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Abstract—Boids (Bird-oids) is a widely used model to mimic
the behaviour of birds. Shoids (Sheep-oids) rely on the same boids
rules with the addition of a repulsive force away from a sheepdog
to model predation risk in predator-prey dynamic. Previous
work assumed homogeneous shoids. Real-world observations on
sheep show non-homogeneous responses to the presence of a
herding agent. We present a portfolio of information-theoretic
and spatial indicators to track the footprints of shoid with
different parameters from the remainder of the shoid flock. The
portfolio is named the Centre of Influence to indicate that the
aim is to identify the influential shoids with the highest impact
on flock dynamics. We use both synthetic simulation-driven data
and measurements collected from actual sheep herding trial by
an Unmanned Aerial Vehicle (UAV) to validate the proposed
measures. The resultant footprints will allow us in our future
research to design more efficient control strategies for the UAV
to improve the herding of sheep, by polarising the attention of
the machine learning algorithm on those Shoids with influence
footprints to drive the flock.

Index Terms—Centre of Influence, Predation Risk, Situation
Awareness, Swarm Shepherding, Transfer Entropy, Unmanned
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I. INTRODUCTION

The swarm shepherding problem has been researched in
various contexts by many authors [1]. The problem has seen
extensive use in different domains of applications including
biological immune systems [2], horse harem groups [3],
birds [4], and sheep [5], ground [6] and aerial robotics [7],
[8].

The prominent and most successful solution algorithms are
biologically inspired ones. For example, Strömbom et al. [9]
designed an algorithm that switches between two behaviours
to herd the sheep successfully. The resultant behaviour in a
simulation environment was consistent with the behaviours
observed in the real environment, where sheepdogs herd sheep.
Other push and pull, and influence-driven algorithms exist in
the literature [10], [11].

Strömbom et al. ’s [9] algorithm switches between two
behaviours; collecting, and driving. A collecting behaviour
occurs where the sheepdog positions itself behind the furthest
sheep from the flock while facing the flock’s global centre
of mass. A driving behaviour occurs where the sheepdog
positions itself behind the flock while aligning its position on

a ray emitting from its location towards the goal and passing
through the flock’s global centre of mass (GCM).

The premise of both behaviours is to maintain the sheep
collected, even while driving the sheep towards the goal;
hence, the global centre of mass concept is vital. Strömbom
et al. validated their model by contrasting the behaviors
generated from the simulation against real data collected
from Australian farms. However, the model assumed that the
sheep are homogeneous point masses modelled using boids
rules [12]. Vaughan et al. [13] also assume that flocks are
homogeneous when modelling ducks.

We conducted over 50 field trials to herd a flock of Dorper
sheep, Ovis Aries [14], using a UAV. In contrast to models
such as those introduced by Strömbom et al., who assume that
sheep are homogeneous, our field observations identified that
the flock of sheep is far from being a homogeneous flock. In
particular, we observed the existence of an influencing sheep
that displays behavioural characteristics different from the rest
of the flock.

The identification of the influencing sheep could improve
the efficiency of the herding agent in collecting the sheep
by aiming to herd the influencers with the remaining sheep
expected to follow. This shifts the focus of the herding agent
from the flock’s centre of mass (CoM) to what we call in
this paper, the centre of influence (CoI). We demonstrate the
potential of a CoI to offer a better rationale and a deeper
understanding of the likely connectivity between the agents in
the swarm. We hypothesise that the centre of influence within
the swarm is where a shepherding agent should focus their
influence in order to control a swarm, towards a goal optimally.
By influencing the leaders in the herd, the herding agent could
spend less time assigning its energy to tasks related to other
sheep.

