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Abstract

Control barrier function (CBF) based Quadratic Programs (QPs) were introduced in early 2014 as a means to guarantee safety

in affine control systems in conjunction with stability/tracking. However, due to the presence of model-based terms, they fail

to provide guarantees under model perturbations. Therefore, in this paper, we propose a new class of CBFs for robotic systems

that augment kinetic energy with the traditional forms. We show that with torque limits permitting, and with the kinematic

models accurately known, forward invariance of safe sets generated by kinematic constraints (position and velocity) can be

guaranteed. The proposed methodology is motivated by the control Lyapunov function (CLF) based QPs that use the kinetic

energy function. By the property of CBF-QPs, we show that the pointwise min-norm control laws obtained are feasible and

Lipschitz continuous, and can be derived analytically via the KKT conditions. In order to include stability with safety, we also

augment CLF based constraints in the CBF-QPs to realize a unified control law that allows tracking with safety irrespective of

the inertial parameters of the robot. We will demonstrate the robustness of this class of CBF-QPs in two robotic platforms: a

1-DOF and a 2-DOF manipulator, by scaling the masses by up to 100, and then simulating the resulting dynamics.
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Energy based Control Barrier Functions for Robotic Systems

Shishir Kolathaya1

Abstract— Control barrier function (CBF) based Quadratic
Programs (QPs) were introduced in early 2014 as a means
to guarantee safety in affine control systems in conjunction
with stability/tracking. However, due to the presence of model-
based terms, they fail to provide guarantees under model
perturbations. Therefore, in this paper, we propose a new
class of CBFs for robotic systems that augment kinetic energy
with the traditional forms. We show that with torque limits
permitting, and with the kinematic models accurately known,
forward invariance of safe sets generated by kinematic con-
straints (position and velocity) can be guaranteed. The proposed
methodology is motivated by the control Lyapunov function
(CLF) based QPs that use the kinetic energy function. By the
property of CBF-QPs, we show that the pointwise min-norm
control laws obtained are feasible and Lipschitz continuous,
and can be derived analytically via the KKT conditions. In
order to include stability with safety, we also augment CLF
based constraints in the CBF-QPs to realize a unified control
law that allows tracking with safety irrespective of the inertial
parameters of the robot. We will demonstrate the robustness of
this class of CBF-QPs in two robotic platforms: a 1-DOF and
a 2-DOF manipulator, by scaling the masses by up to 100, and
then simulating the resulting dynamics.

I. INTRODUCTION

Due to the ever increasing requirement for safety, there is
a push for realizing real-time control laws that guarantee
safety limits in robotic systems. Some of the examples
include position limits, angle and velocity limits of joints
of manipulators, hip velocity of bipeds, velocity limits of
autonomous vehicles and other platforms. Enforcing these
limits in the form of constraints in quadratic programs
(QPs) is one of the popular choices used currently [1], [22].
They are realized via the control barrier functions (CBFs)
[2], and the constraints obtained from these functions are
necessary and sufficient for set-invariance. However, they
are not robust to modeling uncertainties. In other words, the
safety constraints are violated even for a small change in the
model parameters.

In order to improve robustness to modeling and sens-
ing uncertainties, different types of QP based control laws
have been proposed over the last few years: using adaptive
techniques [18], learning techniques [19], and also using
the notion of input-to-state safety [12]. With a view toward
providing robustness in robotic systems, [16] demonstrated
a novel approach in QPs that can handle both stability and
safety in the presence of high levels of model uncertainty. In
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1S. Kolathaya is an Assistant Professor of the Robert Bosch Centre
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particular, under the assumption of bounded uncertainty, the
proposed controller uses two constraints to strictly guarantee
safety. This was demonstrated in dynamic walking of a
bipedal robot while carrying an unknown load, subject to
precise foot-step location constraints. However, as this un-
certainty is state-dependent, its upper bound can dynamically
change with the state values. While this limitation can be
overcome by choosing a compact statespace, our goal is to
generalize this formulation to obtain a robust QP that has no
state dependent bounds.

The approach used in this paper is mainly based on the
fact that robotic systems have specific properties that can
be utilized. Unlike a general nonlinear dynamical system,
we know that robotic systems have kinetic energy. With this
property, we construct a new class of control barrier functions
(CBFs) that enable us to construct robust QPs for ensuring
safety for a broad range of model parameter perturbations.
Additional properties are also utilized, and are described in
the paper (see Properties 1 and 2 further ahead). We will
study two types of constraint functions a) that depend on the
configuration q, called the position based constraints, and b)
that depend on both configuration and velocity q, q̇, called
the velocity based constraints. Examples for position based
constraints are space limits, angle limits, and task space
position constraints. Examples for velocity based constraints
are velocity limits and task space velocity constraints. These
constraints are incorporated in the reciprocal form of CBFs
described in [2]. The resulting min-norm QP with the CBF
based constraint has a closed form solution that is feasible
and Lipschitz continuous w.r.t. the state. In addition, we
augment CLF based constraints with this class of QPs to
yield a multi-objective control law that combines tracking
and safety.

It is worth noting that there is a specific class of Lyapunov
functions widely used for establishing stability results for
PD controlled robotic systems [3], [10]. Specifically, these
Lyapunov functions have kinetic energy, which allow for
a model-free QP formulation for a broad range of track-
ing applications [13]. It was shown in [13] that ultimate
boundedness with desirable bounds can be guaranteed even
if the inertial parameters are scaled by 200%. This was
demonstrated for a broad class of robotic systems including
the cart-pole, manipulators, and bipeds. Motivated by this
observation, in this paper, we explore this idea of augmenting
kinetic energy with control barrier functions (CBFs) to
realize robust CBF based QPs. The traditional form of CBFs,
called the reciprocal control barrier functions shown in [2]
are augmented with the kinetic energy terms to realize a new
class of CBFs for robotic systems.



