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Abstract

The COVID-19 pandemic has accelerated methods to facilitate contactless evaluation of patients in hospital settings. By

minimizing unnecessary in-person contact with individuals who may have COVID-19 disease, healthcare workers (HCW) can

prevent disease transmission, and conserve personal protective equipment. Obtaining vital signs is a ubiquitous task that is

commonly done in-person. To eliminate the need for in-person contact for vital signs measurement in the hospital setting, we

developed Dr. Spot, an agile quadruped robotic system that comprises a set of contactless monitoring systems for measuring

vital signs and a tablet computer to enable face-to-face medical interviewing. Dr. Spot is teleoperated by trained clinical staff to

facilitate enhanced telemedicine. Specifically, it has the potential to simultaneously measure skin temperature, respiratory rate,

heart rate, and blood oxygen saturation simultaneously while maintaining social distancing from the patients. This is important

because fluctuations in vital sign parameters are commonly used in algorithmic decisions to admit or discharge individuals with

COVID-19 disease. Here, we deployed Dr. Spot in a hospital setting with the ability to measure the vital signs from healthy

volunteers from which the measurements of elevated skin temperature screening, respiratory rate, heart rate, and SpO2 were

carefully verified with ground-truth sensors.

1



   

 

   

 

Agile mobile robotic platform for contactless vital signs monitoring 

Authors: Huang H*(1,2,3), Chai PR*(2,4,5,6), Ehmke C*(2), Merewether G*(7), Dadabhoy FZ (4), Feng. 

A (2), Li C (2), Thomas. AJ (2), da Silva M(7), Raibert M(7), Boyer EW(4,6), Traverso CG(1,3) 

1. Department of Mechanical Engineering, Massachusetts Institute of Technology  
2. The Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology  

3. Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital 

4. Department of Emergency Medicine, Brigham and Women’s Hospital 

5. Department of Psychosocial Oncology and Palliative Care, Dana Farber Cancer Institute 

6. The Fenway Institute 
7. Boston Dynamics 

＊ Contributed equally; corresponding: cgt20@mit.edu, ctraverso@bwh.harvard.edu  

 

Abstract: 

The COVID-19 pandemic has accelerated methods to facilitate contactless evaluation of 

patients in hospital settings. By minimizing unnecessary in-person contact with individuals who 

may have COVID-19 disease, healthcare workers (HCW) can prevent disease transmission, and 

conserve personal protective equipment. Obtaining vital signs is a ubiquitous task that is 

commonly done in-person. To eliminate the need for in-person contact for vital signs 

measurement in the hospital setting, we developed Dr. Spot, an agile quadruped robotic system 

that comprises a set of contactless monitoring systems for measuring vital signs and a tablet 

computer to enable face-to-face medical interviewing. Dr. Spot is teleoperated by trained 

clinical staff to facilitate enhanced telemedicine. Specifically, it has the potential to 

simultaneously measure skin temperature, respiratory rate, heart rate, and blood oxygen 

saturation simultaneously while maintaining social distancing from the patients. This is 

important because fluctuations in vital sign parameters are commonly used in algorithmic 

decisions to admit or discharge individuals with COVID-19 disease. Here, we deployed Dr. 

Spot in a hospital setting with the ability to measure the vital signs from healthy volunteers 

from which the measurements of elevated skin temperature screening, respiratory rate, heart 

rate, and SpO2 were carefully verified with ground-truth sensors.  

 

Introduction: 

Pandemic spread of the novel coronavirus, SARS-CoV-2, and resultant COVID-19 disease is 

changing the methods in which patients are evaluated in the hospital setting. Abnormalities in 

vital signs are key indicators of severity of COVID-19 disease. Physiologic findings of 

tachycardia, fever, tachypnea, and hypoxemia can be the first signs of clinical deterioration and 

play a major role in risk stratification, treatment algorithms, and disposition of COVID-19 

patients [1]. Identification of changes in vital signs help healthcare workers (HCW) recognize 

those who are sickest and in need of urgent interventions. Obtaining in-person vital signs raises 

several challenges in the COVID-19 pandemic. The use of standard cutaneous monitors 

requires the HCWs to closely interact with patients who are potentially infected with COVID-