In the remainder of the paper, we begin by summaris-
ing relevant models of swarm shepherding, and how our
proposed CoI concept differs from such models. We then
present proposed new measures, experimental design, and
results from applying these measures to a simulated swarm
influence model. We conclude by detailing our future research
work to use information from the CoI to control a swarm more
efficiently.
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II. MODELS OF SWARM SHEPHERDING

Strömbom et al. successfully demonstrate a generic two-
rule switching algorithm that solves the single sheepdog
shepherding problem [9] using the predator-prey relationship.
Their model is based on empirical GPS data of an Australian
sheepdog collecting and herding a flock of Merino sheep (Ovis
aries). In this model, the underpinning sheep behaviours are
based on the classic boids parameters of separation, cohesion,
and alignment [12]. This models the sheepdog through two
simple behaviours: collecting and driving. Strömbom et al.
considered that the sheepdog sees white fluffy things in front
of it and determines whether there are gaps between them. The
sheepdog then determines whether these gaps are too large or
increasing in size and reacts to promote a cohesive flock.

Similar to the reliance of the boids model on vector analysis,
Strömbom et al. use force vectors to represent the interaction
between the point masses representing the sheep and sheepdog.
Initially, there are N shoids (which we designate as M1 shoids)
randomly positioned within the bounds of the paddock. When
the herding agent is released in the paddock, each shoid
aims to remain close to its Ωππ nearest neighbours while
maintaining a safe distance from the herding agent. If a shoid
maintains a safe distance from the herding agent, it contin-
ues its randomised flocking behaviour. shoid collisions are
avoided by an inter-shoid repulsion force where the distance
between shoids reduces below the repulsion distance threshold.
Once the herding agent encroaches on a shoid’s predation
risk boundary, a predation response is enabled. The shoid is
subsequently attracted to the local centre of mass (LCM) of
its Ωππ nearest neighbours, while also being repelled in the
opposite direction to the herding agent. To better replicate
natural behaviour, Strömbom et al. use weighting factors for
each force, and stochastic effects by way of a weak inertia
force and a small noise factor. The resultant linear combination
of these weighted vectors, weak inertia, and noise, resulting
in the shoid’s next position.

The task of the herding agent is to collect all shoids present
in the environment and drive them to a target location. To
achieve this, we implement the herding agent per Strömbom
et. al’s previously discussed biologically inspired switching
algorithm. The herding agent behaves in one of two ways,
which are dictated by the position of the shoid.
• Behaviour one: if all shoids are located within a distance
f(N) of the flock’s GCM, the herding agent aims to
position itself directly behind the flock’s GCM in relation
to the target region, known as the driving position.

• Behaviour two: if at least one shoid is further than f(N)
from the flock’s GCM, known as a separated shoid, the
herding agent aims to position itself directly behind the
separated shoid in relation to the flock’s GCM, known as
the collecting position.

Additionally, if the herding agent assesses that it is too close
to any of the shoids, it remains stationary for a period. This
is due to an observation made during Strömbom et al.’s study
that showed sheepdogs rarely approach flocks at close range

as it caused the flock to disperse rapidly (i.e. induces a high
predation response).

The previous swarm control models share a common under-
lying fundamental assumption that the herding agent (be it a
leader or a shepherd) calculates and determines its behaviour
purely based on environmental spatial features. While valid
for specific sizes of swarms [13], it is not always practical
to calculate the required measures in applied settings due to
sensor noise, missing or incomplete data feeds, or insufficient
sensor fidelity or placement. Traditional measures also do not
consider the natural swarm environmental, social or leader
and follower hierarchies observed in our field trials, which
significantly contribute to how the swarm reacts in different
situations or to different external stimuli. We hypothesise they
are not optimal to be the sole determinants of swarm control.