The paper is structured as follows. We will start with a
brief description of the robot model along with its properties
in Section II. In the same section, we will also provide a
brief preliminary on control barrier functions (CBFs) used for
nonlinear dynamical systems. Specifically, reciprocal control
barrier functions (RCBFs) introduced in [1] will be studied in
detail. Having described the RCBFs, we will make extensions
for robotic systems by including the kinetic energy or its
variant in Section III and Section IV. Specifically, we define
this new class of CBFs for position (relative degree two)
constraints in Section III, and for velocity (relative degree
one) constraints in Section IV. Augmentation of the CLF
based terms with CBF based terms to yield robust QPs for
ensuring both stability and safety will be discussed in Section
V. Finally, in Section VI, these QPs will be validated on
two robot models in simulation: a 1-DOF and a 2-DOF
manipulator.

Notation. Let R denote the set of real numbers and Rn de-
note the Euclidean space of dimension n. An open Euclidean
ball of radius r > 0 centered at x ∈ Rn is denoted by Br(x).
For any x ∈ Rn, the Euclidean norm is denoted by |x|, and
for any matrix A ∈ Rn×m, the matrix norm is represented
by ‖A‖. Given a symmetric matrix A ∈ Rm×m, we denote
its minimum and maximum eigenvalues as λmin(A),λmax(A)
respectively. A continuous function α : R≥0 → R≥0 is said
to belong to class K if it is strictly increasing and α(0) = 0.
We say that a function h : Rn → Rm is locally Lipschitz at
x ∈ Rn if there exist constants L > 0 and r > 0 such that
‖h(y)−h(x)‖ ≤ L‖y− x‖ for all y ∈ Br(x).

II. ROBOT MODEL AND SAFETY CRITICAL CONTROL

The main goal of this section is to study the generic
formulations of control barrier functions for robotic systems,
and the associated quadratic programming (QP) formulation
that ensures forward invariance of a safe set. We will start
with the modeling of a robotic system.

A. Robot model

Consider an n-DOF fully actuated rigid robotic system
with the configuration manifold Q. Let the configuration of
the robot be denoted by q ∈ Q, and let q̇ ∈ TqQ be the rate-
of-change of the configuration q. Further, let the state of the
system be denoted by x := (q, q̇) ∈ T Q, where T Q is the
tangent bundle of Q. Then, the Euler-Lagrangian dynamics
of the robotic system is given by

D(q)q̈+C(q, q̇)q̇+G(q) = u, (1)

where D(q) ∈ Rn×n is the positive definite inertia matrix,
C(q, q̇) ∈ Rn×n is the Coriolis-centrifugal matrix, G(q) ∈ Rn

is the vector of gravity terms, u ∈ U = Rn is the vector
of control inputs. The dynamics (1) can alternatively be
expressed in the state-space form as

ẋ = f (x)+g(x)u, (2)

where f ,g are appropriately obtained. We assume that the
choice of q is such that the mapping of the control inputs

to the coordinates is one-to-one, i.e., the inputs are non-
interacting. We have the following properties for D,C,G [5]:

Property 1: D is symmetric positive definite, and Ḋ−2C
is skew-symmetric. In addition, there exist positive constants
cl , cu, such that for any (q, q̇) ∈ T Q,
• cl ≤ ‖D(q)‖ ≤ cu
• cl ≤ ‖D−1(q)‖ ≤ cu
• ‖Ḋ(q)‖ ≤ cu|q̇|
• ‖C(q, q̇)‖ ≤ cu|q̇|
• |G(q)| ≤ cu.

The class of robots that satisfy this property is described
in [5], [6]. For example, this is true for serial manipulators
with all of their prismatic joints preceding the revolute joints.
Even for the prismatic joints, like in spring deflections, we
know that these deflections are usually restricted by hard-
stops. This allows us to include a larger class of mechanical
systems. Proof of this property can be found in [5] (for D),
[7] (for C), and in [6] (for G).

Given the robotic system described by (1) along with the
associated properties, we know that the kinetic energy is

E(x) :=
1
2

q̇T D(q)q̇. (3)

The main focus in this paper is to use this energy function
for construction of robust safety-critical control laws. To this
end, we will now describe the notion of safety.

B. Safety as forward invariance of a set

For a Lipschitz continuous control law k : T Q→ Rn, we
obtain the closed loop dynamics of (2) as

ẋ = fcl(x). (4)

Given an initial condition x0 := x(t0) ∈ T Q, there exists a
maximum time interval I(x0) = [t0, tmax) such that x(t) is
the unique solution to (4) on I(x0); in the case when (4) is
forward complete, tmax =∞. A set S⊂Rn is forward invariant
w.r.t. (4) if for every x0 ∈ S, x(t) ∈ S for all t ∈ I(x0). If S is
forward invariant, then we call the set S safe.

Given a closed set C⊂ T Q, we determine conditions such
that it is forward invariant. C is defined as

C= {x ∈ T Q : h(x)≥ 0}, (5)
∂C= {x ∈ T Q : h(x) = 0}, (6)

Int(C) = {x ∈ T Q : h(x)> 0}, (7)

where h : T Q→ R is a continuously differentiable function.
It is assumed that Int(C) is non-empty and C has no isolated
points, i.e., Int(C) 6= /0, and Int(C) = C.

When the set C is forward invariant under the natural
dynamics of the system, ẋ = f (x), we are interested in the
controller, k : T Q→Rn, that can be specified that will ensure
invariance of C. We call this controller a safeguarding con-
troller w.r.t. the set C. We can obtain a suitable safeguarding
controller via control barrier functions (CBFs), which is
explained next.



