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Abstract

Heating, Ventilation, and Air Conditioning (HVAC) systems contribute significantly to a building’s energy consumption.

In the recent years, there is an increased interest in developing transactive approaches which could enable automated and
flexible scheduling of HVAC systems based on the customer demand and the electricity prices decided by the suppliers. Flexible
and automated scheduling of the HVAC systems make it a prime source for participation in residential demand response or
transactive energy systems. Therefore, it is of significant interest to identify an optimal strategy to control the HVAC systems.
In this paper, reducing the energy cost while keeping the comfort level acceptable to the users, we argue that such a control
strategy should consider both the energy cost and user c omfort simultaneously. Accordingly, we develop the control

strategy through the solution of an optimization problem that balances between the energy cost and consumer’s dissatisfaction.
This optimization enables us to solve a decision-making problem through first price prediction and then choosing HVAC
temperature settings throughout the day based on the predicted price, history of the price and HVAC settings, and outside
temperature. More specifically, we formulate the control design as a Markov decision process (MDP) using deep neural networks
and use Deep Deterministic Policy Gradients (DDPG)-based deep reinforcement learning algorithm to find the optimal control

strategy for HVAC systems that balances between electricity cost and user comfort.
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Abstract—Heating, Ventilation, and Air Conditioning (HVAC)
systems contribute significantly to a building’s energy consump-
tion. In the recent years, there is an increased interest in
developing transactive approaches which could enable automated
and flexible scheduling of HVAC systems based on the customer
demand and the electricity prices decided by the suppliers.
Flexible and automated scheduling of the HVAC systems make it
a prime source for participation in residential demand response
or transactive energy systems. Therefore, it is of significant
interest to identify an optimal strategy to control the HVAC
systems. In this paper, reducing the energy cost while keeping
the comfort level acceptable to the users, we argue that such
a control strategy should consider both the energy cost and
user comfort simultaneously. Accordingly, we develop the control
strategy through the solution of an optimization problem that
balances between the energy cost and consumer’s dissatisfac-
tion. This optimization enables us to solve a decision-making
problem through first price prediction and then choosing HVAC
temperature settings throughout the day based on the predicted
price, history of the price and HVAC settings, and outside
temperature. More specifically, we formulate the control design
as a Markov decision process (MDP) using deep neural networks
and use Deep Deterministic Policy Gradients (DDPG)-based deep
reinforcement learning algorithm to find the optimal control
strategy for HVAC systems that balances between electricity cost
and user comfort.

Index Terms—Transactive energy, reinforcement learning,
HVAC.

I. INTRODUCTION

INCREASE in population, rapid urbanization, and the usage
of various household appliances leads to increasing energy

consumption. It is crucial that the energy providers are reli-
able and flexible based on these increases in the demands.
Demand response (DR) of the energy providers motivates
the consumers to adapt their energy consumption in response
to the market pricing signals [1]. In the recent years, with
the widespread application of advanced information and com-
munication technologies, buildings and household appliances
have become more intelligent, having the potential to operate
more efficiently to adjust their usage based on the DR and
also to achieve higher energy savings. Transactive energy (TE)
extends DR to operate on faster time scales with multilateral
market participation by responsive loads [2]. In this paper, we
focus on TE systems with HVAC as a responsive load.
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Electricity use by residential air conditioners accounts for
14.7% of the total power consumption in the US, which was
the largest use of electricity by the U.S. residential sector
in 2018 [3]. With the advancements in technology, HVAC
systems can be designed to participate in TE systems with
energy providers by modifying the temperature levels at each
individual residence based on the consumer needs, available
energy levels and energy prices. HVAC load can be shifted
by pre-heating or pre-cooling the houses providing flexibility
to these systems for intelligent operation based on TE [4].
However, consumers are generally willing to pay more for
comfort. For example, it was shown that residential consumers
will pay two times the actual price for electricity during a
power outage [5]. This may be partially due to the fact that the
consumers may not be aware of the price changes and/or they
may not be willing to compromise on their comfort. However,
another factor that contributes to this is that the current
HVAC (or other household appliance) technology does not
adjust energy consumption patterns that can balance between
consumer comfort and energy savings. We argue that future
HVAC technology should enhance an intelligent automated
operation for active participation of the consumers to achieve
this balance between price and comfort [6].