We have previously conducted field experiments on herds
of six sheep [14], where we introduced a UAV as the herding
agent, known as Sky Shepherd, to measure the response of the
sheep. During the conduct of Sky Shepherd factor screening
tests, the response of sheep was measured in terms of the sheep
heart rate and distance from the Sky Shepherd. It was found
sheep would permit the Sky Shepherd to drive at a closer
range than a predator agent such as a dog, with consistently
lower heart rate than dog or motorbike interactions. Predation
risk occurs when a prey animal perceives a herding agent as a
source of risk, in turn responding with behaviours (predation
response) that promote self-preservation. In prey animals such
as sheep, the collective predation response results in flocking
behaviours, with the selfish herd behaviour widely accepted
as the primary motive of prey response [15].

While sheep do exhibit flocking, where some sheep exhibit
centre-seeking behaviour [16], other sheep will seek to lead
the flock to safety [17]. Such leader-sheep display curiosity
towards the herding agent, with a successful sheepdog, for
example, using the greater jostling when driving the sheep
towards the goal [18]. Different influencing behaviours were
observed in the Sky Shepherd screening tests, with the first
iteration of variation in parameterisation implemented in our
heterogeneous agent simulation model to assist with identify-
ing influence measures to support herding algorithms.

III. LEADERSHIP IDENTIFICATION AND MEASURES OF
INFLUENCE

We hypothesise that influencers will exhibit behavioural
signatures that we may infer from their spatiotemporal in-
formation signatures; what we term as ’footprints’ for ease
of understanding that we mean ’where something is and
where has it been’. We don’t intend to make this investigation
into an inquiry into the psychology of influence, but as an
exploratory study to identify if the position information of a
heterogenous shoid swarm could carry information to identify
footprints in a swarm. In practice, an observer only has access
to the position of a swarm agent, without access to either
the internal parameters or behavioural logic of the agent.
Therefore, our measures are all derived from time-space-
position information (TSPI). These measures to identify the



presence of heterogeneous behaviours form the basis for a
herding agent to use to identify areas to apply energy in order
to achieve the goal.

We group the CoI measures (see Equation 1) into three
indicators: synchronicity (S), predation risk (PR), and situation
awareness (SA). We begin by providing working definitions
for the essential elements of each indicator.

CoI = f(S;PR;SA) (1)

An Influence is the set of information that causes an effect
in the internal states, attitude or behaviour of a biological or
artificial cognitive agent. For example, a sheepdog influences
sheep due to the fear induced by the presence of the sheepdog
within the sensor range of sheep. The Centre of Influence (CoI)
is inspired by the CoM presented in Strömbom at al.’s seminal
work [9]. We define the CoI as the location of agents which
if targeted to be influenced, the cascading of the influence on
other agents will be maximum. Thus, CoI refers to an area
that the herding agent could exert maximum influence on the
flock with the least energy.

The three indicators for CoI are all driven from TSPI of
the shoid and herding agent. The reliance on spatial and
information-theoretic measures to interpret swarm systems is
an established area of research to infer higher-level behaviours
and interactions within the swarm, with various examples
in the literature [3], [19]–[22]. Our three indicators of syn-
chronicity, predation risk, and situation awareness, have well-
established foundations in the literature, which we use in our
novel concept of CoI.

A. Synchronicity

We define synchronicity as the alignment in time and
space of action resulting from a significant influence. This
definition is based on the work of Pikovsky et al. [23].
Our candidate measure for synchronicity is based on the
information-theoretic transfer entropy measure, which has
been widely studied to understand the flow of information
between agents within complex adaptive systems, such as
swarms [20], [22], [24]. Transfer entropy is a non-parametric
approach that provides a measure of the asymmetric, directed
transfer of information between two stochastic processes [25].
Schreiber [26] first defined it as

TJ→I(k, l) =

∑
i,j

p
(
it+1, i

(k)
t , j

(l)
t

)
· log

p
(
it+1|i(k)

t , j
(l)
t

)
p
(
it+1|i(k)

t

)
 , (2)

where TJ→I is a measure of information flow from agent J
to I , and TJ→I is a measure of information flow from agent
I to J , where p(·) and p(·|·) are the conditional probabilities
of historic states, k is the history length, and l is the lag.
The essence of what transfer entropy is capturing here is the
changing potential, which could be seen as the surprise of an
outcome; we interpret this in our application as the change in
the potential for divergence from current behaviour.