C. Control barrier functions

For the set C, we have the following definition of a
reciprocal control barrier function (RCBF) [2].

Definition 1: Given a set C⊂ T Q defined by (5)-(7) for a
continuously differentiable function h : T Q→R, the function
B : Int(C) → R is called a reciprocal control barrier
function (RCBF) defined for the set C, α1,α2,α3 ∈ K[0,a)
such that for all x ∈ Int(C),

1
α1(h(x))

≤ B(x)≤ 1
α2(h(x))

(8)

LgB(x) = 0 =⇒ L f B(x)< α3(h(x)). (9)

Here L f B, LgB are the Lie derivatives of B w.r.t. f ,g. This
definition is obtained from [9] and it is assumed that there
are no restrictions on u. Note that, in the original definition
of RCBF in [2], it was sufficient to satisfy the following
inequality:

inf
u∈Rn

[
L f B(x)+LgB(x)u

]
≤ α3(h(x)), (10)

instead of the condition (9). The strict inequality sign in (9) is
essential to show that the universal formulas [4, 4.19] based
on such an RCBF are continuous, and this is independent
of the non-strict constraint inequalities typically used in the
QP formulation. More details on the relationship between
the QPs and the continuity requirements are provided in [9].
Given the RCBF of the form, we know by [4, 4.19] that the
following QP:

u∗(x) = argmin
u

uT u (QP)

s.t. L f B(x)+LgB(x)u≤ α3(h(x)),

not only yields a Lipschitz continuous control law, but also
renders the set Int(C) forward invariant [2, Corollary 1]. This
control law is, in fact, known as the pointwise min-norm
control law, and can be obtained in closed form as:

u∗(x) =

{
−ψ0(x)ψ1(x)T

ψ1(x)ψ1(x)T , when ψ0(x)> 0
0, when ψ0(x)≤ 0

, (11)

where ψ0(x) = L f B(x)−α3(h(x)) and ψ1(x) = LgB(x).
It is worth noting that there is one more class of functions

defined in [2] called the zeroing control barrier functions
(ZCBFs), which will not be studied in this paper. We are
studying only RCBFs in the paper, which will henceforth be
called simply as a control barrier function (CBF) B.

III. SAFETY OF POSITION BASED CONSTRAINTS

In this section, we will study position based barrier func-
tions, which are obtained from relative degree two constraint
functions h with ∂h(x)

∂ q̇ ≡ 01. As a prelude to the main result,
we will first establish the following.

Lemma 1: Given a set C ⊂ T Q defined by (5)-(7) for a
continuously differentiable function h : T Q→R with relative
degree two, i.e., h is two times differentiable and Lgh(x)≡ 0,

1Some of the velocity based constraints are relative degree two e.g.,
nonholonomic systems. This type of constraints will be studied elsewhere.

∀ x ∈ Int(C), then for a constant Hmax > 0, and a continu-
ously differentiable function H : Int(C)→ R≥0 satisfying

(i)0≤ H(x)≤ Hmax,∀x ∈ Int(C) (12)

(ii)
∂H(x)

∂ q̇
= 0 ⇐⇒ q̇ = 0, (13)

the function Bp : Int(C)→ R defined by

Bp(x) =
1

h(x)
+H(x), (14)

is an RCBF defined for the set C.

Lemma 1 is obtained by slightly modifying [2, Proposition
4], which was mainly used for high relative degree constraint
functions. Our modification is specific to the class of robotic
systems, where the configuration velocity q̇ is used. The
proof is provided below.

Proof: Proof is similar to [2, Proof of Proposition 4].
For all x ∈ Int(C), we have that

1
h(x)

≤ Bp(x)≤
1

h(x)
+Hmax, (15)

and thus
1

α1(h(x))
≤ Bp(x)≤

1
α2(h(x))

, (16)

where α1(ξ ) := ξ and

α2(ξ ) :=

{
0, if ξ = 0
1

1
ξ
+Hmax

, if ξ > 0 (17)

are both class K functions. Thus condition (8) is satisfied.
We also have that

LgBp = 0 =⇒ q̇ = 0 =⇒ L f Bp =−α3(h(x))< 0, (18)

for all x ∈ Int(C). This completes the proof.

As mentioned previously, a suitable candidate for H is
obtained by using the kinetic energy function E(x) (3):

H(q, q̇) :=
E(q, q̇)

1+E(q, q̇)
, (19)

and it can be verified that both the conditions (12), (13) are
satisfied. Therefore the function Bp (14) with H defined by
(19) is a valid RCBF. More importantly, the derivative of Bp
simplifies to the following:

Ḃp(q, q̇,u) =−
L f h(q, q̇)

h(q)2 +
q̇T (u−G(q))
(1+E(q, q̇))2 , (20)

and since Ḃp(q, q̇,u) satisfies (9), we know that the resulting
min-norm control law (QP) renders the set Int(C) safe (i.e.,
forward invariant). It is worth noting that (20) does not
require the knowledge of the Coriolis-centrifugal matrix C.
Therefore, with the knowledge of the inertia and gravity
terms, safety guarantees can be provided.