19 and puts them at risk of acquiring SARS-CoV-2 [2], [3]. Fluctuating supplies of personal 

protective equipment (PPE) may limit the availability of adequate PPE for HCWs obtaining 

vital signs. In practice, efforts to conserve PPE may lead to vitals being documented less 

frequently during a patient’s stay. Finally, surging infection rates among HCWs may lead to a 

lack of qualified personnel to perform these tasks. Cumulatively, this may result in undetected 

deterioration of individuals who develop vital sign abnormalities. “Could robots be effective 

resources in combating COVID-19?” was asked at the beginning of the pandemic as mobile 

robots have historically removed humans from monotonous, contaminated, and dangerous 

mailto:cgt20@mit.edu
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environments [4], [5]. Our team endeavored to address several critical needs of the pandemic 

by mitigating the risk of exposure to HCWs by deploying an agile quadruped robot that 

approaches patients to acquire vital signs in a contactless manner.  

Different kinds of contactless monitoring systems using radio signals [6], [7] and radar-based 

sensors [8] have been investigated in the past decade. These systems can easily obtain 

respiratory rate (RR) and heart rate (HR) from multiple people without interfering with their 

daily activity, but are unable to capture other vital signs relevant to COVID-19 disease, such as 

elevated skin temperature and blood oxygen saturation (SpO2). In order to screen for fevers 

from other infectious disease epidemics, commercial infrared (IR) camera systems have been 

demonstrated to reliably screen individuals for fevers in indoor commercial settings like 

airports [9]. Similar systems using Red-Green-Blue (RGB) cameras can extract HR [10], SpO2 

[11], [12] and blood pressure [13] from skin RGB pixel changes using recorded color image of 

human skin surfaces. This is known as remote photoplethysmography (rPPG) and can be 

achieved with consumer-level cameras. Advances in computer vision (CV) and machine 

learning enable automatic tracking of the region of interest (ROI) even from a crowd with 

people wearing a mask. Combined these systems offer the ability to generate contactless vital 

signs measurements on a mass scale to rapidly detect abnormalities that may be consistent with 

COVID-19 disease. With an increasing need for solutions to screen individuals who return to 

work, travel from areas of high viral transmission, and participate in regional and country level 

reopening during the COVID-19 pandemic, contactless camera systems offer a simple, 

noninvasive and scalable system to obtain incontrovertible proof of vital signs abnormalities.   

In this work, we developed a robotic-assisted vital sign acquisition platform to facilitate 

contactless vital signs in hospital settings (VitalCam). At the heart of this system is a robot-

controlled IR and multi-monochrome camera setup that automatically tracks individuals and 

obtains their facial skin temperature, HR, RR, and SpO2 on an operator-friendly platform that 

can be utilized by HCWs. We deployed VitalCam as payload on Spot, a quadruped robotic 

system developed by Boston Dynamics [14], and describe the generation of algorithms to 

simultaneous obtain vital signs central to COVID-19 disease evaluation.  

  

Background 

Medical tent for COVID-19 triage 

In order to cohort and maintain distance between individuals with potential COVID-19 disease, 

many hospitals have developed outdoor triage tents that facilitate SARS-CoV-2 testing and 

evaluation of low risk individuals. We deployed a large 25 x 45 foot triage tent at a large 

academic, urban medical center in the greater Boston metropolitan area (Brigham and Women’s 

Hospital) (Figure 1). Ambulatory individuals, otherwise well appearing, who presented to the 

emergency department (ED) with symptoms consistent with COVID-19 disease (upper 

respiratory infection, fevers, or other exposure to COVID-19) were triaged to the tent for initial 

evaluation. Participants underwent a brief-nurse driven interview after which they were seated 

in the tent waiting area which comprised ten chairs spaced six feet apart. Patients then 

proceeded to a separate, semi-private space, within the tent, where they met a clinician who 

conducted a brief, scripted interview regarding COVID-19 exposure and current symptoms. 

Additionally, the clinician gathered a full set of vital signs (body temperature, HR, RR, SpO2, 

and blood pressure) using standard equipment. The clinician then decided if the patient required 

additional care within the ED, or if they can be tested and discharged from the tent.  

Evolution of Dr. Spot 



   

 

   

 

We collaborated with Boston Dynamics (Waltham, MA) to deploy the Spot robot (Dr. Spot) in 

the triage tent, ED waiting room, and ED rooms for individuals. Dr. Spot was initially equipped 

with an IR camera (FLIR A325) for the purpose of fever screening and RR measurement 

(Figure 1b and Figure 2a). Dr. Spot was remotely controlled (RC) by a trained HCW stationed 

in the ED to travel to and from the tent and within the ED. The overall objective was to use Dr. 

