of

> 0.9 between different bin sizes were observed in a

side analysis, nbin = 10 was found to be a reasonable

setting to go with.

C. Benchmarking design

1) Algorithms: The following learners were used

in this work:

• Extreme Gradient Boosting (XGBoost)

• Random Forest (RF)

• Penalized Regression (both L1 (lasso) and L2

(ridge))

• Support Vector Machine (SVM, RBF Kernel)

TABLE II

List of filter methods used in this work

Name Group Ref.

Linear correlation (Pearson) univariate, linear, correlation [30]

Information gain univariate, non-linear, entropy [31]

Minimum redundancy, maximum relevance multivariate, non-linear, entropy [32]

Carscore multivariate, linear, correlation [33]

Relief multivariate, linear, entropy [34]

Conditional minimal information maximization multivariate, linear, entropy [35]

Random forest and SVM are well established algo-

rithms widely used in (environmental) remote sens-

ing. Extreme Gradient Boosting (commonly abbre-

viated as XGBoost) has shown promising results in

benchmark studies in recent years. Penalized regres-

sion is a statistical modeling technique capable of

dealing with highly-correlated covariates by penal-

izing the coefficients of the model [36]. Common

penalties are ’lasso’ (L1) and ’ridge’ (L2). Ridge does

not remove variables from the model (penalization

to zero) but just shrinks them to effectively zero,

keeping them in the model.

2) Feature sets: Three feature sets were used in

this study, each representing a different approach to

feature engineering:

• The raw hyperspectral band information (HR):

no feature engineering)

• Vegetation Indices (vegetation index (VI)s):

expert-based feature engineering)

• Normalized Ratio Indices (NRIs): data-driven

feature engineering)

The idea of splitting the features into different

sets originated from the question whether feature-

engineered indices derived from reflectance values

have a positive effect on model performance. [37] is

an exemplary study which used this approach in a

spectro-temporal setting. Benchmarking learners on

these feature sets while keeping all other variables

such as model type, tuning strategy and partitioning

method constant makes it possible to draw conclu-

sions on their individual impact. However, rather

than only looking at these three groups also com-

binations of such were taken into account:

• HR + VI

• HR + NRI

• HR + VI + NRI
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Even though the feature-selection step should be

solely left to the filter methods in this study, it

was ensured a priori to account for features with a

pairwise correlation of 1. Having such features within

the data can cause undesired effects during model fit-

ting and feature importance calculation. Hence, after

having calculated all pair-wise correlations between

features, for pairs which exceeded the threshold of

1−10−10, the feature with the largest mean absolute

correlation across all variables was removed from the

dataset.

This preprocessing step reduced the number of

covariates to 122 (HR), 86 (VI) and 7467 (NRI).

3) Hyperparameter Optimization: Hyperparame-

ters were tuned using model-based optimization

(MBO) within a nested spatial cross-validation (CV)

[38]–[40]. In MBO first n randomly chosen hyperpa-

rameter settings out of a user defined search space

are composed. After these n settings have been eval-

uated, one new setting, which is going to be evaluated

next, is proposed by a fitted surrogate model (by

default a kriging method). This strategy continues

until a termination criterion, defined by the user, is

reached [41], [42].

In this work, an initial design of 30 randomly

composed hyperparameter settings in combination

with a termination criterion of 70 iterations was

used, resulting in a total budget of 100 evaluated

hyperparameter settings per fold. The advantage of

this tuning approach is a substantial reduction of

the tuning budget that is required to find a setting

close to the global optimization minimum. MBO may

outperform methods that do not use information

from previous iterations, such as random search or

grid search [43].

To optimize the number of features used for model

fitting, the percentage of features was added as a

hyperparameter during the optimization stage ( [39]).

For PCA, the number of principal components was

tuned instead. The RF hyperparameter mtry was re-

expressed as mtry = ptsel as a function of the number

of selected features, psel. It was thus tuned on a log-

arithmic scale by varying t between 0 (i.e. mtry = 1)

and 0.5 (i.e. mtry =
√
psel). This was necessary to

ensure that mtry was not chosen higher than the

available number of features left after optimizing the

feature percentage during tuning.

