Randomized heuristic for the maximum clique problem

Shalin Shah !

! Johns Hopkins University

October 30, 2023

Abstract

A clique in a graph is a set of vertices that are all directly connected

to each other i.e. a complete sub-graph. A clique of the largest size is
called a maximum clique. Finding the maximum clique in a graph is an
NP-hard problem and it cannot be solved by an approximation algorithm
that returns a solution within a constant factor of the optimum. In this
work, we present a simple and very fast randomized algorithm for the
maximum clique problem. We also provide Java code of the algorithm

in our git repository. Results show that the algorithm is able to find
reasonably good solutions to some randomly chosen DIMACS benchmark

graphs. Rather than aiming for optimality, we aim to find good solutions

very fast.



Randomized heuristic for the maximum clique
problem

Shalin Shah
sshah100@jhu.edu

Abstract

A clique in a graph is a set of vertices that are all directly connected
to each other i.e. a complete sub-graph. A clique of the largest size is
called a maximum clique. Finding the maximum clique in a graph is an
NP-hard problem and it cannot be solved by an approximation algorithm
that returns a solution within a constant factor of the optimum. In this
work, we present a simple and very fast randomized algorithm for the
maximum clique problem. We also provide Java code of the algorithm
in our git repository. Results show that the algorithm is able to find
reasonably good solutions to some randomly chosen DIMACS benchmark
graphs. Rather than aiming for optimality, we aim to find good solutions
very fast.

Keywords:maximum clique, randomized algorithm, fast heuristic, approxima-
tion algorithm, k-opt moves, local search, open source, Java, random restart

1 Introduction

The maximum clique problem is one of the harder NP-hard problems in graph
theory. It has applications in several domains like computer science, recom-
mender systems and operations research. A clique is a complete sub-graph
i.e. all vertices are connected to all other vertices. A maximum clique is a
clique of maximum size. A graph may have more than one maximum cliques.



A clique is a lower bound on the chromatic number in a graph coloring problem.

The maximum clique problem is a well studied problem. [I] and [2] are good
beginning articles to read about this problem. This work [3] provides a fast
algorithm and presents results for several DIMACS graphs. This work [4] is a
survey on maximum clique algorithms.

Rather than aiming at finding the maximum clique, this randomized algorithm
tries to find large cliques that can be used further in other algorithms. For
instance, this algorithm is used in [5] as a first step in an algorithm to color a
graph, with really good results. We also present Java code in the following git
repository [6]:

https://github.com/shah314/clique2

If optimality is important, we refer the reader to the following implementa-
tion [7]:

https://github.com/shah314/clique

2 Methods

A graph G(V, E) is a set of nodes V and a set of edges E. Each edge in E
connects two vertices. A graph can be implemented in an adjacency matrix or
an adjacency list format. We use a list format which makes the implementation
more amenable to very large graphs.

We first read the DIMACS graph and then sort the vertices in decreasing or-
der of the node degrees. A degree of a node is the number of nodes in its
neighborhood. Then, we initialize a clique with the node with the highest de-
gree. Then, in the immediate neighborhood of the first vertex, we complete
the clique iteratively by adding vertices in the induced sub-graph of the reach of
the nodes already in the clique in decreasing order. Call this initial clique gBest.

Then, we randomly remove 2 nodes from the clique and then greedily com-
plete the clique. If the new clique is larger, update gBest. These can be called
2-opt moves.

Then, for each vertex in the graph, we perform 1l-opt moves to improve the
clique.

As the results section shows, the algorithm is able to find good solutions to
randomly chosen DIMACS instances.


https://github.com/shah314/clique2
https://github.com/shah314/clique

Table 1: Results obtained by running the algorithm [6] on some DIMACS in-
stances

Instance Nodes Edges Best This Work
Known

p__hat1500-3 1500 847244 94 93

(C2000.5 2000 999836 16 15

p_ hat700-1 700 60999 11 9

C500.9 500 112332 57 53

brock800 4 800 207643 26 19

gend00 p0.9 75 400 71920 75 50

3 Results

Table 1 shows the results of running the code on a random sample of DIMACS
graphs. As the results show, the Java implementation is able to find reasonably
good cliques, very fast, for almost all of the instances. The algorithm can be
used to find good cliques for very large graphs as we use an adjacency list format
of storing a graph.

4 Conclusion

In this work, we presented a simple fast randomized search heuristic to compute
good large cliques in fairly large graphs. It is not the goal of this work to find
maximum cliques. Rather, the goal is to find large maximal cliques for use in
further applications. For example, [5] uses our algorithm as a first step in an
algorithm to find the chromatic number of a graph, as the clique number can
be seen as a lower bound on the chromatic number. We also present Java code
of our algorithm which is simple and easy to use.

References

[1] Panos M Pardalos and Jue Xue. The maximum clique problem. Journal of
global Optimization, 4(3):301-328, 1994.

[2] Immanuel M Bomze, Marco Budinich, Panos M Pardalos, and Marcello
Pelillo. The maximum clique problem. In Handbook of combinatorial opti-
mization, pages 1-74. Springer, 1999.

[3] Patric R.J. Ostergard. A fast algorithm for the maximum clique problem.
Discrete Applied Mathematics, 120(1):197 — 207, 2002. Special Issue devoted
to the 6th Twente Workshop on Graphs and Combinatorial Optimization.



[4] Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique
problems. European Journal of Operational Research, 242(3):693 — 709, 2015.

[5] Shalin Shah. Jeol: A java package for solving the graph coloring problem.
Journal of Open Source Software, 5(48):1843, 2020.

[6] https://github.com/shah314/clique2.

[7] Shalin Shah. Gelique: A genetic algorithm for the maximum clique problem
in java, 2014.



	Introduction
	Methods
	Results
	Conclusion