Real-time thermal control is required for the HVAC systems
to participate in TE in an automated manner. Traditionally,
model-based approaches are used for thermal control problems
[7]–[9], often requiring simplified mathematical modeling of
the dynamics of the HVAC systems. However, model-based
approaches require time and domain expertise [10] to obtain
a robust and generalized approach for HVAC thermal control
strategy design due to various randomness originating from
individual residences (e.g. size, thermal integrity, window wall
ratio and different behaviors of the end users) which introduces
additional complexity and uncertainty to the control problem.

In order to address this randomness, artificial intelligence
(AI) was applied in many optimal decision-making problems
in TE by imitating human behavior and automating the control
of the appliances such as HVAC systems. To solve such
problems, especially reinforcement learning (RL) was utilized.
RL is a machine learning approach with a strong ability to
learn and adapt through the interaction with the environment of
real world applications. It was shown that with the help of RL,
a well designed TE scheme can achieve better performance
on the optimal control and decision making of residential
appliances. For example, most studies demonstrated the use of
a popular RL method, Q-learning [11], in DR and TE [12]–
[14]. Another RL based method was proposed in [15] for the
modeling and learning of TE for plug-in electric vehicle (PEV)
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charging to reduce the long-term cost. Yang et al. used RL to
solve the optimal control of a building energy system [16]. In
[17], with the predicted future price, the authors proposed a
multi-agent RL algorithm to make optimal decisions for the
control of various home appliances. In [18] and [19], batch
RL algorithms were proposed to schedule thermostatically
controlled loads and water heaters participating in a day-ahead
market. However, few of the studies modeled the appliances
with a high level of detail. Most of the above mentioned
approaches did not have a practical way to deal with the
continuous space of the controlled state (temperature) of the
HVAC systems. Moreover due to limitations in the simulations,
these studies failed to provide a high degree of granularity in
the precise control of the HVAC.

In this paper, we develop an RL-based approach for precise
control of HVAC systems that are participating in the energy
market as transactive elements in the Transactive Energy
Simulation Platform (TESP) [20]. TESP was developed by
Pacific Northwest National Laboratory (PNNL) as an open-
source simulation platform with transactive market and control
mechanisms for the grid [21]. TESP includes distribution
simulator, transmission simulator and building simulator with
multiple transactive agents, and the integrating Framework
for Network Co-Simulation (FNCS) [22] that manages the
message exchange among different simulators. In order to have
an intelligent and granular control of the HVACs, we utilize
RL and formulate the control problem as an optimization
of cost function that balances between the electricity cost
and end-user satisfaction. More specifically, combined with a
price prediction method using historical data, we adopt Deep
Deterministic Policy Gradients (DDPG) RL algorithm. The
methods are implemented as a RL agent in TESP simulations.
DDPG is a deep reinforcement learning approach developed
for continuous action space; therefore it is naturally suitable
for the control of HVAC systems achieving a finer and more
precise control. We specifically use DDPG RL to control the
base temperature schedule of the HVAC in TESP to make
the TESP thermostat controller respond to the cleared market
prices more intelligently at each time step to maximize the
long term reward that balances between electricity cost and
end-user satisfaction.

II. METHOD

In this section, we describe the formulation of the optimum
HVAC control balancing between energy cost minimization
and customer satisfaction based on RL. This RL based method
relies on the predicted energy price; therefore, a price predic-
tion method based on ANNs is also presented in this section.