We select Transfer Entropy over other approaches due to
the intuitiveness of its interpretation, and the well-established
foundation of research use [20], [22], [24], [27], [28]. Our
specific transfer entropy calculation methodology is based
on Local Transfer Entropy [29] and implemented per [24],
demonstrating the reconstruction of local information flows
over time.

The local transfer entropy is a measure which characterises
the spatial information transfer at each temporal point within
a system. This provides insight to the dynamics of a system
through time, a level of granularity that may otherwise be
difficult to obtain [29] which can be readily computed and
thus potentially timely in the decision-making of shepherding.
Local transfer entropy has been used to classify swarming
behaviours [24], as well as the role of influencers within
swarms [30]. The local transfer entropy is defined as

t(i, j, n+ 1, l) = lim
k→∞

log
p(xi,n+1|x(k)

i,n , x
(l)
i−j,n)

p(xi,n+1|x(k)
i,n)

. (3)

As our analysis is of first-order Markov process, we set the
embedding dimension, embedding delay and lag equal, such
that k = τ = l = 1 [24], [25], [29].

Our evaluation of the local transfer entropy within the
system is based on two summary measures, being the Net
Transfer Entropy (NetTE) and the Total Transfer Entropy
(TotTE). The NetTE is defined as

T net
J→I = NetTEJ→I = TEJ→I − TEJ→I , (4)

which is detailed in [22]. We use the NetTE to inform the
information flow dynamics of the internal swarm. Specifically,
we seek to quantify emergent local structures and heteroge-
neous agent hierarchies, which may offer insights to internal
swarm influence.

To explore intra-swarm dynamics, we consider a GCM as
the information source within our analysis for the NetTE
measure. We implement the GCM as the uniformly-weighted,
average position at each time period for all shoids (Π =
{π1 . . . πN}), given as ΓΠ = 1

|Π|
∑Π
i Pπi . The implementa-

tion assumes, similar to Strömbom et al., that shoids have an
attraction to the CoM, affording an informative perspective to
understand the dynamics of swarm collective behaviour.

The TotTE is defined as

T tot
J→I = TotTEJ→I = TEJ→I + TEJ→I , (5)

as described in [22]. The TotTE is used to measure the overall
degree of mutual influence between two agents (herding agent-
shoids (β → πi), shoid-shoid (πi → πj), or GCM-shoid
(ΓΠ → πi)), establishing the magnitude of pairwise informa-
tion dynamics. We use the TotTE to capture the intensity of
the pairwise interaction for each pair.

Our summary measure for synchronicity is a combination
of both the NetTE and the TotTE, which we define as

S = sgn
(
T net
J→I

)
∗ |T tot

J→I |. (6)

We characterise two important cases from the perspective of
the source, being



• + information flow and high magnitude, as the source
agent informing on the future state of the target agent
(synchronicity); and

• − information flow and high magnitude, as the source
agent not informing on the future state of the target agent,
but who remains in contact with the swarm (asynchronic-
ity).

B. Predation risk
We define predation risk (PR), based on the work of Lima

and Dill [31], as the likelihood of an agent encountering
a predator and the potential to safety, should this predator
(perceived or real) attack the same agent. We state that a
shoid exhibiting leader-like behaviours will attempt to assess
herding agent actions, therefore increasing its predation risk,
relative to its ideal position in the flock. As detailed by Morrell
et al. [32], flocking agents are more successful at preventing
attack by flocking to close neighbours first and joining the
central flock as the attack continues. This strategy has been
successful in simulation and associated with vervet monkey’s
(Cercopithecus aethiops) predation response to evade leopards
(Panthera pardus), and guppy fish (Poecilia reticulata) strategy
to evade diverse predatory types.