4) Spatial resampling: A spatial nested cross-

validation on the plot level was chosen to reduce the

influence of spatial autocorrelation as much as pos-

sible [40], [44]. The root mean square error (RMSE)

was chosen as the error measure. Each plot served as

one fold within the cross-validation setting, resulting

in four iterations in total. For the inner level (hyper-

parameter tuning), k−1 folds were used with k being

the number of plots.

In total the benchmarking grid consisted of 156

experiments (6 feature sets × 3 ML algorithms × 8

feature-selection methods and for the L1/L2 models,

6 feature sets × 2 models.

D. Feature importance and feature effects

Estimating feature importance for datasets with

highly correlated features is a complicated task for

which many different approaches, model-specific and

agnostic, exist [36], [45], [46]. The correlation be-

tween covariates makes it challenging to calculate an

unbiased estimate for single features [47]. Methods

like partial dependence plots (PDP) or permutation-

based approaches may produce unreliable estimates

in such scenarios because unrealistic situations be-

tween covariates are created [47]. The development of

robust methods which enable an unbiased estimation
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of feature importance for highly correlated variables

are subject to current research.

In this work permutation-based feature impor-

tance and accumulated local effects (ALE) plots (HR

only) were calculated to estimate feature importance

/ effects [47], [48]. With the limitations of both

methods in mind when applied to correlated features,

the aim was to get a general overview of the feature

importance of the hyperspectral bands while trying

to avoid an over-interpretation of results. The best-

performing algorithm on the HR task (i.e. SVM) was

used for the feature importance calculation.

E. Linking feature importance to wavelength regions

For environmental interpretation purposes the ten

most important indices of the best performing mod-

els of feature sets HR and VI were linked to the

spectral regions of the hyperspectral data. The aim

was to visualize the most important features along

the spectral curve of the plots to better understand

which spectral regions were most important for the

model.

F. Research compendium

All tasks of this study were conducted using the

open-source statistical programming language R [49].

A complete list of all R packages used in this study

can be found in linked repositories. Due to space lim-

itations only the selected packages with high impact

on this work will be explicitly cited.

The algorithm implementations of the following

packages have been used: xgboost [50] (Extreme

Gradient Boosting), kernlab [51] (Support Vector

Machine) and glmnet [52] (penalized regression). The

filter implementations of the following packages have

been used: praznik [53], FSelectorRcpp [54]. Package

mlr [55] was used for all modeling related steps. drake

[56] was used for structuring the work and repro-

ducibility. This study is available as a research com-

pendium on Zenodo (10.5281/zenodo.2635403). Be-

sides the availability of code and manuscript sources,

a static webpage is available at (https://github.

com/pat-s/2019-feature-selection), listing more side-

analyses that were carried out during the creation of

this study.

IV. Results

A. Predictive performance

Overall, the response variable “tree defoliation”

could be modeled with an RMSE of 28 percentage

points (p.p.). SVM showed no differences in RMSE

across feature sets whereas other learners (RF, SVM,

XGBoost, lasso and ridge) differed up to seven per-

centage points (Figure 3). Ridge faced major issues

in four tasks due to one observation which was

predicted off the response scale (i.e. > 100). SVM

showed the best overall performance with a mean

difference of around three percentage points to the

next best model (RF) (Table V). Performance dif-

ferences between test folds were large: Predicting on

Luiando resulted in an RMSE of 9.0 p.p. for learner

SVM (without filter) but up to 54.3 p.p. when testing

on Laukiz2 (Table VI).

The combination of feature sets showed small in-

creases in performance for some learners. RF and

XGBoost scored slightly better on the combined

datasets HR-NRI and NRI-VI, respectively, com-

pared to their standalone variants (HR, NRI, VI)

(Figure 3). Datasets containing derived features only

(VI, NRI) showed no improvement in performance

compared to the raw hyperspectral band information

(HR). All learners besides SVM showed a substan-

tially worse performance on the VI dataset compared
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to all others (around five percentage points worse

than their respective best performance).