A. HVAC Response and Problem Formulation
In a transactive energy system, residential users are able

to participate in TE through a transactive HVAC system.
Transactive HVAC systems are flexible, and they can adjust the
power consumption by changing the temperature settings in
residences. Here, we formulate the HVAC temperature control
objective to minimize the electricity cost and the dissatisfac-
tion of the customers caused by the temperature differences
between the desired and adjusted temperature settings. We
argue that the current room temperature depends on the HVAC

state and power, outdoor temperature, and the room temper-
ature of previous time step. Accordingly, different than the
legacy ramp transactive control mechanism used in TESP [23],
we formulate the HVAC control through a Markov Decision
Process (MDP) to optimize the energy cost and customer
satisfaction simultaneously. MDP is a mathematical framework
that satisfies Markov property and has four elements: a set
of states which represent the environment, a set of possible
actions for each state, a reward function to assess the value
of each action taken at a certain state, and the rules for the
transitions among different states. Below is the description of
the state, action, and reward function tailored to the HVAC;
the control flow of HVAC based on MDP is shown in Fig. 1.

Fig. 1: HVAC control flow and settings; discomfort region shaded in pink.

a) HVAC State: The HVAC power consumption is in-
fluenced by various factors. We consider these factors as the
elements of the HVAC state in the MDP model. We denote
the HVAC state at time t as St, see (1). The observable state
of a HVAC should contain information about both indoor and
outdoor environment as they significantly affect the energy
consumption. Therefore, the indoor temperature T troom and
outside temperature T tout at time t are considered as elements
of the HVAC state. In addition, the desired or scheduled
base temperature, T tschedule, of the house is included in the
HVAC state. Finally, since the HVAC on/off status at time
t depends on price-responsive T tset and the current indoor
thermal environment, T tset is also included in the HVAC state.

St = {T tset, T troom, T tschedule, Tout} (1)

T tset = T tschedule +
(P tcleared − Paverage)×

∣∣Tmax/min

∣∣
khigh/low × σactual

(2)

The relation between T tset and T tschedule in TESP is shown in
(2), where Paverage is the historical mean price,

∣∣Tmax/min

∣∣
is the allowed range of set point variation , khigh/low is the
bidding ramp denominator, σactual is standard deviation of the
price. Bidding ramps and allowed temperature ranges could be
unequal above and below T tschedule as in [23].

b) Action: The aim of the HVAC control is to minimize
the cost by changing the HVAC temperature setting schedule,
T tschedule. Therefore, in our formulation, the learning agent
of the RL approach based on MDP assumptions is designed
to make changes in the scheduled temperature deviating from
the original schedule based on a reward function. The action is
the temperature change from the original schedule in a certain
adjustable range, e.g. [-5,5] degrees Fahrenheit.

c) Reward: The reward of each action consists of two
parts, the penalty for the energy consumed by the HVAC
during the time period and the discomfort of the consumer
resulting from the control action taken at a given state.
The discomfort is the estimated feedback of the occupants’
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dissatisfaction under the current thermal condition. The reward
at each time step is defined as:

rt = −α(Ethvac × P tclear)− (1− α)k × (T tdev)
2 (3)

T tdev = (T troom − T tschedule) (4)
where α represents the importance of the cost of energy

consumption of the HVAC. Ethvac is the energy consumption
of the HVAC during this time step. P tclear is the cleared
price from TESP. The cost will be higher if more energy
is consumed when the price is relatively high. The second
term is the consumers’ dissatisfaction cost which is calculated
by multiplying a factor k by the squared room temperature
deviation T tdev from the original schedule temperature.

B. HVAC Control through Deep Deterministic Policy Gradient

Model-based or model-free approaches can be used in
reinforcement learning to optimize energy cost and/or thermal
comfort through the control of HVAC [24]. Model-based
approaches require complete information of the HVAC thermal
dynamics to represent transition among different states. For
example, for the model-based approaches, accurate dynamic
interactions between the residence and the surrounding envi-
ronment may be needed. In contrast, model-free methods are
more flexible to overcome the detailed modeling of the HVAC
dynamics and accordingly to represent state transitions.

Q-learning, state-action-reward-state-action (SARSA) and
deep Q-networks (DQN) are commonly used for model-free
RL [25]. However, they cannot be used to solve control
problems with both continuous state and action spaces. For
instance, in order to utilize DQN for HVAC control, temper-
ature of the HVAC can be discretized finely, resulting in a
large number of possible actions. But higher granularity of the
action space will decrease the training efficiency dramatically.
DDPG is a deep reinforcement learning method which is
capable of handling a space of continuous states and actions.
There exist other off-policy algorithms like soft actor critic
(SAC) [26] and twin delayed DDPG [27] which are variations
of the DDPG algorithm. They can also be used to solve
the continuous control problem such as HVAC control. In
this paper, we utilize DDPG for the control purposes as
we can show through our numerical results that the reward
convergence is robust to the changes in the hyperparameters.