Spot to facilitate acquisition of vital signs and a brief interview in order to reduce exposure of 

HCWs to patients. The main advantage of a mobile robotic-controlled IR camera is the ease of 

transport of the camera system.  

Traditionally, an IR camera is fixed on a stand and meticulously calibrated to a certain distance. 

The patients undergoing screening for fever must stand at a specified location and directly face 

the camera. Instead of asking patients to adapt to a static camera, a robotic system with agile 

movement can adjust its distance and angle of view to obtain adequate frames of reference to 

obtain vital signs from patients. Moreover, an iPad mounted on Dr. Spot allowed clinicians to 

interview patients via secure video conferencing (Figure 2b). In this paper, we focus on the 

evolution of algorithms to facilitate contactless vital signs using Dr. Spot. 

In order to simultaneously measure heart rate, respiratory rate, skin temperature oxygen 

saturation, we added three monochrome cameras with filters of different wavelengths to enable 

motion robust vital sign collection (Figure 2c). These three monochrome cameras were 

arranged together and outfitted with different optical filters with the wavelength of 660 nm, 810 

nm, and 880 nm. As a result, the the VitalCam carried by Dr. Spot was able to simultaneously 

obtain skin temperature, RR, HR, and SpO2 from an individual patient. Two types of user-

friendly remote-control interfaces were developed to facilitate acquisition and display of vital 

signs. One was an RQT-GUI of ROS-based interface featuring video streams from the IR 

camera and monochrome cameras, signal tracing curves of the RR and HR, and the values of 

each vital sign (Figure 3a). The other was presented on a handheld controller with a touch 

screen which displayed the IR streaming video and the vital sign values (Figure 3b).   

 

IR camera for detecting vital signs relevant temperature variation 

Fever screening 

Infrared (IR) thermography can detect elevated skin temperature which may indicate the 

presence of a fever. Because fever is a characteristic vital sign abnormality found in individuals 

with COVID-19 disease, thermal imaging systems are frequently used to screen large crowds 

for temperature derangements. There are several weaknesses in this approach. First, IR cameras 

measure the skin temperature distribution, but not the body temperature. There may be a wide 

variation of skin temperature distribution compared to the core body temperature which is used 

to define fever. Second, the correlation between skin temperature and core body temperature is 

poorly understood [15], [16]. It is well established that temperature of the inner canthus of the 

eye (tear duct) correlates strongly to core body temperature and is described as the most reliable 

location for temperature measurement on the face [17]. Yet accurate acquisition of temperature 

in this region of the body requires high resolution camera systems to impart adequate pixels for 

image processing. Unlike RGB cameras, most IR cameras deployed for elevated body 

temperature screening have a resolution around 320 x 240 pixels or 640 x 512 which is 

suboptimal for measuring temperature at the ocular canthus, especially at a distance greater 

than 2 meters. An IR camera has to be placed very close, less than 1 meter, to a measuring 

subject to ensure there are enough pixels to cover this area. We observed that there is about 1 

C drop on the highest face skin temperature when the subject is moved from 0.6 m from the 

camera to 2 m from the camera at the ambient temperature of 19 C (Figure 4a). This 



   

 

   

 

temperature drop is not only a function of the distance but also the ambient condition. The lower 

the ambient temperature and the farther the measuring subject are, the higher the variation in 

observed skin temperature. 

As it is almost impossible to capture accurate tear duct temperature for fever screening while 

adhering to social distancing guidelines, the IR camera manufacturer FLIR suggests 

establishing a baseline by scanning and saving readings from ten known healthy individuals 

coming from similar ambient conditions [18]. Readings from all future subjects at the same 

ambient temperature scanned will be compared to this population baseline. Subjects with facial 

skin temperature higher than the baseline will be asked to undergo further diagnostic evaluation. 

The success of this approach relies on a calibrated temperature reference that needs to be placed 

in the field of view during the measurement. The reference source, also referred to as a “black 

body” allows the imaging software to calibrate the scene to a more precise value by providing 

a higher accuracy reference, than the camera is capable of. In addition, the black body needs to 

be located at the same distance from the camera, as the subject’s face that is being imaged. 