Since our ultimate goal is realize a model-free QP, we can
replace E(x),G(q) by their extreme values:

cl |q̇|2 ≤ E(x)≤ cu|q̇|2, −cu|q̇| ≤ q̇T G(q)≤ cu|q̇|, (21)



which are obtained by using Property 1. Based on the sign of
q̇T u, appropriate bounds (lower or upper) must be substituted
in (20). This results in two constraints similar to (QP) instead
of one. This formulation is, in fact, similar to [17, eqns. (37),
(38)], where a single constraint function with unknown terms
is replaced with two constraints with their extreme values.
We have the following two inequalities:

ψ00(x)+ψ01(x)u≤ 0 (22)
ψ10(x)+ψ11(x)u≤ 0, (23)

where

ψ00(x) = ψ10(x) =−
L f h(x)
h(x)2 +

|q̇|cu

(1+ cl |q̇|2)2 −α3(h(x))

ψ01(x) =
1

(1+ cl |q̇|2)2 q̇T

ψ11(x) =
1

(1+ cu|q̇|2)2 q̇T . (24)

Accordingly, we define the point (state) to set mapping with
these two constraints as

Kpcbf(x) :=
{

u ∈ Rn : (22), (23) are true.
}
. (25)

We will now show that any control k(x) belonging to the set
Kpcbf(x) guarantees safety of Int(C).

Theorem 1: Given a set C⊂ T Q defined by (5)-(7) for a
continuously differentiable function h : Rn→R with relative
degree two, then for all classes of Lipschitz continuous
control laws k : T Q→ R≥0 belonging to the set Kpcbf given
by (25), the set Int(C) is forward invariant.

Proof: Given the control law k(x) ∈Kpcbf(x), the goal
is to show that

Ḃp(x,k(x))≤ α3(h(x)). (26)

If q̇ = 0, then the inequality (26) is satisfied. When q̇ 6=
0, then we have the following two cases: q̇T k(x) > 0 and
q̇T k(x)≤ 0. For the former case, we have that

Ḃp(x,k(x))≤ ψ00(x)+ψ01(x)k(x)≤ α3(h(x)), (27)

and similar procedure follows for the latter case. This com-
petes the proof.

Theorem 1 shows that the set Kpcbf yields the class of
controllers that that guarantee forward invariance of Int(C).
However, this theorem does not yield a Lipschitz continuous
control law k(x) explicitly. To this end, we have the following
result.

Corollary 1: The QP of the form

u∗(x) = argmin
u

uT u (PQP)

ψ10(x)+ψ11(x)u≤ 0, (PC)

is feasible and yields a Lipschitz continuous control law. In
addition, the control u∗(x) obtained from (PQP) renders the
set Int(C) forward invariant.

Note that only one constraint is used in the QP above. Hence,
Corollary 1 shows that one only model-free constraint is

sufficient to obtain a Lipschitz continuous control law that
belongs to the set Kpcbf. The proof is given below.

Proof: Based on the KKT conditions, there are two
possible scenarios:

1 (PC) is inactive: ψ00 < 0, which yields u∗(x) = 0.
3 (PC) is active: ψ11u∗ =−ψ00 ≤ 0.

Hence, we have the control law:

u∗(x) =

{
0, when ψ00(x)< 0

−ψ00(x)ψ11(x)T

ψ11(x)ψ11(x)T , when ψ00(x)≥ 0
, (28)

which is Lipschitz continuous by the property of Bp(x).
To establish the last part, we first note that ψ01,ψ11 only

differ by the scaling. In addition, based on (24), we know that
ψ01u∗ > ψ11u∗ > 0. This implies that if (PC) is active then
the first constraint in the set Kpcbf is satisfied when ψ00 > 0.
Hence, both the constraints in the set Kpcbf are satisfied. This
completes the proof.

IV. SAFETY OF RELATIVE DEGREE ONE CONSTRAINTS

Having established a model-free QP for position con-
straints (PQP), we will now focus our attention on velocity
constraints, i.e., relative degree one constraints. The key
methodology is to obtain appropriate energy type functions
for velocity constraints. For example, if a velocity constraint
is imposed on one of the joints: q1 (say), we then have the
constraint function as

h(x) := vd− q̇1, (29)

where vd is the maximum limit on the velocity. It is worth
noting that generalized versions of velocity constraints like

h(x) := vd− Jv(q)q̇, (30)

where Jv : Q → R is the linear map from q̇ to desirable
velocity functions, can also be included. Here, it is assumed
that the constraint is linear w.r.t. q̇. This is a fair assumption
for kinematic velocity constraints. For example, the end-
effector velocity can be expressed as the Jacobian J(q)
times the configuration velocity q̇. By appropriate coordinate
changes, we can reformulate (30) to the form (29). The
resulting dynamics after the coordinate change will still be of
the form (1) satisfying Property 1 locally. However, this co-
ordinate change must exist, and must be a diffeomporphism
(to avoid singular configurations). We will demonstrate this
transformation for the 2-DOF manipulator in Section VI.
The interested reader may see [15, Chapter 4, Section 5.4]
for details on the coordinate change and the corresponding
properties. For the rest of this section, we will stick with the
velocity constraint of the form (29).

Having obtained the constraint (29), the next steps involve
separating the robotic dynamics (1) into two parts:

D11(q)q̈1 +D12(q)q̈2 +C1(q, q̇)q̇+G1(q) = u1

D21(q)q̈1 +D22(q)q̈2 +C2(q, q̇)q̇+G2(q) = u2, (31)

where the terms corresponding to D,C,G,u are apparent
from the setup. q1, q2 form the configuration q= (q1,q2) i.e.,



if q1 is the first element in the tuple q, then the remaining
elements are combined to form the tuple q2. q̈2 can be
eliminated from (31) to obtain

(D11−D12D−1
22 D21)︸ ︷︷ ︸

Ds

q̈1 +(C1−D12D−1
22 C2)︸ ︷︷ ︸

Cs

q̇ (32)

+G1−D12D−1
22 G2︸ ︷︷ ︸

Gs

= u1−D12D−1
22 u2,

where Ds is nothing but the Schur complement form, and it
is known to be symmetric positive definite [14, Proposition
1]. This matrix also has the following additional properties.