As shown in Fig. 2(a), for any given input state, through

Fig. 2: (a) DDPG is able to generate continuous action control. (b) The
network structure of DDPG implemented as the RL agent.

the interaction of actor and critic networks, DDPG is able to
generate optimal control action directly rather than by fine
discretization of the action space. The network structure of
the DDPG method is presented in Fig. 2(b). More specifically,
DDPG is implemented here through an actor-critic architecture
that learns approximations to both policy function, θµ, and
value function, θQ. An actor is used to tune the parameter
θµ for the policy function (i.e., to decide the best control

action At given a specific HVAC state St, where θµ represents
the weights of the actor neural network). On the other hand,
a critic network is used for evaluating the policy function
estimated by the actor network. Here, the critic network’s
parameters are denoted by θQ. Critic network estimates the
action value Q which is the expected reward of taking the
control action At at state St.

The actor network and the critic network are trained through
the TESP simulations which enables evaluation of different
actions for different HVAC states. After training, during test-
ing, through the interaction between actor and critic networks
RL-based control outputs an optimum action that is used by
TESP to control the HVAC. The training details of the actor
and critic networks are provided in Algorithm 1 and Fig. 3.

Algorithm 1 DDPG
1: procedure DDPG RL(θµ,θQ)
2: Initialize memory M of size N ;
3: Initialize the actor network µ(St|θµ) and critic network (St, At|θQ)
4: with random parameter θµ and θQ

5: Initialize the target network µ
′

and Q
′

with θµ
′
← θµ ,θQ

′
← θQ;

6: Input the estimated price {P̂clear}T0 ;
7: Define st = {T tset, T troom, T tout, Tschedulet};
8: Receive the initial HVAC state s0={T 0

set, T
0
room, T

0
out, Tschedule

0};
9: for t=0,1,2,..,T do

10: Select at by at = µ(st|θµ) +Nt;
11: Execute at on HVAC and obtain the reward r(st, at) and next

state st+1;
12: Store the transition (st, at, rt, st+1) in M;
13: Sample K transition from M randomly and calculate the es-

timated policy value for the sampled transitions i : yi = ri +

γQ
′
(si+1, µ

′
(si+1|θµ

′
)|θQ

′
);

14: Update the critic network θQ by the gradient ∇θQL of the
MSE over the K size mini-batch and learning rate βy : ∇θQL =
1
K

∑k
i=1(yi −Q(si, ai|θQ))2;

15: Update the actor network using the sampled
policy gradient ∇θµJ and learning rate βx: ∇θµJ ≈
1
K

K∑
i=1
∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

16: Update the target networks (τ : updating rate):
17: θµ

′
← τθµ + (1− τ)θµ

′
;

18: θQ
′
← τθQ + (1− τ)θQ

′
;

19: end for
20: end procedure

Fig. 3: The structure of critic network and actor network, red numbers
correspond to lines in Algorithm 1.

For the training, we initialize the actor network and the
critic network with random parameters, also we use the same
random parameters to initialize the target actor network and
target critic network. DDPG enables the agent to explore a
wide variety of actions in the beginning of learning. Specif-
ically, after receiving the initial state s0, the actor network
explores the action space to select a control action. We add



4

a random noise to the selected action to explore the control
action space to prevent converging to a local solution through
Ornstein–Uhlenbeck process [28], see Algorithm 1 line 10.