Although a black body addresses the inaccuracy of skin temperature readings using IR cameras 

at a fixed distance, implementation may be challenging in a dynamic changing indoor 

environment, such as an emergency department of a hospital. Moreover, the need to maintain 

a specific, static distance between the camera and the black body constrains the mobility of the 

robot. To remove the black body from the fever screening setup, we proposed a compensation 

algorithm by counting the distance and ambient temperature effect in the real-time 

measurement. As shown in Figure 4a, we observed that decrease in temperature with increase 

in distance follows a linear trend. The slope of the linear trends is also a function of ambient 

temperature (Figure 4b). Thus, we hypothesized that the difference in skin temperature reading 

at various distances could be rectified by doing inverse analyses of Figure 4.  

Face detection with ROI 

To enable real-time skin temperature calibration based on the inverse analyses, the distance 

between the camera and measuring subject and ambient temperature around the camera have 

to be acquired during the measurement. The ambient temperature was acquired by using a 

temperature sensor (BME280, Bosch). To accurately estimate the distance between the camera 

and subject, we employed a face detection algorithm known as InsightFace that continuously 

detects and tracks facial features through real-time IR imaging [19]. The raw thermal frame is 

rescaled to an 8-bit depth with the corresponding range of [0,255], then duplicated on the RGB 

channels before it is run through the InsightFace model. The model worked well on the IR 

images since it was trained on RGB images. A face bounding box is given to the detected face 

with the dimensions that are directly associated with the head size and the distance to the camera. 

Figure 5 shows that the face bounding box obtained from face detection algorithm 

monotonically decreases with the increase of distance between the camera and the subject. We 

measured the face bounding box dimensions from three different subjects with different genders 

and head sizes and observed the three curves overlap entirely with each other, which gave us 

the confidence to estimate the distances based on face bounding box dimensions.  Through the 

inverse analyses of the results from Figure 5, we could estimate the distance by  

𝐷 = 140.22 ∙ 𝐿−1.14,          (1) 

where L is the diagonal length of the detected face bounding box. With the feedback 

information of the distance and ambient temperature, the skin temperature reading at varying 

distance can be rectified (Figure 6a) and represented as 

𝑇𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑑 = 𝑇𝐼𝑅 + 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡
−2.774(1900 ∙ 𝐷 + 3700),     (2) 



   

 

   

 

where  𝑇𝐼𝑅  is the temperature directly from the IR camera and  𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡  is the ambient 

temperature. Figure 6b shows the real-time IR images marked with the original skin 

temperature reading, estimated distance, and the rectified skin temperature based on the 

distance compensation. The person standing at the distance of 0.7 m was measured with the 

original skin temperature of 35.85 C and the rectified temperature of 35.88 C. While the same 

person at a distance of 3.3 m with the skin temperature dropping to 34.77 C that is rectified to 

be 35.65 C. As a brief summary here, the VitalCam-enabled Dr. Spot can perform the elevated 

skin temperature screening without using a static black body setup for distance calibration and 

the measuring distance no longer constrains the screening. We believe the proposed algorithm 

could largely facilitate the multi-person screening in a crowded environment. 

Tachypnea detection 

Universal masking or application of a face cover that encloses the nasopharynx has been 

demonstrated to reduce the spread of SARS-CoV-2. Many countries and healthcare systems 

have implemented universal mask rules to mitigate disease transmission [20]. Figure 6c shows 

that there is a sharp temperature contrast in the IR images between wearing and not wearing a 

mask. We employed the temperature difference between the ROI of forehead and mask to 

identify if one is wearing a mask or not. If the temperature difference between the ROI of 

forehead and the ROI of mouth is higher than 3 C, then the algorithm identifies the person is 

wearing a mask.  

In the meantime, we also observed that wearing a mask created a periodic temperature variation 

in the IR images through inhalation and exhalation (Figure 7a(i)). Thus, we used this 

temperature variation to track the RR of a subject. First, the face bounding box was equally 

split into two parts, an upper region and a lower region. We then took the temperature from the 

central lower region of the face bounding box around the nose and the mouth to calculate RR. 

In each frame, our algorithm got the temperature average on the ROI, which was decided by 

the face entity’s bounding box and corresponding facial landmarks. After accumulating enough 

(in our case: 128) frames, the algorithm first used cubic spline to sample (timestamp, 

temperature average) tuples with the same time interval from the original data, then calculates 

the periodogram for the samples, and estimates the RR by the frequency with the maximum 

power spectral density. It took about 4 s to acquire the RR with the camera which has a frame 

rate of 30 fps. A low pass filter was applied to remove the high frequency band noise and the 

waveform of breathing is shown in Figure 8a. To extract RR from the obtained temperature 

variation on the mask, Fast Fourier Transform (FFT) is applied onto the raw breathing signal 

shown in Figure 7a(i) and the frequency spectrum is shown in Figure 8b.  