Property 2: There exist positive constants cl ,cu such that
∀ (q, q̇) ∈ T Q,
(a) cl ≤ ‖Ds(q)‖ ≤ cu
(b) cl ≤ ‖D−1

s (q)‖ ≤ cu
(c) ‖Ḋs(q, q̇)‖ ≤ cu|q̇|
(d) ‖Cs(q, q̇)‖ ≤ cu|q̇|
(e) ‖Gs(q)‖ ≤ cu

Note that we have used the same constants cl ,cu for ease of
notations. Proof of Proposition 2 is in [14, Appendix A].

With the reduced dynamics (32), we define a new con-
straint as

hv(x) :=
1
2

h(x)Ds(q)h(x), (33)

and the corresponding CBF can be defined as Bv(x) :=
1/hv(x). If hv = 0, then vd = q̇1, which is the boundary of
the safe set C. Note that hv(x) ≥ 0 for all x, which is akin
to a kinetic energy form with Ds being the inertia matrix.
However, with this new CBF, the goal remains the same,
i.e., the set Int(C) must be forward invariant. Hence, even if
hv is non-negative, the sign of h will not change unless the
solution hits the boundary of C. Therefore, we can continue
to use Ḃv for the formulations similar to (QP). Accordingly,
we have the dynamics of Bv(x) as

Ḃv(x) =−
1

hv(x)2

(
1
2

h(x)Ḋs(q)h(x)−h(x)Ds(q)q̈1

)
, (34)

and by using (32), we have

Ḃv =−
1
h2

v

(
1
2

hḊsh+h(Csq̇+Gs)−hu1 +hD12D−1
22 u2

)
.

(35)

Similar to (QP), we can realize a QP formulation for the
velocity constraint Bv. However, a model-free version of this
QP requires the elimination of D12D−1

22 . Hence, if we choose
u2 = 0, we can define a new state to set mapping Kvcbf :
T Q⇒Rm similar to (25). By using the same notations as in
(22), (23), ψ00,ψ01,ψ10,ψ11 can now be redefined as

ψ00 = ψ10 =
cu

c2
l h3

(
1
2

h|q̇|+ |q̇|2 +1
)
−α3(h)

ψ01 =
1

c2
l h3 , ψ11 =

1
c2

uh3 . (36)

Having defined this set, we have the following result similar
to Theorem 1.

Theorem 2: Given a set C⊂ T Q defined by (5)-(7) for a
continuously differentiable function h : Rn→R with relative
degree two, then for all classes of Lipschitz continuous
control laws k : R2n → R≥0 belonging to the set Kvcbf, the
set Int(C) is forward invariant.

Proof of this theorem is not necessary, as it is similar to Proof
of Theorem 1. If u2 is included, then the resulting set Kvcbf
will consist of model based terms D12 and D22. To realize a
model-free constraint, D12D−1

22 can be replaced by its rough
estimate. Let this estimate be denoted by D̂12D̂−1

22 . Inclusion
of these terms in ψ01,ψ11 in (36) yields the new state to set
mapping. However, due to the difference between the real
and estimated inertia terms D, D̂, safety guarantees cannot
be ensured with the constraints obtained via (36). In the
following result, we show a min-norm QP formulation with
the modified constraint, which includes the terms from D̂,
and guarantees safety irresepective of the model parameters
of the robot:

Corollary 2: Denote ψ̂v(x) :=−D̂12(q)D̂−1
22 (q), where the

symbol ∧ indicates the model estimate for D12,D22. Similarly,
choose a tunable constant 0< γ < 1. Then the QP of the form

u∗(x) = argmin
u

uT u (VQP)

1
γ

ψ10(x)+ψ11(x)
[
1 γψ̂v(x)

]
u≤ 0,

(VC)

is feasible, and yields a Lipschitz continuous control law. In
addition, there is a small enough γ such that the resulting
control u∗(x) obtained from (VQP) renders the set Int(C)
forward invariant.

Proof: Since h 6= 0 in the set Int(C), it can be verified
that ψ11 6= 0. Hence, the QP of the form (VQP) is feasible.
Therefore, we have a min-norm control law obtained similar
to (11). In particular, if ψ10 > 0, then we have that

u∗(x) =−
c2

uh(x)3 1
γ
ψ10(x)

1+ γ2|ψ̂v(x)|2

[
1

γψ̂v(x)T

]
, (37)

which is Lipschitz. The goal now is to establish forward
invariance of Int(C). In other words, we need to establish
that the input (37) ensures that the derivative of Bv (given
by (35)) satisfies

− 1
h2

v

(
1
2

hḊsh+h(Csq̇+Gs)

)
+

h
h2

v

[
1 ψv

]
u∗ ≤ α3(h),

(38)

where ψv(x) :=−D12(q)D−1
22 (q). (38) is satisfied if

ψ10(x)+
h(x)

hv(x)2

[
1 ψv(x)

]
u∗(x)≤ 0. (39)

Above equation is satisfied when ψ10 ≤ 0. When ψ10 > 0,
we can substitute (37) to obtain

ψ10(x)−
c2

uh(x)3 1
γ
ψ10(x)

1+ γ2|ψ̂v(x)|2
h(x)

hv(x)2

(
1+ γψv(x)ψ̂v(x)T ) . (40)



This can be simplified to obtain

ψ10(x)
(

1− 1
γ
− c2

uh(x)4

hv(x)2
ψv(x)ψ̂v(x)T − γ|ψ̂v(x)|2

1+ γ2|ψ̂v(x)|2

)
. (41)

We know that hv is quadratic in h, and ψv, ψ̂v are always
bounded. Therefore, by choosing a small enough 0 < γ <
1, we can ensure that the above expression is ≤ 0. This
completes the proof.