During training, at each time step t, after the learning agent
takes the control action at, it communicates this action to
TESP to change the HVAC state st, then receives the new
HVAC state st+1 and the reward Rt calculated based on (3) as
feedback from TESP. In order to improve the convergence and
decrease the correlation among the training samples, we add a
memory buffer for experience replay. So at every time step, the
state action transition st, at, Rt, st+1 is stored into the memory
M . From the memory M , we then randomly sample K
transitions and calculate the estimated value y of each sampled
transition using the target networks. The next-state Q values
are calculated with the target value network and target policy
network (Fig. 3 arrow 13). Then, we minimize the mean-
squared loss between the updated Q value and the original
Q value (line 14). Here, we use the target networks which are
constrained to change slowly. The two target networks θµ

′

and
θQ

′

will slowly track two learned networks θµ and θQ which
will help improve the stability of learning. Calculation of the
estimated value y through the target networks is achieved
through Algotithm 1 line 13, where γ is the discounting factor
indicating the importance of future versus current value. The
weight of the critic network is updated by minimizing the
mean square error with respect to the critic network parameters
using the values corresponding to the randomly selected K
samples as shown in line 14 of the Algorithm 1. The policy
loss is the derivative of the objective function with respect to
the policy (actor network) parameters. Then the actor network
is updated through the sampled policy gradient as shown
in line 15 of Algorithm 1 [29]. Note that the chain rule is
applied since the policy function and the actor network are
both differentiable. Finally, both target networks are updated
with an update rate τ � 1 as shown in lines 17 and 18.

The actor network and the critic network of DDPG algo-
rithm both have 2 hidden layers. The structure and different
activation functions are shown in Fig. 4.

Fig. 4: The structure of critic network and actor network; ReLU is a
rectified linear activation unit.
C. Price Prediction with ANN

The optimal control strategy based on DDPG relies also on
the predicted electricity price, see Fig. 2. In our approach, we

utilized a multi-layer perceptron neural network with 2 hidden
layers to predict the future electricity price. Through such an
artificial neural network, we develop a nonlinear relationship
between the input variables (e.g. temperature, system load, day
of the week) and the predicted output electricity price. Fig. 5
demonstrates the topology of the utilized neural network. As
listed in Fig. 5 there are up to 18 day, hour, load, temperature
and price inputs connecting to the hidden layers.

Fig. 5: The neural network for price prediction

III. SIMULATIONS AND PERFORMANCE EVALUATION

In this section, we describe the simulation scenarios and
present the numerical results. We first present the perfor-
mance of the proposed ANN structure for electricity price
prediction and we compare it with the state-of-the-art price
prediction methods such as weighted average filter [30], sup-
port vector machine (SVM)-based prediction [31], and ANN-
based prediction [32]. Then, we consider different simulation
scenarios in TESP to compare the proposed DDPG RL-
based HVAC control strategy with the control strategy that is
already implemented in TESP in terms of electricity cost and
consumer satisfaction. We represent the consumer satisfaction
as the deviation of the temperature settings from the desired
temperature schedule of the HVAC systems.

A. Simulation of ANN price prediction
1) Simulation scenarios: We generated four weeks of elec-

tricity price data using a TESP feeder model with a substation
and 306 different houses with HVACs. We used the first two
weeks of the generated price data for training the proposed
neural network and used the second two weeks of data for test-
ing. As shown in Table I, we considered up to 18 input features
to train the proposed neural network to predict electricity price.
Day of the week, hour of the day and historical price data are
obtained directly from the generated TESP data. Historical
weather (temperature) and the load data for price prediction
training in the Pittsburgh area are obtained from the weather
data in Typical Meteorological Year 3 (TMY3) format [33]
and PJM website, respectively. PJM is a regional transmission
organization and they publish historical hourly load data for
Duquesne Light Company on their website. Since the TESP
simulation data have higher temporal resolution compared to
the load data, the hourly load data is interpolated to obtain 5
minutes per sample temporal resolution.