 

Monochrome cameras for detecting PPG 

Tachycardia detection 

 rPPG is a simple yet low-cost optical technique that can be used to measure blood volume 

changes underneath facial skin via a consumer-level camera. The light absorption 

characteristics of bloodstream haemoglobin exhibit a strong peak at the wavelength between 

500-600 nm, which corresponds to the frequency band of green light signal captured by an RGB 

camera. Normally rPPG is very sensitive to the presence of motion and noise artifacts. To 

enable a motion robust rPPG, De Haan et al. presented a method, the “PBV-method”, which 

introduces the unique “signature” of the blood volume pulse signal [21]. De Haan et al. showed 

that the optical absorption changes induced by blood volume variations in the skin occur with 

a very specific vector in a normalized RGB-space (referred to as 𝑃⃗ 𝑏𝑣 ). This unique blood 



   

 

   

 

volume signature enables robust rPPG pulse extraction that minimizes the contribution to the 

pulse-signal of color variations with other signatures. In this work, instead of directly using 

single RGB camera to obtain the pulse signal, we used three monochrome cameras with filtered 

wavelength at 660 nm, 810 nm, and 880 nm, respectively, for the purpose of facilitating SpO2 

analyses. A general overview of the operating principle of the VitalCam is shown in Figure 7a. 

A patient is getting monitored while sitting on a chair. The four-camera system controlled by 

the agile mobile robot would point to the face of the subject and focus on the ROIs. The 

measurements are taken for a duration of about 10 s in which the subject has to sit still and 

should reduce the movement of his/her head. The procedures of getting RR, HR, and SpO2 are 

described in Figure 7b. In the HR and SpO2 estimation algorithm, the ROI is located at the 

forehead. The ROI is split into twelve equally-sized subregions to exploit the spatial 

redundancy of the camera sensor.    

To obtain HR, our goal is to retrieve the desired pulse signal 𝑆  from  𝐶𝑁 which is the matrix 

with time-variant input values from the camera channels. Here we use three camera channels, 

so the dimension of 𝐶𝑁 is 3 × 𝑁, where N is the number of measurements in the time window. 

The pulse-signal 𝑆  can be constructed as 

𝑆 = 𝑊⃗⃗⃗ 𝐶𝑁,           (3) 

where 𝑊⃗⃗⃗ , dimension 1 × 3, is the weighing matrix with 𝑊⃗⃗⃗ 𝑊⃗⃗⃗ 𝑇 = 1. Given 𝐶𝑁 as the input from 

the three cameras, the aim is to construct the weights 𝑊⃗⃗⃗  using the PBV method to finally 

calculate the pulse signal. In addition, the pulse signal 𝑆  can be related to 𝑃⃗ 𝑏𝑣 by Equation (4).  

The relative pulsatile amplitudes in the three channels are known based on physiology and 

optics that construct the pulse-signal 𝑆 . There exists the following correlation between the pulse 

signal and the normalized channels equals 𝑃⃗ 𝑏𝑣.   

𝑆 𝐶𝑁
𝑇 = 𝑘𝑃⃗ 𝑏𝑣 ⇔ 𝑊⃗⃗⃗ 

𝑃𝐵𝑉𝐶𝑁𝐶𝑁
𝑇 = 𝑘𝑃⃗ 𝑏𝑣,        (4) 

Thus, the weights 𝑊⃗⃗⃗ 
𝑃𝐵𝑉 can be calculated using: 

𝑊⃗⃗⃗ 
𝑃𝐵𝑉 = 𝑘𝑃⃗ 𝑏𝑣𝑄

−1 with 𝑄 = 𝐶𝑁𝐶𝑁
𝑇,        (5) 

where scalar k is chosen to ensure that 𝑊⃗⃗⃗ 
𝑃𝐵𝑉 is normalized in l2-norm sense. Thus, to compute 

the pulse signal, the weights must first be determined by the vector 𝑃⃗ 𝑏𝑣 and input from the 

camera channels 𝐶𝑁. 