We assume that in (Fig 2)
• The position O1 has the highest PR.
• The position OΓΠ has the lowest PR.

Where the bin-order Ob characterises the relative position and
configuration of the swarm agent, to that of the shepherd. We
calculate the number of bins (B) as the integer square root
value of the number of sheep in the flock, such that B =

√
N ,

where N is the cardinality of Π. Bins are uniformly distributed
from the closest agent to the shepherd to the furthest, assigning
a bin-order number from 1 (closest) to B (furthest), as depicted
in Figure 2.

While a herding agent exhibiting behaviours of collect
and drive may not exhibit a predatory attack behaviour, the
flocking to nearest neighbours first supports the flock in
responding to the perceived predation risk of the herding agent.
We state that while all shoids will seek nearest neighbours
during the shepherding task, a shoid seeking to gain awareness
over promoting survival will position itself in a region closest
to the shepherd (O1). In contrast, other shoids will seek to
position itself in the GCM of the flock (OΓΠ

). Given the
predation response to seek nearest neighbours, if a shoid is
in the region O1, the highest PR will occur when there are no
neighbours (Ωππ = 0).

We calculate PR based on two features, being
• Order from the herding agent, Ob, where b ∈ {1, . . . , B},

such that the convex hull area of the flock is divided in
B uniform spaces, with OΓP i at the centroid.

• Ωππ , where Λπ ∈ {0, . . . , N −1}, such that N −1 is the
maximum nearest neighbours possible within the shoid’s
interaction distance (Rππ).

where PRtπi is bounded by [0,Π]. Consequently, we calculate
PR as

PRtπi =
1

Ob
∗ N

Ωππ + 1
(7)

Therefore, shoid πi at time t, within region O1, and with
no neighbours, Ωππ = 0, within the interaction radius Rππ ,
has a higher PR than shoid πj at time t, within region Ob,
when b > 1 and/or Ωππ > 0.

C. Situation awareness

Situation awareness (SA) is a well-defined concept in many
domains, modelled here as a combination of both information-
theoretic and spatial measures. We use the definition of End-
sley [33] and define Situation Awareness as the perception of
the elements in the environment within a volume of time and
space, the comprehension of their meaning, and the projection
of their status soon [33]. Within this model, we simulate an
agent who positions itself in order to promote its ability to
project (reach higher SA).

We assume that a natural tension exists between the PR and
SA of an agent, which manifests with candidate influencers
trading-off between high SA and low PR. In our model, SA
is maximum when there is a clear line of sight between a
shoid and the herding agent, and is minimum at the furthest
point of the convex hull from the herding agent, with the
highest number of line-of-sight impairments. We calculate the
SA through the spatial measures of distance to the herding
agent, distance to the GCM (ΓP i) and the number of shoids
impeding the line-of-sight between shoidi and the herding
agent. We denote the number of line-of-sight impediments as
Θ, and distance as d from x→ y. We calculate the SA as:

SAtπi =
1

d2
πi→β

dπi→ΓΠ
∗ dΠ→β

∗Θ + 1
, (8)

such that SAπi is bounded in (0, L2], where L is the paddock
size and the dΠ→β ≥ 1.

We hypothesise this combination of measures will detect an
influencer shoid’s attempt to gain higher SA. By placing itself
in a position close the convex hull boundary of the swarm, and
therefore closer to the herding agent, it is likely to distance
itself further from the GCM to perceive the elements in its
environment (level 1 SA). The general location of this position
exposes the shoid to the herding agent, and therefore allows
it to obtain a higher level of information on the status of
the current situation. It thereby allows the influencer to fully
comprehend the situation (level 2 SA) before attempting to
predict the future state (level 3 SA) of the herding agent.