SVM combined with the “Carscore” filter achieved

the best overall performance (RMSE of 27.98 p.p.)

(Table III). Regression with ridge penalty (L2)

showed a high variance when comparing results

across tasks: In four out of six tasks (all which VI

variables and HR-NRI) the error was enormous (Ta-

ble IV). For NRI and HR RMSE was 31.16 p.p. and

35.45 p.p., respectively. In all settings for which ridge

showed such a high error, only one observation in one

fold was predicted which such a high defoliation value

(in the millions). The specific observation showed no

obvious signs of being anomalous, e.g. extreme values

in individual features or in principal components of

features. This one outlier caused the error estimates

of these folds and the average estimate across all folds

to be off scale.

Effects of filter methods on performance differed

greatly between algorithms: SVM showed no vari-

ation in performance across filters (Figure 4). Us-

ing filters for RF showed a substantial increase in

performance for all tasks with the exception of VI,

for which the difference among all filters was also

the smallest (Figure 4). XGBoost showed a high

dependency on filtering the data: In 4 out of 6

tasks using no filter resulted in the worst or second

worst performance. In contrast, using no filter on

dataset NRI resulted in the best performance. XG-

Boost shows the highest overall differences between

filters for a single task: for feature set HR, the range

is up to 14 percentage points (“Carscore” vs. “no

filter”)(Figure 4).

When comparing the usage of filters against using

no filter at all, there was only one instance (XGBoost

on the NRI task) where a model without filtering

scored a better performance than the best filtered

one (Figure 4). For SVM, all filters and “no filter”

achieved the same performance on tasks VI and NRI

even though Figure 3 lists ”No Filter” as the best

option.

The Borda filter did not achieve the best perfor-

mance for any learner across any task (Figure 5).

For RF and XGBoost it most often ranked within

the first 50% with respect to all filters of a specific

task. For XGBoost on the VI task, the Borda filter

scored the second worst performance.

Large differences were observed between the num-

bers of features selected during tuning for the sub-

sequent fitting process. Most features were selected

during optimization when training without Laukiz2

and least when Laukiz1 served as the test set (Ta-

ble VII). RF used only one feature when Luiando

and Oiartzun served as the test data (0.00004 % of

7675) while 34 and 230 features were seen as optimal

during optimization when Laukiz1 and Laukiz2 were

the test data, respectively. In contrast, XGBoost

and SVM used in all cases but Laukiz1 (less than

50 features; test set) more than two-thirds of all

available features.