To extract the cardiac pulse-signal 𝑆 , the blood volume pulse vector 𝑃⃗ 𝑏𝑣 has to be known. 𝑃⃗ 𝑏𝑣 

with dimension of 1×3 describes the relative pulsatile amplitudes in the channels of a camera. 

It is defined by: 

𝑃𝑏𝑣
𝑖 (𝑆𝑝𝑂2) = ∫ 𝑃𝑃𝐺(𝑆𝑝𝑂2, 𝜆)𝐼(𝜆)𝐶𝑎𝑚𝑖(𝜆)𝐹𝑖𝑙𝑡𝑒𝑟𝑖(𝜆)𝑑𝜆

1000 𝑛𝑚

𝜆=400 𝑛𝑚
  for 𝑖 = 1,… , 𝑛,  (6) 

where 𝐼(𝜆), 𝐶𝑎𝑚𝑖(𝜆), and 𝐹𝑖𝑙𝑡𝑒𝑟𝑖(𝜆) are the illumination spectrum, the camera sensitivity and 

the transmission spectrum of the filter, respectively. PPG(SpO2, λ) is the PPG waveform, which 

is experimentally determined function dependent on the SpO2 level and light wavelength. The 

PBV method is applied to each subregion (i) to get n=12 pulse signals for each PBV vector. 

Figure 8c shows the averaged pulse signal from a healthy volunteer after applying a bandpass 

filter between 50 bpm and 150 bpm. The pulse signal was recorded for one minute after 

vigorous activity to approximate tachycardia observed clinically in patients with COVID-19.  



   

 

   

 

After applying FFT to the pulse signals, the HR was retrieved by choosing the frequency which 

corresponds to the highest amplitude in the frequency spectrum (Figure 8d).  

Hypoxia detection 

An important property of the PBV method is that it utilizes the relative pulsatile amplitudes in 

the camera channels to differentiate variations in blood volume from variations from other 

sources such as motion. We can exploit the observation that SpO2 affects the pulsatile 

amplitudes of the channels (and thus the examined 𝑃⃗ 𝑏𝑣 vector) to measure blood oxygenation 

values. SpO2 values depend on the absorption spectra of HbO2 and Hb, and different SpO2 

values lead to different PPG amplitude spectra. The PPG spectra for 70, 80, 90, and 100 percent 

SpO2 are visualized in Figure 9. When SpO2 decreases, the pulse amplitude at 660 nm increases 

whereas the amplitude at 880 nm decreases. Since the amplitude of 810 nm does not change as 

it is close to the isosbestic point of (oxy-)hemoglobin, the differences in amplitude decrease 

between the three channels.  

An adaptive PBV (APBV) method is applied to each subregion. The pulse signal from each 

subregion is compared to the one of other subregions for quality analysis, and pulse signals 

with the highest quality are further analyzed and traced to an SpO2 level. The PPG amplitude 

spectrum, 𝑃𝑃𝐺(𝜆) in Equation (6) is the SpO2-dependent term. Thus, the 𝑃⃗ 𝑏𝑣  vector would 

vary with the SpO2 values. Since the PPG spectrum is partly determined by a linear mixture of 

the spectra of oxygenated and deoxygenated hemoglobin, the collection of examined 𝑃⃗ 𝑏𝑣 

vectors can be expressed by the APBV model: 

𝑃⃗ 𝑏𝑣

𝑒
= 𝑃⃗ 𝑏𝑣

𝑠
+ 𝛼𝑃⃗ 𝑏𝑣

𝜇
,          (7) 

where 𝑃⃗ 𝑏𝑣

𝑒
 is the examined vector, 𝑃⃗ 𝑏𝑣

𝑠
 is the static vector corresponding with 100 percent 

SpO2, α=100-SpO2 is the variable gain factor, and 𝑃⃗ 𝑏𝑣

𝜇
 is the update vector, which describes 

the relative SpO2 contrast, or in other words, the change in pulsatile amplitude as a function of 

SpO2 value. The specific static and update vectors we used for the three monochrome cameras 

were: 

𝑃⃗ 𝑏𝑣

𝑠
= (

1.00
0.56
0.42

)  and 𝑃⃗ 𝑏𝑣

𝜇
= (

−0.021
0.0013

−0.00032
),       (8) 

As observed in Equation (6), the values of the 𝑃⃗ 𝑏𝑣

𝑒
 vector depend on the selected wavelengths 

and the optical characteristics of the camera, and the PPG amplitude spectra can be linearly 

interpolated within a clinically relevant range of blood oxygenation levels. By linear 

interpolation, we varied SpO2 levels from 70 to 100 percent. These SpO2 levels yield to 𝑃⃗ 𝑏𝑣

