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Abstract

We demonstrate broadband RF channelizers based on microcombs with 49 GHz and 200 GHz FSRs. Up to 92 parallel channels

and an instantaneous bandwidth of up to 8.08 GHz are achieved, together with high-resolution RF spectral channelization and

shaping. This approach is promising for high-performance integrated photonic RF receivers and processors.
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Abstract — We demonstrate broadband RF channelizers based on 

microcombs with 49 GHz and 200 GHz FSRs. Up to 92 parallel 

channels and an instantaneous bandwidth of up to 8.08 GHz are 

achieved, together with high-resolution RF spectral channelization 

and shaping. This approach is promising for high-performance 

integrated photonic RF receivers and processors. 
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I.  INTRODUCTION  

In modern photonic RF systems, to detect and analyze 
signals with powerful and flexible digital domain tools, the 
broadband signal needs to be spectrally sliced into digital-
compatible segments for separate digital processing. This is 
achieved by RF channelizers, and while electronic RF 
channelizers are subject to bandwidth limitations, photonic 
approaches offer ultra-large bandwidths, low transmission loss 
and strong immunity to electromagnetic interference [1]. 

Extensive effort has been made on photonic RF channelizers 
including those rely on a large number of spectrally dense and 
precisely centered narrow-linewidth filters [2], and others that 
employ multi-wavelength sources and optical periodic filters [3]. 
Recently, microcombs [4] have attracted attention since they 
offer a large number of coherent wavelength channels in a mm2-
size footprint. They have powered a wide range of RF 
applications [5] such as RF true time delays [6], transversal 
signal processors [7-9], frequency conversion [10], phase-
encoded signal generators [11], and channelizers [12, 13].  

Recently, [12] we reported an RF channelizer based on a 
200GHz FSR microcomb combined with a 49GHz passive filter. 
This offered many attractive features such as high resolution, but 
was limited by the large comb spacing. Here, we report 
wideband RF channelizers using microcombs with a free 
spectral range (FSR) of 49 GHz combined with a passive MRR 
filter with the same FSR that features a Q factor of 1.55×106. We 
realize RF channelizers with a large number of channels (92) and 
an RF instantaneous bandwidth 8.08 GHz. In addition, 117 
MHz-resolution RF spectral shaping can also be achieved by 
combining all the channels together. We compare both 
approaches and show that this method offers a reduced footprint, 
lower complexity, and potentially lower cost.  

II. OPERATION PRINCIPLE 

Figure 1 shows the setup of our broadband RF channelizer 
that consists of three modules. The first module is microcomb 

generation and flattening, where an active MRR is pumped by a 
continuous-wave (CW) laser to initiate parametric oscillation. 
With the MRR’s high Q factor of over 1 million, the high 
nonlinear figure of merit, and tailored anomalous waveguide 
dispersion, sufficient parametric gain can be offered to generate 
Kerr frequency combs. The state of the generated frequency 
comb is determined mainly by the detuning between the pump 
and the resonance, and the pump power. As such, by sweeping 
the pump wavelength from blue to red, diverse nonlinear 
dynamic states, including the coherent soliton states, can be 
triggered. An optical spectral shaper (the commercially available 
Waveshaper) is then used to flatten the power of the comb lines 
to achieve equalized channel power. 

In the second module, the flattened comb lines are directed 
to an electrooptical phase modulation, where the input 
broadband RF signal is multicast onto all the wavelength 
channels. Next, the replicated RF spectra are sliced by a passive 
MRR with an FSR of δMRR, with the slicing resolution is denoted 
by the 3dB bandwidth of the passive MRR. As a result, the RF 
spectral segments on all wavelength channels are effectively 
channelized with a progressive RF centre frequency, with (δOFC 

– δMRR) corresponding to the channelized RF frequency step 
between adjacent wavelength channels. We note that by using 
phase modulation and notch filtering (i.e., the transmission of 
the passive MRR’s through port) to achieve phase-modulation 
to intensity-modulation conversion, no other physical local 
oscillator paths would be required to achieve coherent 
homodyne detection. At last, the wavelength channels are de-
multiplexed and converted back into electrical domain 
separately for ADCs and further digital domain processing.  

 

 



Fig. 1.  Schematic diagram of the broadband RF channelizer based on a soliton 

crystal microcomb. EDFA: erbium-doped fibre amplifier. PC: polarization 

controller. MRR: micro-ring resonator. WS: Waveshaper. PM: phase 

modulator. TEC: temperature controller. DEMUX: de-multiplexer. Rx: 

Receiver.  

III. RESULTS  

The active and passive MRRs were both fabricated in a 
CMOS-compatible doped silica glass platform [4]. During comb 
generation, the pump power was boosted with the wavelength 
swept manually from blue to red. As the detuning between the 
pump wavelength and the active MRR’s resonance became 
small enough to ensure sufficient modulation-instability gain in 
the active MRR, single-FSR spacing microcombs can be 
generated. We note that a coherent soliton crystal state was 
generated by the 49GHz microcomb, enabled by the mode-
crossing induced background wave. Owing to the small FSR, the 
49GHz microcomb offers up to 92 wavelength channels in the 
C band, in contrast to only 20 for the 200GHz microcomb. 

Figure 2(c,d) shows the RF channelization results [12] for 
the 200 GHz microcomb, with an RF range up to 19 GHz 
assisted by thermal tuning, although the mismatch in the FSRs 
of the microcomb and the passive filtering MRR (49 GHz) was 
too large to achieve continuous RF operational bands, resulting 
in only 4 channels being demonstrated [12]. Here, we employ 
the 49 GHz soliton crystal microcomb as the multiwavelength 
source, in combination with another 49 GHz MRR as the passive 
periodic filter. Due to the slightly different FSR mismatch 
between the two MRRs (87.5 MHz), continuous RF spectral 
channelization was achieved, with a resolution of 121.4 MHz 
(determined by the 3dB bandwidth of the passive MRR) and an 
instantaneous bandwidth of 8.08 GHz, which is effectively 22 
times larger than the previous work [12] due to the larger number 
of channels (92). Next, we employed the 49GHz microcomb-
based channelizer to implement RF spectral shaping. By simply 
removing the demultiplexer and simultaneously summing all 
wavelength channels upon photodetection, RF bandwidth 
scaling can be achieved, thus by controlling the weights of the 

wavelength channels, the corresponding power of each RF 
spectral segments can be arbitrarily controlled with a resolution 
given by the bandwidth of the passive MRR (117 MHz in [13]). 

Fig. 2(g, h) show the achieved RF transmission spectra and the 
corresponding optical spectra of the comb lines. Finally, 
components such as tunable dispersion compensators can 
provide flexible and compact and tunable alternatives to fibre 
spools for the dispersive delay elements[14-18]. 

In conclusion, we demonstrate broadband RF channelizers 
based on microcombs with 49 GHz and 200 GHz FSRs, 
achieving up to 92 parallel channels and an instantaneous 
bandwidth of up to 8.08 GHz. High-resolution RF spectral 
channelization and shaping were demonstrated, verifying our 
approach’s feasibility and high performance.  
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