TABLE I
Input features for price prediction (h represent hour)

Input Features
Day of the week 1-7
Hour of the day 1-24
Historical price (h-1),(h-2),(h-3),(h-24),(h-25),(h-26),(h-48),(h-168)

PJM load (h-1),(h-2),(h-3),(h-24),(h-25),(h-26)
Weather temperature

Price distribution mean of the distribution
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2) Price Prediction Simulation Result : In Fig. 6 we
compare the proposed neural network that is trained using
all 18 inputs that are listed in Table I directly with the
TESP simulation results. Here TESP simulation results are
the benchmark. Fig. 6 (a) shows 24 hour prediction results
with mean square error (MSE) of 2.12×10−4), and Fig. 6 (b)
shows 10 hour simulation results with MSE 2.59 × 10−4).
From these two figures we observe that the overall trend
of the predicted price is consistent with the TESP-simulated
electricity price. Note that even some small fluctuations in
price are also correctly predicted.
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(a) 24 hour prediction result
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(b) 10 hour prediction result
Fig. 6: Price prediction vs TESP Simulation data

Here we also compare the proposed approach with the state-
of-the-art price prediction methods. We denote the proposed
approach as ANN with weather and price distribution input
(ANN + weather + price distribution) and compare it with
weighted average filter-based, SVM-based, ANN with weather
input (ANN + weather) and ANN without weather and price
distribution (ANN) methods. For this comparison, we gen-
erated simulation data from the 306-house system described
above. Similar to the above scenario, historical weather and
PJM load data are obtained from online sources.

The data was divided into 50 week-long periods, and the
mean square error of predicting price of different weeks
throughout the year is shown for different methods in Fig. 7.
We observe that SVM-based method is better than the

Fig. 7: Error comparison of price prediction methods.
weighted average filter, and ANN based methods outperform
both the weighted average filter and SVM-based methods. To
statistically compare the methods, we apply non-parametric
one-sided rank sum test and the results are presented in
Table II. In this table, we specifically present the p-values
for testing if the methods listed in the columns have lower
mean-square error in price prediction than the methods listed
in the rows. A p-value lower than 0.05 means that the method
listed in the column has statistically lower mean-square error
compared to the method listed in the row. Similar to Fig. 7,
ANN-based methods are significantly better than weighted
average filter and SVM-based methods. Even though there are

not statistically significant differences among ANN, ANN+W
and ANN+W+P (see Table II), adding weather and price
distribution information may make the price prediction more
robust, see Fig. 7. But this robustness comes with price of
additional data collection.

TABLE II
p value of Wilcoxon rank-sum test between the errors in Fig. 7 of the method

in each row and the method in each column.
p filter SVM ANN ANN+W ANN+W+P

filter 0.50 5.58e-5 6.75e-17 3.53e-18 3.53e-18
SVM 0.99 0.50 1.38e-7 3.31e-8 1.85e-8
ANN 1 1 0.50 0.35 0.45

ANN+W 1 1 0.65 0.50 0.58
ANN+W+P 1 1 0.55 0.42 0.50

B. Simulation of DDPG RL HVAC Control
1) Simulation scenarios: The proposed RL-based HVAC

control is evaluated using TESP-simulated data on 306 houses.
We specifically considered the scenarios in which HVACs are
in the cooling mode. To make sure the HVACs are in cooling
mode during the training, TMY3 data for Florida instead of
Pittsburgh were used during the period from June to November
of 2018. One generic control policy for different houses is
obtained after training. The DDPG algorithm is implemented
with Pytorch [34], an open source Python-based scientific
computing package for machine learning. The training data
comes from simulation of 212 days in TESP.

As also mentioned above, we compare the RL-based ap-
proach with the HVAC ramp control approach that is imple-
mented in TESP. This method (which we denote as ”without
RL agent” in this paper) controls the HVAC using a pre-
defined temperature schedule. On the other hand, the proposed
RL-based method (which we denote as ”with RL agent”)
changes the pre-defined temperature schedule based on the
predicted price and DDPG-based control. We compare these
two control approaches not only under normal conditions
but also during a high price scenario that includes a bulk
system generator outage. Test cases are illustrated in Fig. 8.
Simulation configurations and key parameters of the DDPG
training algorithm are listed in Table III.

Fig. 8: Test cases of the proposed RL agent
TABLE III

Parameter Settings
Ttest 212 days training data time length
∆t 5 minutes time step
βQ 0.000025 learning rate of the critic network
βµ 0.00025 learning rate of the actor network
τ 0.001 model update parameter
γ 0.95 reward discount factor
α 0.1∼0.5 weight factor of the electricity cost

The batch size for DDPG training is chosen to be 72. The
parameter α that was introduced in (3) and that balances
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between energy cost saving and customer satisfaction is varied
between 0.1 and 0.5.