𝑒
 

vectors that are applied to equation (5). The resulting weight matrices are then used to compute 

corresponding pulse signals in equation (3). To get the SpO2 level, the signal quality of these 

pulse signals is examined. A quality measure, determined by cross-spectral signal-to-noise ratio 

(SNR) and spectral peak correspondence, for each subregion’s pulse signal is calculated to 

prune distorted regions. Lower quality signals are discarded, and the remaining signals are 

further analyzed. The pulse signal with the highest SNR is traced back to a specific PBV vector, 

which is traced back to an SpO2 level by equation (7). This SpO2 level is the estimated blood 

oxygen saturation value. The step resolution of our current model for SpO2 estimation is 5%. 

As all the tested subjects are healthy volunteers, it is not possible to induce more than 5% 

decrease in the SpO2 level from the tested subjects. We obtained SpO2 results of 100% from 

four healthy volunteers with the ground truth values ranging from 96% to 100%. Our next step 



   

 

   

 

in the near future will focus on verifying the accuracy of the vital sign measurements from 

potential COVID-19 patients.  

 

Conclusion: 

We developed the VitalCam system to reliably facilitate contactless acquisition of vital sign 

parameters central to triaging and managing individuals with COVID-19 disease. The VitalCam 

system stands to not only conserve PPE but also curb transmission of infection by helping 

clinical staff to detect key vital sign abnormalities in a contactless manner. Our work, outlined 

above, demonstrates that a multicamera system comprising IR and monochrome cameras 

mounted on an agile mobile robot can successfully and reliably deliver vital sign measurements 

while navigating in complex clinical environments and maintaining safe distances. This 

platform can be deployed and scaled on a mobile robotic system to acquire important biometric 

data in various care scenarios during the COVID-19 pandemic. 
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Figure 1. COVID-19 Triage Tent at Brigham and Women’s Hospital. (a) medical tent for triage set 

outside of the emergency department of Brigham and Women’s Hospital. (b) Spot with IR camera for 

fever screening and respiratory rate detection on a healthy volunteer. (c) floor plan of the medical tent. 

 

  



   

 

   

 

 

Figure 2. Boston Dynamics Spot robot. (a) Spot carrying an IR camera for fever screening and respiratory 

rate detection. (b) Spot carrying iPad for tele-interview. (c) Dr. Spot carrying three monochrome cameras 

with different filter lenses and one IR camera as well as the iPad to enable contactless vital signs 

monitoring and telemedicine.   

  



   

 

   

 

 

Figure 3. (a) ROS GUI of the Dr. Spot for contactless vital signs monitoring. (b) Handheld controller of 

the Spot with vital signs measurement results. 

  



   

 

   

 

 

Figure 4. (a) Distance effect on the skin temperature reading using the IR camera. (b) Slope analysis of 

the distance effects versus ambient temperature. (c) Real-time correction of skin temperature reading. 

  



   

 

   

 

 

Figure 5. Face detection and tracking on IR images. Distance estimation using the variation in face 

bounding box dimension. The bounding box gets smaller as the distance between the measuring subject 

and camera increases.  

  



   

 

   

 

 

Figure 6. Real-time skin temperature compensation at various distance. (a) Measured and compensated 

skin temperature reading versus the distance between the camera and measuring subject. (b) IR images 

showing the difference in face skin temperature at 2.27 ft and 10.7 ft. (c) Mask wearing detection based 

on thermal images. Two ROIs, forehead and mask are taken into account.  

  



   

 

   

 

Figure 7. VitalCam Workflow. (a) Operating principle of facial video-based RR, HR, SpO2 estimation 

system using IR camera and monochrome cameras with three different wavelength filter. (b) Flowchart 

for extracting RR, HR, and SpO2 from facial images. 

  



   

 

   

 

 

Figure 8. Respiratory and Heart Rate Representative Evaluation. (a) RR waveform after applying a low 

pass filter. (b) Frequency spectrum of the RR signal by FFT. (c) PPG signal after applying PBV method. 

(d) Frequency spectrum of the PPG signal by FFT. 

 

 

 

  



   

 

   

 

 

Figure 9. The modeled relative PPG spectrum using the analytic approach by Svaasand et al.[11] 

for four SpO2 values. 
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