V. ALTERNATIVE FORMULATIONS WITH STABILITY
CONSIDERATIONS

The goal of this section is to incorporate tracking con-
straints along with the CBF based constraints, which results
in multi-objective QP formulations. We will be specifically
using control Lyapunov function (CLF) based constraints for
realizing tracking of desired trajectories.

Choose a desired position qd ∈ Rn. The error is defined
as e(q) = q− qd . With this error, we have the change of
variables for the state coordinates η(x) := (e(x), ė(x)). The
CLF is formally defined as follows.

Definition 2: A continuously differentiable function V :
R2n → R≥0 is said to be a control Lyapunov function
(CLF), if there exist α1,α2,α3 ∈ K[0,a) such that for all
x ∈ T Q,

α1(|η(x)|)≤V (η(x))≤ α2(|η(x)|) (42)
LgV (η(x)) = 0 =⇒ L fV (η(x))<−α3(|η(x)|). (43)

Similar to the CBF constraints used in (QP), a CLF based
constraint can be obtained from (43) in the following manner:

L fV (x)+LgV (x)u≤−α3(|η |). (44)

Note that since η is a function of x, we have used x instead of
η(x) as arguments for V . This can be included as a constraint
in the QP to yield a stabilizing control law. However, since
the goal here is to realize a model-free QP, PD based QPs
[13] i.e., CLF-QPs inspired by PD control laws will be used.
This CLF is defined below:

Ve(e, ė,q) = V0(e, ė,q)+Vc(e, ė,q) (45)

V0(e, ė,q) =
1
2

[
e
ė

]T [Kp 0
0 D

][
e
ė

]
(46)

Vc(e, ė,q) = α(e)eT D(q)ė (47)

α(e) =
k0

1+ |e|
=

k0

1+
√

eT e
. (48)

Kp is a constant matrix to be defined later (see (52)). It can
be verified that Ve is positive definite. The addition of the
cross terms Vc does not affect the positive definiteness as
long as k0 is sufficiently small. For example, we can pick k0
that satisfies

k0 ≤
√
‖Kp‖‖D‖
‖D‖

. (49)

Therefore, we can choose

k0 =

√
kp

N
, where N > ‖D‖

1
2 . (50)

It is worth noting that this is the template Lyapunov function
used to establish stability of PD controlled robotic systems
[21], [14], [11]. The PD control law is of the form

upd(e, ė) =−Kpe−Kd ė, (51)

where the proportional and derivative gains Kp,Kd ∈ Rn×n

are tuned to track the desired trajectory. It was established
that ultimate boundedness of the tracking error can be
guaranteed with large enough PD gains [21]. Hence, the PD-
QPs are based on this result. By using the derivative of Ve, we
obtain the following constraint that guarantees boundedness
of e (see [13, Theorem 1] for more details):

(α(e)eT + ėT )︸ ︷︷ ︸
ψ1,cl f (x)

u≤−(α(e)eT + ėT )(Kpe+Kd ė)︸ ︷︷ ︸
ψ0,cl f (x)

. (52)

With this constraint, we obtain the following QP formulation
that combines stability (via CLF) and safety (via CBFs)
to yield a unified control law that guarantees either both
stability and safety or prioritize safety over stability in
robotic systems:

(u∗(x),δ ∗(x)) = argmin
u

uT u+ pδ
2 (MFQP)

s.t. ψ0,cl f (x)+ψ1,cl f (x)u≤ δ (53)
ψ00,cb f (x)+ψ01,cb f (x)u≤ 0 (54)
ψ10,cb f (x)+ψ11,cb f (x)u≤ 0. (55)

Here p > 0 is the penality. Depending on the constraints
being position or velocity based ψXX,cb f ,ψXX,cb f in (54),
(55) can be one of the following columns:

Term Position constraint Velocity constraint
ψ00,cb f = ψ00, from (24) 1

γ
ψ00, from (VC), (36)

ψ01,cb f = ψ01, from (24) ψ01
[
1 γψ̂v

]
, from (VC), (36)

ψ10,cb f = ψ10, from (24) 1
γ

ψ10, from (VC), (36)
ψ11,cb f = ψ11, from (24) ψ11

[
1 γψ̂v

]
, from (VC), (36)

TABLE I: Table showing the parameters used for the QP
formulation given by (MFQP).

Note that, unlike in Corollaries 1 and 2, we have incorpo-
rated two safety constraints instead of one. This is necessary,
as the CLF constraint (53) influences the solution for (PC).
Hence, the solution u∗(x) may satisfy (54) but not (55), and
vice versa. With this new form of QP (MFQP), we have the
following result.

Theorem 3: The QP of the form (MFQP) is feasible and
yields a Lipschitz continuous control law in every compact
subset of Int(C).

Proof: We will not consider the case when all the
constraints are inactive (for which the solution is zero).
In addition, we know that (54), (55) are simultaneously
active only if u∗(x) = 0. Otherwise, if (54) is active, then
(55) is inactive, and vice versa. Hence, we will study only
the following three cases: (a) (53) is active, (54), (55) are
inactive, (b) (53) is inactive, and one of (54), (55) is active,
and (c) (53) and one of (54), (55) are active. We will study
the three cases below:



Fig. 1: Left figure is showing the simple pendulum, where
the goal is to ensure that it is above the dashed line. Right
figure shows a two-link manipulator arm, where the goal is
to ensure that its end-point (end-effector) is inside the square
dashed box. We will also demonstrate safety of velocity
based constraints on these two models. It is assumed that
the kinematic model is accurately known, but the masses are
not accurately known.

(a) When (53) is active, we have the solution for u∗(x) and
δ ∗(x) from the pointwise min-norm controller:

(u∗(x),δ ∗(x)) =−
ψ0,cl f (x)

|ψ1,cl f (x)|2 + 1
p

[
ψ1,cl f (x)T

− 1
p

]
(56)

(b) When either (54) or (55) is active, we have the solution
for u∗(x) given by (37), and δ ∗(x) = 0.