2) Performance Metrics: In order to compare the control
methods with and without RL agents, we define electricity cost
saving factor (CSF) and thermal comfort improvement factor
(TIF) as the performance metrics. Both are affected by α.

CSF =
weeklybillbase − weeklybillRL

weeklybillbase
× 100% (5)

TIF =
∆Tbase −∆TRL

∆Tbase
× 100% (6)

Both CSF and TIF can be greater or less than 0; a positive
CSF or TIF indicates better performance with the RL agent.

3) Simulation Result:
a) Convergence of the training process: As shown in

Fig. 9, we plot the reward function as a function of training
time steps for different hyper-parameters. It can be observed
that the training of the algorithm is very robust to the changes
in α and βµ (βµ=10βQ), and τ (when τ is greater than 0.001,
which is the literature recommended value).

Fig. 9: Convergence of DDPG training process with different hyper
parameters

b) Performance of the DDPG RL Algorithm: Through
TESP simulations as described above, we compare HVAC
control with RL agent to HVAC control without RL agent.
Recall here that HVAC control without RL agent uses a fixed
temperature schedule and adjusts the HVAC setting based on
this fixed temperature schedule and cleared market price for
electricity [23]. On the other hand, HVAC control with RL
agent changes the temperature schedule and then adjusts the
HVAC setting for price. For these two approaches, in Fig. 10,
we plot the temperature schedules, HVAC temperatures and
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Fig. 10: Room temperature with and without RL agent

cleared market price for electricity. The purple dashed-line
demonstrates the cleared market price, green and orange
lines show the fixed and changing temperature schedules,
respectively, and red and blue lines are for the HVAC temper-
atures with and without RL-agent control, respectively. The

room temperature is rising along with the increasing outside
temperature from 8am to noon and it continues to rise until
it triggers the HVAC to cool the room. The HVAC control
with RL agent predicts the afternoon increase in the cleared
market price; therefore, there is sudden drop in the temperature
schedule at 12:00 with RL agent, and the temperature schedule
then continues to drop below the current room temperature.
As a result, the HVAC starts cooling the house a little earlier
than the original control without RL agent before the price
peak is reached at around 14:00. Specifically, just after 12:00,
the red line starts to drop and fluctuate, before the blue line.
At every time step, the RL agent controls the HVAC output
to minimize the deviation of the room temperature from the
original schedule while aiming to consume more power for
HVAC at relatively lower price.

Fig. 11 demonstrates the energy consumption of a single
HVAC controlled with (blue) and without (orange) the RL
agent. We observe that compared to the HVAC controlled
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Fig. 11: Time varying price and the HVAC load
without RL agent, HVAC controlled with RL agent consumes
more power (higher HVAC load) when the price is low and less
power (lower HVAC load) when the price is high. Additionally,
Fig. 12 shows the aggregated loads of 306 HVACs controlled
with (blue) and without (orange) the RL agent. In this figure,

�����

�����

�����

�
�

�%���

���!��%

�
�� 	
�� ��
�� ��
�� ��
�� �
�� �
��
��"��$��&�����(

�

���

����

 �

�$&�!�������$��

��&��������#&
��&�$'&�������#&

Fig. 12: Aggregate responses of the HVACs

total HVAC load is less when the price is high around 14:00
to 18:00. The HVACs consume a little more power during the
time when price is relatively low such as 0:00 to 4:00. Similar
to what we observe in Fig. 11, HVACs controlled with RL
agents aim to save more energy at higher market prices.