IV. EXPERIMENTAL DESIGN AND ANALYSIS

A. Experimental Design

In this study, we seek to understand how our candidate mea-
sures of synchronicity, predation risk and situation awareness
detect aggregate flock behaviours and describe the dynamics
and associated influence of a homogeneous or heterogeneous
simulated herd. This is modelled through the use of two
distinct behaviours per Table I, being a classic shoid (M1)
[9] and a parameterised shoid (M2). To represent divergent
behaviours, we have applied weightings displayed in Table I.



TABLE I
AGENT PARAMETERISATION FOR THE SIMULATED SWARM SHEPHERDING MODEL ENVIRONMENT.

Description Classic shoid (M1) Parameterised shoid (M2) Herding Agent
Shoid-shoid Repulsion Radius (Rππ) 2 3
Shepherd detection distance (Rπβ ) 30 30 30
Shoid-shoid Repulsion weight (Wππ) 2 3
Shoid attraction to LCM (WπΛ) 1.05 0.5
Shoid Predation Risk weight (Wπβ ) 1 1.5
Speed (S) 1 1 1.5

Parameter changes from those described in Strömbom et al.
were made to approximately reflect observed characteristic dif-
ferences in [14]. The value Wππ has been increased; therefore,
the weight of repulsion from other shoids is high, simulating
shoid M2 curiosity. The value of WπsΛ has been decreased
to reflect the role of the shoid M2 in internally influencing
flock shoids. The value of Wπsβ has been increased as shoid
M2 has a higher propensity to be further away from the
flock to observe the herding agent. This also manifests as a
stronger repulsion from the herding agent. Parameter changes
to represent shoid M2 behaviour are based upon the algorithm
represented in Figure 1.

Fig. 1. Shoid agent algorithm to simulate flock movement during herding.

Shoid M2 is parameterised with WπsΛ > WπaΛ to represent
a surprise behaviour, or influence to move the flock based on
the presence of the herding agent. Consequently, the predation
response is represented as Wπsβ > Wπaβ . To represent curios-
ity of the shoid leader, the weight of repel from neighbours
is Wπs > Wπa. Overall, the parameterisation of shoids holds
the conditions of [9], whereby Wπs > WπsΛ > Wπsβ and for
follower shoids, Wπa > WπaΛ > Wπaβ .

We demonstrate our candidate measures through an
attraction-repulsion swarm shepherding model, based on
Strömbom et al. [9], with the introduction of our shoids as
per Table I. Key spatial and agent features of the system are
visually interpreted, such as
• Herding agent, denoted by the red diamond.
• Shoids, denoted by black dots (note that the candidate

leader shoid has not been differentiated).
• Shepherd goal, denoted by the red circle at the (0, 0)

(bottom left) origin.
• GCM, denoted by the red square within the flock.
• Discrete bins, denoted by the concentric circles radiating

outward from the shepherd.

• Convex hull of the flock, denoted by the red line con-
necting the outer-most shoids of the flock.

• Movement boundary, denoted by the enclosed blue box.
We analyse the impact of changing the configuration

makeup of the flock for a constant simulation seed. Our
simulations investigate the performance of our measures for
six (total) shoids and one sheepdog, with the shoids varying
between 0 and 6 for each agent type. The selection for the
number of shoids was to ensure consistency with live exper-
imentation, previously conducted. We compare the insights
derived from these simulation trials to those from our live
experimentation data.

Fig. 2. Agent-based herding model based on [9], with modified shoid agents.

B. Results

This section intends to characterise flock-level processes and
behaviours as the first step to validate our measures, which
must be completed before online analysis or use to identify
internal flock social hierarchies and leadership dynamics. We
reveal that we can recreate the qualitative narrative of interac-
tion, without observation of the underlying agent interaction.