TABLE III

Best ten results among all combinations, sorted in

ascending order of RMSE

Task Model Filter RMSE SE

1 NRI SVM Info Gain 27.99 19.15

2 HR-NRI-VI SVM Relief 28.07 19.14

3 VI SVM Relief 28.10 19.14

4 HR-NRI-VI SVM Car 28.11 19.13

5 HR-NRI SVM MRMR 28.12 19.11

6 VI SVM Pearson 28.12 19.10

7 HR-NRI SVM CMIM 28.12 19.09

8 HR SVM Info Gain 28.12 19.12

9 HR SVM CMIM 28.12 19.12

10 NRI-VI SVM PCA 28.12 19.12
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TABLE IV

Worst ten results among all combinations, sorted in

decreasing order of RMSE

Task Model Filter RMSE

1 VI Ridge-MBO No Filter 49359394487.65

2 HR-NRI Ridge-MBO No Filter 12650121073.66

3 HR-NRI-VI Ridge-MBO No Filter 12631934180.91

4 NRI-VI Ridge-MBO No Filter 11658468597.68

5 HR XGBoost No Filter 46.80

6 VI XGBoost Car 46.40

7 VI XGBoost MRMR 46.26

8 VI XGBoost Borda 46.04

9 VI XGBoost No Filter 45.69

10 VI XGBoost Pearson 44.61

TABLE V

Best performance of each learner across any task

and filter method, sorted ascending by RMSE

Task Model Filter RMSE SE

1 NRI SVM Info Gain 27.99 19.15

2 NRI RF Car 30.77 16.86

3 VI Lasso-MBO No Filter 31.01 14.71

4 HR-NRI-VI XGBoost Borda 31.05 17.01

5 NRI Ridge-MBO No Filter 31.16 15.03

TABLE VI

Test fold performances for learner SVM on the HR

dataset without using a filter. For each row, the

model was trained on observations from all others

plots but the given one and tested on the

observations of the given plot.

Plot RMSE Test Plot

1 1 21.17 Laukiz1

2 2 28.05 Oiartzun

3 3 9.00 Luiando

4 4 54.26 Laukiz2

B. Variable importance

1) Permutation-based Variable Importance: The

most important features for datasets HR and VI

showed an average decrease in RMSE of 1.57 p.p.

(HR, B69) and 1.79 p.p (VI, Vogelmann2) (Figure 6).

TABLE VII

Selected feature portions during tuning for selected

learner-filter settings across folds for task

HR-NRI-VI, sorted ascending by RMSE

Learner Test Plot Features (%) # RMSE

RF

Car

Laukiz1 0.00443 3 27.48

Oiartzun 0.00004 1 37.20

Luiando 0.00002 1 36.98

Laukiz2 0.03037 14 15.39

XGB

Borda

Laukiz1 0.00604 4 15.00

Oiartzun 0.68227 340 36.15

Luiando 0.99513 300 38.19

Laukiz2 0.99976 451 29.62

SVM

Relief

Laukiz1 0.00017 1 35.50

Oiartzun 0.71146 354 37.48

Luiando 0.70672 213 14.89

Laukiz2 0.94696 428 37.19

For both datasets most features among the ten most

important ones cluster around a wavelength range

of 700 nm - 750 nm (the so called “red edge”). For

feature set HR, four features in the infrared region

(920 nm - 1000 nm) were identified by the model

to be most important (causing a mean decrease

in RMSE of around 1 percentage point). Overall,

most features showed only a small importance with

average decreases in RMSE below 0.5 p.p..

2) ALE Plots: Most ALE plots show a small

absolute change in ALE compared to their respective

mean effects (= 0) for all chosen features (less than

±0.001) (Figure 7). Also, a medium-to-high relative

dynamic over the respective reflectance value range

of each variable was observed.

V. Discussion

A. Predictive Performance

The best aggregated performance of this study

(SVM + “Info Gain” filter, RMSE 27.99 p.p.) has to
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be seen in the light of model overfitting (see subsec-

tion V-B). Leaving out the performance on Laukiz2

when aggregating results, the mean RMSE would be

around 19 percentage points. However, leaving out a

single plot would also change the prediction results

for the other plots because the observations from

Laukiz2 would not be available for model training.

Due to the apparent presence of model overfitting in

this study it can be postulated that more training

data representing a greater variety of situations is

needed. A model can only make robust predictions

if it has learned relationships across the whole range

of the response. Hence, care should be taken when

predicting to the landscape scale using models fitted

on this dataset due to their lack of generalizability

caused by the limitations of the available training

data. However, when inspecting the fold level per-

formances, it can be concluded that the model per-

formed reasonably well predicting defoliation greater

than 50% but failed for lower levels. This applied to
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all learners of this study.

1) Model differences: An interesting finding is the

strength of the SVM algorithm when comparing its

predictive performance to its competitors (Table V).

These cluster around a performance of 31 p.p while

SVM is able to score about 3 p.p. better than all

other methods. However, we refrain from comparing

these results (both relatively and absolute) to other

studies since many study design points have an influ-

ence on the final result (optimization strategy, data

characteristics, feature selection methods, etc.).

Penalized methods showed promising perfor-

mances, especially when taking runtime into account.