Recall from (3) that α value is chosen to balance between
the consumed energy cost of HVAC and the comfort level
of the customers. We define the minimization of customer
discomfort as the minimization of the deviation of the temper-
ature schedule from the original schedule. Parameter α takes
values between 0 and 1 and as its value increases, customers
care more about the energy cost. Here we compare again
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Fig. 13: Comparative box plot of the weekly energy cost vs. α

the HVAC control methods with (blue) and without (orange)
RL agent for different α values. More specifically, Fig. 13 is
the box plot of weekly cost of consumed power by HVAC.
The green dashed lines show the weekly mean values. As
can be observed from this figure the RL agent saves more
money compared to the control without RL agent; saving
increases as α increases. For example, the CSF is 38.5%
when α is 0.5. On the other hand, Fig. 14 is the bar plot of
the room temperature deviation from the desired temperature
schedule. The average temperature deviation increases with
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Fig. 14: Comparative bar plot of the temperature deviation vs. α

the increase of α, such that TIF ranges from 42.75% to -
28.7%. Fig. 15 shows the room temperature under the control
of RL agent with different α. When α increases the deviation
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Fig. 15: Room temperature of different cases.

of the temperature from the scheduled temperature increases.
With larger α, the RL agent is very sensitive to the electricity
consumption, in consequence, the RL agent tends to save more
energy by sacrificing thermal comfort. For example, as shown
in Fig. 14, with α = 0.45 and α = 0.5, the TIF became negative
and the temperature deviation is even higher than the case that
uses HVAC control without RL. Moreover, Fig. 13 and Fig. 14
also demonstrate that with certain α, the RL agent is able to
reduce the energy cost and improve the occupants’ comfort at

the same time compared to the HVAC control without RL, for
example see α = 0.4.

c) DDPG RL Performance During a Generation Outage:
In the above simulations, the clearing price is at a normal level
for most of the time. To evaluate the performance of the HVAC
control with RL agent during high-price events, we perform
simulations with a bulk generation outage at a certain time
of day. We are using the same simulation scenario with 306
HVACs as described above but now there is a generation unit
outage from 12:00 to 18:00.

Due to the outage of a main generation unit and the higher
cost of the back up generation unit, the Locational Marginal
Price (LMP) at the substation bus becomes higher than normal
during the outage, leading to a high clearing price as shown
in Fig. 16. With RL agent, the HVAC consumes less power
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Fig. 16: Electricity price and the HVAC power consumption with RL agent
during generation outage
during the outage when the electricity price is at peak. As
illustrated in Fig. 16, different from the HVAC control without
RL which consumes power during the price peak, the HVAC
with RL agent is off beginning around 16:00 and starts to work
again when the price drops.

Similar to Fig. 13 for different α values, Fig. 17 shows the
box plot of weekly HVAC energy cost with generation outage.
As observed in Fig. 17, without RL agent, the energy cost of
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Fig. 17: Weekly HVAC energy cost vs. α with generation outage.

HVAC is doubled over the normal scenario as demonstrated in
Fig. 13. Similar to Fig. 14, Fig. 18 shows the bar plot of room
temperature deviation from the desired temperature schedule.
When α = 0.25, the thermal comfort with and without RL are
almost the same in these two cases. Note that when α = 0.25
the consumers are still able to save 12.7% of HVAC energy
cost on average with the RL agent. That is, while the comfort
level is preserved, there is more energy savings with HVAC
control with RL. When α = 0.55, although the average HVAC
energy cost is reduced by 50%, the temperature deviation
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Fig. 18: Average temperature deviation vs. α with generation outage.

increases a lot. In general, consumers are able to save a greater
extent of money with a higher α (emphasis on energy saving),
reducing thermal comfort as shown in Fig. 18.

IV. CONCLUSION

We have developed a RL-based method for the control of
transactive HVACs in distribution systems that are partici-
pating in a double auction electricity market. The method
is integrated in and tested through TESP simulation. As
the first step, we proposed and tested an electricity price
prediction method and compared it with existing state-of-the-
art price prediction methods. Then we used the developed
price prediction method together with a DDPG approach to
train a reinforcement learning agent to control the HVAC.
The proposed RL-based method balances between electricity
cost and customer comfort. Accordingly, we compared our
approach with the ramp control method that already exists
in TESP. Our results showed that the proposed method not
only saves the electricity cost but also improves the customers’
comfort at the same time. Our future work will explore using
α as a customer-oriented slider setting to express preferences,
training on the fly for continuous improvement of the local
RL agent, and extensions to water heaters and batteries.
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