(c) When both the CLF, CBF constraints are active, we have
the solutions as

(u∗(x),δ ∗p (x)) =−A(x)T (A(x)A(x)T )−1b(x), (57)

with δ ∗(x) = δ ∗p (x)/
√

p. Here A,b are given by

A(x) =

[
ψ1,cl f (x) − 1√

p
ψX1,cb f (x) 0

]
, b(x) =

[
ψ0,cl f (x)

ψX0,cb f (x)

]
. (58)

To establish the continuity of the resulting control law, we
pick a compact subset of Int(C) and note that all of the
conditions of [8, Theorem 3.1] are satisfied. A detailed
analysis of the steps for a similar CLF-CBF-QP formulation
are provided in [9, Proof of Theorem 1].

In Theorem V, we establish Lipschitz continuity for compact
subsets of Int(C). While extending this result for the entire
Int(C) is possible for position based constraints (by using
Theorem 1), the velocity based constraints depend on the
terms used in CLF based constraints. This will be a subject
of future work.

VI. ILLUSTRATIVE EXAMPLES

The goal in this section is to analyze specific examples that
allow us to build an intuition for the robustness exhibited by
the various QPs proposed in this paper. We will study two
types of robot models a) a 1-DOF manipulator (pendulum),
and b) a 2-DOF manipulator (double pendulum). Both of
these models are depicted in Fig. 1.

A. Pendulum

In Fig. 1, the angle w.r.t. the vertical θ forms the config-
uration of the pendulum. The state is given by x = (θ , θ̇).
Suppose that the goal is to constrain the pendulum above

the horizontal i.e., |θ | ≤ π/2. In other words, we choose
the dashed lines in Fig. 1 to be horizontal. Two types of
QP formulations will be considered: one with a position
constraint, and another with a velocity constraint.

The dynamics of a simple pendulum of length L is:

mθ̈ − mg
L

sin(θ) = T, (59)

where g is acceleration due to gravity, m is the mass, and
u is the control input. Given the constraint function: h(θ) =
(π/2)2−θ 2, we have the control barrier function defined as

B(x) =
1

h(θ)
+

E(x)
1+E(x)

, E(x) =
1
2

mθ̇
2. (60)

Accordingly, we have the following dynamics for B(θ , θ̇):

Ḃ(x) =− ḣ(x)
h(θ)2 +

θ̇

(1+E(x))2

(
T+

mgsin(θ)
L

)
, (61)

the goal is to ensure that the following is satisfied for some
c > 0:

Ḃ(x)≤ ch(θ). (62)

If the upper bound on the mass m is known, then we need
to ensure that

Ḃ(x)≤− ḣ(x)
h(θ)2 + θ̇(T+ cu)≤ ch(θ), (63)

where cu is the upper bound obtained from Property 1. For
the QP shown as in (PQP), we have the following min-norm
control law:

T∗(x)=

 0 if − ḣ(x)
h(θ)2 − ch(θ)+ cuθ̇ < 0

ḣ(x)
h(θ)2θ̇

+ ch(θ)
θ̇
− cu otherwise

Note that if we wish to add more constraints, we can use
composition [20], and use the same energy formulation. In
the interest of space, we will demonstrate this constraint
formulation for the 2-DOF manipulator.

Suppose that the goal now is to constraint the velocity
h(x) = vd− θ̇ to be ≥ 0 for all time. We choose the barrier
function as

B(x) =
1

m(vd− θ̇)2
. (64)

We need to ensure that its derivative satisfies the following
inequality:

Ḃ(x) =
2(vd− θ̇)

(
T + mg

L sin(θ)
)

(m(vd− θ̇)2)2
≤ c(vd− θ̇), (65)

which ensures that h(x(t)) > 0 for all t. The model param-
eters can be replaced with suitable upper and lower bounds
to yield the following QP based control:

T∗(x)=
{

0 if 2cu− cc2
l (vd− θ̇)4 < 0

−cu +
1
2 cc2

l (vd− θ̇)4 otherwise

Table II shows the list of different parameter values used,
and results are shown in Fig. 2. Note that if we wish to add a
velocity constraint on the negative side, i.e., h(x) = θ̇−vd ≥
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Fig. 2: Figure showing the variation of torque and constraints for the position limit (left two) and the velocity limits (right
two) respectively. It can be verified that the constraints are satisfied even after the mass of the pendulum is increased from
0.1 kg to 10 kg.

Parameter Position constraint Velocity constraint
Mass (kg) 0.1, 1, 10 0.1, 1, 10
Length (m) 1 1

cl 0.1 0.1
cu 90 90
c 100 100

vd (velocity constraint) - 0.65

TABLE II: Table showing the parameters used for the
pendulum and for the QP formulation given by (PQP) and
(VQP).

0, where vd < 0, we can use the same energy formulation and
compose the two constraint functions [20]. The simulation
results for both the position and velocity constraints are
shown in Fig. 2. It can be verified that the mass was increased
from 0.1 kg to 10 kg, and the constraints were still satisfied.
Note that increasing the mass any further requires updating
of the parameter cu accordingly.

B. 2-DOF manipulator arm (double pendulum)

Fig. 1 shows a 2-DOF manipulator arm (double pendu-
lum), where the end-effector is required to be constrained in
a square box of length r. The lengths of the links (denoted
by l) are equal. The configuration is given by q = (q1,q2).
We first compute the x,y position of the end-effector:

xe(x) := l sin(q2)+ l sin(q1−q2)

ye(x) := l cos(q2)− l cos(q1−q2). (66)

Let the center of the square be at (xc,yc). Accordingly, we
have two constraint functions:

h1(x) =
(

r2

4
− (xe(x)− xc)

2
)

h2(x) =
(

r2

4
− (ye(x)− yc)

2
)
. (67)

By following the methods presented in [20], we use com-
position to combine the constraints: h(x) := h1(x)h2(x). We
accordingly have the barrier function given by (14) with the
kinetic energy augmented. With this new function, we obtain
the new QP formulation given by (PQP) accordingly.