When removing features with a correlation of nearly

1, lasso is able to score performances around 31 p.p.

and shows, somewhat surprisingly, the best perfor-

mance on the VI task. The same general conclu-

sion applies to ridge if one discards the problematic

results on four tasks. Regarding the problematic

predictions of the ridge learner, a careful inspection

of the hyperparameter optimization procedure of the

fitted models ensured again that everything was cor-

rectly implemented. One observation turned out to

be influential in causing the outlier prediction value

even though careful multivariate exploratory data

analysis showed no reason for flagging this observa-

tion a priori. It was therefore left in the model, but

it should be acknowledged that this learner seemed

particularly sensitive to the input data.

A potential limiting factor in this study could

be the upper limit of 600 iterations used for the

XGBoost algorithm (hyperparameter nrounds), es-

pecially for feature sets including NRIs (Table VIII).

This setting was a compromise between runtime and

tuning space extension with the goal to work well

for most feature sets. It may be recommendable to

increase this upper limit to a value closer to the

number of features in the dataset in order to be able

to exploit the full potential of this hyperparameter.

2) Feature set differences: One objective of this

study was whether expert-based or data-driven fea-

ture engineering has a positive influence on model

performance. With respect to Figure 3, no overall

positive or negative trend was found for all models

that related to specific feature sets. The performance

of RF and XGBoost on the VI feature set was about

six percentage points lower than on others. One

reason could be the lack of coverage in the wavelength

area between 810 nm and 1000 nm (Figure 6). In ad-

dition, for all learners but SVM a better performance

was observed when NRI indices were included in the

feature set (i.e. NRI-VI, HR-NRI, HR-NRI-VI).

B. Performance vs. plot characteristics

The large differences in RMSE obtained on dif-

ferent test folds can be attributed to model over-

fitting (Table VI). An RMSE of 54.26 p.p. reveals

the model’s inability to predict tree defoliation on

this plot (Laukiz2). Laukiz2 differs highly in the

distribution of the response variable defoliation com-

pared to all other plots (Figure 1). In the prediction

scenario for Laukiz2, the model was trained on data

containing mostly medium-to-high defoliation values

and only few low ones. This caused overfitting on

the medium-to-high values, degrading the model’s

predictive performance in other scenarios. When

Laukiz2 was in the training set, the overall mean

RMSE was reduced by up to 50% with single fold

performances as good as 9 p.p. RMSE (with Luiando

as test set).

The large differences of selected features per fold

during tuning give interesting insights into internals

of the used models (Table VII). While in most cases,

SVM and XGBoost require a substantial portion of
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all available features to achieve robust predictions,

RF was able to achieve the best results with a

relatively small amount of features. Realizing early

that few features are needed during tuning to reach

adequate performances can reduce the overall com-

putational runtime substantially, especially when it-

erating over parameters such as mtry whose optimum

(and range) depends on the number of features.

Hence, regardless of the potential advantage of using

filters for increased predictive performance, it should

be noted that these can have a strong positive effect

on runtime, at least for RF in this study.

Ultimately, the results of Table VII should be

taken with care as they rely on single model-filter

combinations and are subject to random variation.

More in-depth research is needed to investigate the

effect of filters on other criteria than performance

(such as runtime), leading to a multi-criteria opti-

mization problem.

C. Feature selection methods

The usefulness of filters with respect to predic-

tive performance in this study varied. While the

performance of some models (up to 5 p.p. for RF

and XGBoost) was improved by specific filters, some

models achieved a poorer performance with filters

than without them (Figure 4). Since these negative

cases were not caused by a specific filter method, it

is recommended to test multiple filters in a study

if filters are going to be used. While filters can

improve the performance of models, they might be

more interesting in other aspects than performance:

reducing variables can reduce computational efforts

in high-dimensional scenarios and might enhance the

interpretability of models. Filters are a lot cheaper

to compute than wrapper methods and the final

feature subset selection can be added as an additional

hyperparameter to the model optimization stage.