C. Simulation Results

Figure 3 depicts our synchronicity measure from the per-
spective of the shepherd as the source agent (left) and GCM
as the source agent (right), to all shoids within the system.
We observe two main periods of change at the system level,
being the initial phase where the shepherd is collecting the
shoids, and the subsequent driving phase which dominates
the remainder of the simulation. There is insufficient evidence
(H(5) = 18.9, p < 0.1) to suggest that there is a significant



difference between the synchronicity of shoids across both
shepherd and GCM measures within our simulation trials,
per Figure 3. There is also insufficient evidence to suggest
that there is a significant difference between the synchronicity
across shoids within each shepherd and GCM synchronicity
measure. We conjecture that the presence of a statistically sig-
nificant synchronicity result may contribute to defining a social
hierarchy of leadership. Where no statistically significant result
exists, we suggest that there is presently no identifiable leader
shoid.

Upon further inspection of Figure 3, variation between the
synchronicity of shoids is evident. We observe that during the
collecting phase of the simulation that there is an apparent
increase of synchronous contact with the shepherd, which
corresponds to a reduction in synchronous contact with the
GCM. The external source present competes with the internal
dynamics of the flock for control and influence, reducing
the level of synchronicity for a discrete period. Throughout
the driving phase, a more consistent profile of synchronicity
appears, potentially indicating stability within the dynamic of
the flock, that a steady-state has been achieved.

The granularity of PR is susceptible to flock size (N ),
translating to care required when interpreting PR without
the support of synchronicity or SA. However, the results
in Figure 3 reveal a split flock initial state, with shoids 1,
2 and 3, further from the herding agent. At approximately
time step 100, a single flock is formed, with only shoid 6
seeking to lower their PR throughout. Shoid 6 centre-seeking
behaviour is reflected with the continual variation of PR
values, and minimal instances of high PR. It can be inferred
that shoid 6 has a higher attraction to the LCM W 6

πΛ > W i
πλ

where i = {1, 2, 3, 4, 5}. A statistically significant difference
(H(5) = 117.87, p < 0.001) exists between the predation risk
of shoid agents within the Figure 3.

Figure 3 shows a distinct period of high SA within the initial
herding agent contact, and collection of the shoids 4–6. SA
can characterise the flock configuration change, representing
a heightened awareness during this change. This is evident
throughout the initial and collecting phase of the simulation. It
reveals that agent 4–6 are closer to the shepherding agent, with
relatively few other agents blocking their line-of-sight to the
shepherding agent. This normalises during the driving phase to
a relative baseline level. Note that we depict a transformation
of SA, log(SA), for ease of readability in the figure. A
statistically significant difference (H(5) = 157.16, p < 0.001)
exists between the situation awareness of shoid agents within
the Figure 3, allowing for identifying of differences between
each shoid.

Considering measures across synchronicity, PR, and SA,
we can identify further features within the flock. Despite the
split flock, shoid 1 responds the most to the movement of
the herding agent, which is reflected during the first 50 time
steps of Shepherd Synchronicity pictured in Figure 3. There is
evidence of jostling to promote SA for shoid 1 during the same
period in Figure 3. Once the flock merges, at approximately
100-time steps, we see the regular responses from shoid 6

to the GCM in Figure 3, which is also reflected in the lower
overall PR in Figure 3. From approximately time-step 200, we
see a jostling between shoid 1 and shoid 2 to promote their
SA. This is also reflected with lower synchronicity with the
GCM. Also reflected in Figure 3, we see periods when a shoid
is responding more to the herding agent, with higher PR and
greater jostling within the flock to project SA. As we discuss
in Section III, our measures are designed to detect distinct
dynamics of the flock. The typical story they tell is one of
significant changes in the system, such as the internal state of
configuration or principal-agent of control.

D. Historic Field Data Results

Contrasting the simulated data to live experimental data
using real sheep, we can characterise when the Sky Shepherd
asserts dominance in the system, over any of the sheep in the
flock. Notably, we have identified that the flock becomes quite
unstable through our measures and does not stabilise after
contact with the Sky Shepherd. The researcher’s observational
notes reveal that this is representative of the system as the
flock remained disjoint through to the end of this trial (which
was ended due to High HR), as per University of New South
Wales Animal Ethics Committee approval (ACEC 19/122B).