For the 2-DOF manipulator, we will demonstrate QP
formulations with stability considerations, i.e., we include
a CLF based constraint for combining tracking and safety.
Since we would like to achieve tracking for the end-
effector position, we apply a change of coordinates: Φ(q) :=

[xe(q),ye(q)]. Accordingly, we obtain the derivative as[
ẋe(x)
ẏe(x)

]
= J(q)q̇, (68)

where J(q) is the Jacobian matrix. It must be noted that the
Jacobian J must be non-singular for this transformation to
be valid. We re-write the equations of motion of the 2-DOF
manipulator as

De(q)
[

ẍe
ÿe

]
+Ce(q, q̇)

[
ẋe
ẏe

]
+Ge(q) = J(q)−T u, (69)

where

De(q) = J(q)−T D(q)J(q)−1

Ce(q, q̇) = J(q)−TC(q)J(q)−1 + J(q)−T D(q)
d
dt
(J(q)−1)

Ge(q) = J(q)−T G(q), (70)

are the new terms that define the dynamics in the end-effector
space. Since J consists of only sin,cos terms, Property 1 is
still valid for a subset of Q (decided by the singularity of
J). Given the destination point (xd ,yd) ∈ R2, we denote the
error by e := (xe− xd ,ye− yd). Accordingly, we obtain the
CLF based constraint as

(α(e)eT + ėT )J−T u≤−(α(e)eT + ėT )(Kpe+Kd ė), (71)

where α is given by (48), and Kp,Kd are the tunable gains.
Compared to the original constraint (52), the above constraint
includes the Jacobian matrix J(q) that maps the control u to
the newly derived dynamics (69).

We will choose four different destination points around the
square boundary, and track them one by one. Accordingly,
we have the QP formulation given by (MFQP) with the
appropriate CLF based constraint for each desired position.
Details of the parameters for the constraints used are given
in Table III. In particular, we scale the mass of the double
pendulum from 0.1 kg to 10 kg, while using the same
parameters in the constraints. The resulting QP based control
is simulated for two seconds before switching the desired
end-effector position. The simulation results for one of the
desired positions is shown in Fig. 3. The video submission
shows the simulation results for all the four desired positions.

Suppose the goal is to include a velocity based constraint,
for which we use the following:

h(x) = vd− ẋe(x), (72)
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Fig. 3: Figures showing the variation of tracking error, torque and the position based constraints for the double pendulum.
Top figures are for the QP formulation with only CLF based constraints, and the bottom figures are for the QP formulation
with both the CLF, CBF based constraints enabled. It can be verified that when the CBF based constraints are active, the
function h remains positive.
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Fig. 4: Figure showing the variation of tracking error, torque and the velocity based constraints for the QP formulation for
the double pendulum. It can be verified that the constraint function h remains briefly above 0 till 1.6 s. This is the time when
it reaches the desired position. The torque plots shown are for a shorter duration (the values remain small after 0.016 s).

Parameter Position constraint Velocity constraint
Mass (kg) 0.1, 1, 10 0.1, 1, 10
Length (m) 1 1
p (penalty) 1000 1000

cl 0.1 0.3
cu 10 5
c 104 108

vd (velocity constraint) - 0.5
γ (velocity constraint) - 0.9

TABLE III: Table showing the parameters used for the QP
formulation given by (MFQP).

where we impose an upper limit on the derivative of xe,
which is the horizontal position of the end-effector. Given
this constraint, we have the barrier function as

Bv(x) =
2

h(x)Ds(q)h(x)
, (73)

where Ds is the Schur complement form obtained from
eliminating ÿe in (69) similar to (32). Note that the resulting
constraint obtained is different than (VC):

1
γ

ψ10(x)+
1

c2
uh(x)3

[
1 γψ̂v(x)

]
J(q)−T u≤ 0, (74)

where the Jacobian J(q) is included similar to (71), and
ψ10, ψ̂v are appropriately reformulated. Remaining steps use
the model-free QP formulation (MFQP) with the newly
obtained CLF, CBF based constraints. The CLF constraints
were constructed to track/reach two points in a sequence i.e.,
left-to-right and right-to-left (more details are in the video
submission). Since the constraint was for the forward motion
of the end-effector, velocity for only the left-to-right direction
was restricted. The hyperparameters used are shown in Table
III, and the corresponding simulation results are shown in
Fig. 4. Video link: https://youtu.be/iD_OH0iuXeI

https://youtu.be/iD_OH0iuXeI


VII. CONCLUSIONS

In this paper, we introduced a new class of control
barrier functions for robotic systems. We use the kinetic
energy term to realize robust QPs for guaranteed safety
of sets generated by kinematic constraints. Specifically, the
kinematic constraints are position and velocity functions of
the robot manipulator. This approach is motivated by the
success of PD based QPs [11], in which the kinetic energy
was used to construct CLF based constraints in QPs. It is
worth mentioning that the velocity forms, despite not having
the kinetic energy in the strict sense, have properties that
are well associated with the same. We also demonstrated the
unification of tracking and safety, i.e., unification of CLF and
CBF based constraints to yield a robust QP. We demonstrated
the effectiveness of this class of QPs in two of the well
known robotic system models in simulation. Future work
will involve establishing experimental results, and extending
this work for the class of underactuated robotic systems.
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