The models which used the Borda ensemble

method in this study did not score better on average

than models which used a single filter or no filter at

all. Ensemble methods have higher stability and ro-

bustness than single ones and have shown promising

results in [25]. Hence, their main advantage are stable

performances across datasets with varying character-

istics. Single filter methods might yield better model

performances on certain datasets but fail on others.

The fact that this study used multiple feature sets

but only one dataset and tested many single filters

could be a potential explanation why in almost all

cases (besides XGBoost on task HR-NRI-VI) a sin-

gle filter outperformed the ensemble filter. However,

studies which used ensemble filters are still rare and

usually these are not compared against single filters

[57]. In summary, Borda performs no better than a

randomly selected filter method in this study. More

case studies applying ensemble filter methods are

needed to verify this finding. Nevertheless, ensemble

filters can be a promising addition to a machine-

learning feature-selection portfolio.

PCA, acting as a filter method in this work, did

neither show the best nor worst result compared

to other feature-selection approaches. It was able to

reduce model fitting times substantially. Depending

on the use case, PCA can be an interesting option

to reduce dimensionality while keeping runtime low.

However, information about the total number of

features used by the model is lost when applying

this technique. Since filter scores only need to be

calculated once for a given dataset in a benchmark

setting, the runtime advantage of a PCA vs. filter

methods might in fact be negligible in practice.
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D. Linking feature importance to spectral character-

istics

Not surprisingly the most important features for

both HR and VI datasets were identified around the

red edge of the spectra, specifically in the range of

680 nm to 750 nm.

This area has the highest ability to distinguish be-

tween reflectances related to a high density / high fo-

liage density und thus the health status of vegetation

and its respective counterpart [58]. However, four out

of ten of the most important features of dataset HR

are located between 920 nm and 1000 nm. Looking at

the spectral curves of the plots, apparent reflectance

differences can be observed in this spectral area -

especially for plot Oiartzun - which might explain

why these features were considered important by the

model.

A possible explanation for the worse performances

of most models scored on the VI dataset compared

to all other feature sets could be the lack of features

covering the area between 850 nm and 1000 nm

(Figure 6). The majority of VI features covers the

range between 550 nm - 800 nm. Only one index

(PWI) covers information in the range beyond 900

nm.

The ALE plots are hard to interpret because their

values are interpreted on a relative scale and differ

for each band. When linking band reflectance values

against ALE values of a specific band, a value of

100 has a very different meaning in B67 than in

B124 because for the latter, reflectance values of

vegetation are naturally higher. Hence, a reflectance

value of 100 would be considered high for B67 but

low for B124 with respect to a spectral curve of

vegetation. However, no baseline reflectance value

for every feature exists since the absolute reflectance

values depend on the sensor characteristics. ALE

plots can be a powerful tool for interpreting fea-

ture importance of correlated features but might be

limited in their interpretability because only relative

comparisons can be conducted.

E. Data quality

Environmental datasets always come with some

constraints that can have potential influence on the

modeling process and its outcome. The following

paragraph discusses these. The decision to use a

buffer of two meters for the extraction of reflectance

values was a complex process. Due to the reported

geometric offset of up to 1 m within the hyperspectral

data, the risk of assigning a value to an observation

which would actually refer to a different observation

was reasonably high. By using a buffer of two me-

ters (or more), the probability of including informa-

tion from other trees into the final value increases,

blurring the actual value of the tree observation.

However, when using no buffer at all, the difference

between single, neighboring pixels might even be

higher compared to a smoothed value composed out

of a buffer. It was concluded that using a buffer of two

meters is a good compromise between the inclusion

of information from too many surrounding trees and

not accounting for the geometric offset at all. Even

though no results showing the influence of multiple

buffer values on the extraction were provided, it is

hypothesized that the relationships between features

would not change substantially, leading to almost

identical model results.