Figure 4 depict 40 seconds of interaction between a flock
of 6 sheep and the Sky Shepherd. This time slice has been
selected to depict the interaction of the Sky Shepherd with
the flock and the associated response to this external stimulus.

A statistically significant difference (H(5) = 20.18, p <
0.05) exists between the synchronicity of sheep across both
shepherd and GCM measures within our experimental trials,
per Fig 4. There is a lack of evidence to suggest that there
is a significant difference between the synchronicity across
sheep within each shepherd and GCM synchronicity measure.
This indicates our flock is acting with a tacit goal, such as
preserving the safety of the flock members.

A statistically significant difference (H(5) = 36.1, p <
0.001) exists between the predation risk of sheep within our
experimental trials, per Figure 4. The response of Sheep 4
during the Sky Shepherd field trials indicates she was the last
to respond to the Sky Shepherd and flock influence, which is
reflected by the sudden and sustained change in PR, minimal
reaction to the Sky Shepherd and lower interaction with GCM
in Fig 4. We also observe that the PR increases during periods
of flock configuration change, returning to a relative baseline
after these periods.

A statistically significant difference (H(5) = 183.1, p <
0.001) exists between the situation awareness of sheep within
our experimental trials, per Figure 4. We identify Sheep 1 as
the influencer within the flock, with her longer synchronicity
with the Sky Shepherd, and highest SA, identifying her as
the first to respond. Sheep 1 influence within the flock is
also reflected in the lack of synchronicity with the GCM in
Figure 4, as she influences the flock to move away from the
Sky Shepherd. Sheep 5 is the first to follow her, with Sheep 4
trailing behind. We observe that the mean SA increases under



Fig. 3. Synchronicity summary measures (on left) and Predation Risk and Situation Awareness summary measures (on right) for the simulated data.

Fig. 4. Predation Risk and Situation Awareness summary measures for a discrete period of contact (live experiment data).

external influence, returning to a baseline level over a longer
period when compared to the period of increase.

V. CONCLUSION

We have proposed a portfolio of measures to indicate the
centre of influence in a herd. The proposed three measures
reveal footprints within a swarm with rich information to
reveal the most influential agent in the herd. The selected
candidate measures have successfully described the nonlin-
ear dynamics of a simulated swarm, initially illustrating the
approach with shoids; based on the M2 model developed, the
designed metrics assist with identifying agents with influence
in the flock, thereby verifying the prospect of the proposed
new metrics. Our model is biologically inspired, based on
observing the interaction of a shepherd and flock of sheep.

Using our developed CoI metrics, we have been able to
identify influencer sheep within collected experimental data
from biological agents. Future work will need to enable
classification of types of influence within the flock to sup-
port developing greater efficiency in shepherding algorithms,
thereby supporting the development of AI when compared to

classical approaches [34]. This will provide an opportunity
to refine the proposed model and include further granularity
in subordinate measures, such as head position and body
orientation, relative to the position of the shepherding agent.

There are many domains of application for this research,
both biological and artificial, for control and other purposes.
The centre of influence approach may aid in discovering
new methods to understand dynamic hierarchies, as well the
influence of external agents to a system—allowing us to
develop robust AI, capable of understanding the variance that
exists in biological models.

Our preliminary experimentation with both simulated and
live data indicates that our measures can successfully describe
the aggregate flock system properties and identify disparate
influences through a comparative analysis. However, what we
cannot characterise yet is the individual contribution of each
agent in the system and classify these behaviours to infer
the constituent agent makeup and infer social hierarchies.
Additionally, a more in-depth sensitivity analysis will include a
longitudinal analysis to describe the effect of parameter varia-



tion between agents in the system, as well as further investigate
the performance of our measures on live experimental data.
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