Another point worth discussing is that the exact

number of contributing pixels to the final index value

of an observation cannot be determined precisely:

it depends on the location of the tree within the

pixel grid. According to the extract function of the
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raster package, a pixel is included if its centroid (and

not just any part of the grid cell) falls inside the

buffer. As the buffer is circular, the total number

of contributing pixels of each tree depends on the

exact location of a tree within the pixel grid. If a tree

observation is located on the border of the plot, some

directions of the buffer will contain no values and the

subsequent index value will be calculated with fewer

pixels than if the tree observation is located in the

middle of the plot.

The R package hsdar was used for the calculation

of vegetation indices [59]. All indices that could

be calculated with the given spectral range of the

data were used. Even though this selection included

a large number of available indices, some possibly

relevant indices might have been missed by relying

on the pre-selection of indices offered by the package.

Overall, the magnitude of uncertainty introduced

by the mentioned effects during index derivation can-

not be quantified. Such limitations and uncertainties

apply to most environmental studies and cannot be

completely avoided.

F. Comparison to other studies

While most defoliation studies operate on the plot

level using coarser-resolution multispectral satellite

data [7], [60], [61], there are also several recent

studies using airborne or ground-based sensors at the

tree level. Among these, [62], [63] used ground-level

methods such as airborne laser scanning (ALS) or

light detection and ranging (LiDAR).

Studies focusing on tree-level defoliation used

ground-level methods such as ALS or LiDAR [62],

[63]. [62] used ordinary least squares (OLS) regres-

sion methods while [63] retrieved information from

ground-level RGB photos using convolutional neu-

ral networks (CNN). However, both did not use

spatial CV and [63] no feature selection (FS). [8]

used a partial least-squares (PLS) model with high-

resolution digital aerial photogrammetry (DAP) to

predict cumulative defoliation caused by the spruce

budworm. Study results indicated that spectral fea-

tures were found to be most helpful for the model.

Incorporating such (both spectral and structural)

could be a possible enhancement for future works.

The field of (hyperspectral) remote sensing has a

strong focus on using random forests for modeling

in recent years [64]. However, in high-dimensional

scenarios, tuning parameter mtry becomes compu-

tationally expensive. To account for this and the

high dimensionality in general, studies used feature

selection approaches like semi-supervised feature ex-

traction [65], wrapper methods [66]–[68], PCA and

adjusted feature selection [69]. However, no study

that made use of filter methods in combination with

hyperparameter tuning in the field of (hyperspectral)

remote sensing could be found. Potential reasons for

this gap could be an easier access to wrapper meth-

ods and a higher general awareness of such compared

to filter methods. Applying the filter-based feature

selection methodology shown in this study and its

related code provided in the research compendium

might be a helpful reference for future studies using

hyperspectral remote sensing data.

When looking for remote sensing studies that com-

pare multiple models, it turned out that these often

operate in a low-dimensional predictor space [70] or

use wrapper methods explicitly [68].

[71], [72] are more similar in their methodology

but focus on a different response variable (woody

cover). [71] used machine learning with ALS data

to study dieback of trees for eucalyptus forests. A

grid search was used for hyperparameter tuning and

forward feature selection (FFS) for variable selection.
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[72] analyzed woody cover in South Africa using spa-

tial CV and FS approach [73] with a random forest

classifier. [74] shows a similar setup: they used hy-

perspectral vegetation indices, a nested CV approach

for performance estimation and estimated variable

importance targeting woody biomass as the response.

In the results, lasso showed the best performance

among the chosen methods. However, the authors did

not optimize the hyperparameters of RF which makes

a fair comparison problematic since the other models

used perform internal optimization. The discussion

section of [74] lists additional studies that made

use of shrinkage models for high dimensional remote

sensing modeling.

In summary, no studies which used filter methods

for FS or made use of NRI indices in their work and

had a relation to tree health were found. This might

relate to the fact that most environmental datasets

are not high-dimensional. In fact, many studies use

fewer than ten features and issues related to correla-

tions are often solved manually instead of relying on

an automated approach. This can be subjective and

may limit the reproducibility of results.

Other fields (e.g. bioinformatics) face high-

dimensional datasets more often. Hence more studies

using (filter-based) feature-selection approaches can

be found for this field [75], [76]. Yet bioinformatics

differs conceptually in many ways from environmen-

tal modeling and therefore no greater focus was put

into comparing studies of this field. The availability

of high dimensional feature sets will increase in the

future due to higher temporal and spectral resolu-

tions of sensors. In addition, a high spatial resolution

comes with the possibility to calculate many tex-

tural features. Hence, the ability to deal with high

dimensional datasets becomes more important and

unbiased robust approaches are needed. We hope

that this work and its methodology raises awareness

about the application of filter methods to tackle high-

dimensional problems in the environmental modeling

field.

VI. Conclusion

This study analyzed defoliation of trees in north-

ern Spain by using hyperspectral data as input for

machine-learning models which used hyperparameter

tuning and filter-based feature selection. Substantial

differences in performance occurred depending on

which feature selection and machine learning meth-

ods were combined. SVM showed the most robust

behavior across all highly-correlated datasets and

was able to predict the response variable of this study

substantially better than other methods.

Filter methods were able to improve the predic-

tive performance on datasets in some instances, al-

though there was no clear and systematic pattern.

Their effectiveness depends on the algorithm and the

dataset characteristics. Ensemble filter methods did

not show a substantial improvement over individual

filter methods in this study.

The addition of derived feature sets was in most

cases able to improve predictive performance. In

contrast, feature sets which focused on only a small

fraction of the available spectral range (i.e. dataset

VI) showed a worse performance than the ones which

covered wider range (400 nm - 1000 nm; HR, NRI).

NRIs can be seen as a valuable addition for opti-

mizing predictive performance in remote sensing of

vegetation.

Features along the red edge wavelength region were

most important for models during prediction. With

respect to dedicated vegetation indices, all versions

of the Vogelmann index were seen as the most im-

portant index for the best performing SVM model.
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This matches well with the actual purpose of these

indices: These were invented to detect defoliation on

sugar maple trees (Acer saccharum Marsh.) caused

by pear thrips (Taeniothrips inconsequens Uzel) [77].

However, assessing the feature importance for highly

correlated features remains a challenging task. Re-

sults might be biased and should be taken with care

to avoid overgeneralizing from individual studies.

Finally, the potential of predicting defoliation with

the given study design was rather limited with re-

spect to the average RMSE of 27 percentage points

scored by the best performing model. More training

data covering a wider range of defoliation values in

a larger number of forest plantations is needed to

train better models which can create more robust

predictions.

Appendix A

SVM ALE plots for task HR
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Fig. 7. ALE plots of SVM on dataset HR. The ten most impor-

tant features from the permutation-based variable importance

estimation were used. The y-axis shows the deviation to the

mean prediction for each feature, with the mean prediction

being centered at zero.

Appendix B

Correlation among filter methods
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Fig. 8. Spearman correlations of NRI feature rankings ob-

tained with different filters.

Appendix C

Effect of different nbins values on filter

’information gain’
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Fig. 9. Spearman correlations of rankings obtained with the

information gain filter using different nbins values for dis-

cretization of the numeric response.

Appendix D

Hyperparameter tuning ranges

TABLE VIII

Hyperparameter ranges and types for each model.

Hyperparameter notations from the respective R

packages were used.

Model

(package)
Hyperparameter Type Start End Default

RF

(ranger)

xtry dbl 0 0.5 -

min.node.size int 1 10 1

sample.fraction dbl 0.2 0.9 1

SVM

(kernlab)

C dbl 2−10 210 1

σ dbl 2−5 25 1

XGBoost

(xgboost)

nrounds int 10 600 -

colsample bytree dbl 0.3 0.7 1

subsample dbl 0.25 1 1

max depth int 1 10 6

gamma int 0 10 0

eta dbl 0.01 0.6 0.3

min child weight int 0 20 1
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