Strong third-order Kerr nonlinearity in 2D PdSe2 dichalcogenide films

David Moss 1

¹swinburne university of technology

October 30, 2023

Abstract

We characterize the third-order optical nonlinearity in PdSe₂ dichalcogenide films via the Z-Scan technique. A strong and negative (self-defocusing) Kerr nonlinearity (n_2) of $-7.65 \times 10^{-16} \text{ m}^2/\text{W}$ is observed at 800 nm.

Strong third-order Kerr nonlinearity in 2D PdSe₂ dichalcogenide films

Linnan Jia^a, Jiayang Wu^a, Tieshan Yang^b, Baohua Jia^{a,b}, David J. Moss^{a,*}

^aCentre for Micro-Photonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia ^bCentre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia *E-mail: dmoss@swin.edu.au

Abstract: We characterize the third-order optical nonlinearity in PdSe₂ dichalcogenide films via the Z-Scan technique. A strong and negative (self-defocusing) Kerr nonlinearity (n_2) of ~ - 7.65×10⁻¹⁶ m²/W is observed at 800 nm.

1. Introduction

Transition metal dichalcogenides (TMDCs), such as $MoS_2[1]$, $MoSe_2[2]$, and $WS_2[3]$ are promising nonlinear optical materials for future photonic devices. Palladium diselenide (PdSe₂), a new 2D noble metal dichalcogenide in the TMDC family, has recently become of significant interest. Similar to the puckered structure of black phosphorus (BP), PdSe₂ has a puckered pentagonal atomic structure – with one Pd atom bonding to four Se atoms and two adjacent Se covalently bonding with each other [4]. This low-symmetry structure makes PdSe₂ possess unique in-plane anisotropic optical and electronic properties, featuring a noncentrosymmetric (pentagonal) structure, in contrast with its cousin PtSe₂ [5, 6]. Further, the bandgap of PdSe₂ is strongly layer-dependent, varying form 0 eV (bulk) to 1.3 eV (monolayer), a property well suited for photonic and optoelectronic applications [4, 7]. Most significantly, PdSe₂ is highly air-stable, indicating its robustness and potential for practical applications, in contrast with BP. The high carrier mobility [4, 7] and anisotropic Raman spectroscopy [8] of 2D PdSe₂ layers have been investigated as well as their high performance as photodetectors from the visible to mid-infrared wavelengths [7]. To date, however, its optical Kerr nonlinearity has not been investigated.

In this paper, we report measurements of the third-order nonlinear optical response of 2D PdSe₂ films. Experimental results using the Z-scan technique at 800 nm show that PdSe₂ films exhibit a strong and negative (self-defocusing) Kerr nonlinearity (n_2) of ~ -7.65×10^{-16} m²/W, which is two orders of magnitude higher than that of bulk silicon. Our results show that the extraordinary third-order nonlinear optical properties of PdSe₂ have a strong potential for high-performance nonlinear photonic devices.

2. Material preparation and characterization

Fig. 1(a) shows the atomic structure of $PdSe_2$ crystals. Different from other TMDCs like MoS_2 and WS_2 , $PdSe_2$ has a unique puckered pentagonal structure, where the Se-Pd-Se layers stack with weak van der Waals interactions to form a layered structure [4, 7]. In each monolayer, the pentagonal rings are formed with one Pd atom bonding to four Se atoms and two adjacent Se covalently bonding with each other, which is similar to the puckered structure of BP and results in the low inversion symmetry properties of PdSe₂.

Fig. 1 (a) Schematic atomic structure of PdSe₂, (b) AFM height profile and (c) Raman spectrum of multilayer PdSe₂ film.

Multilayer $PdSe_2$ large-scale films used in our experiment were synthesized on the transparent sapphire substrate via the chemical vapor deposition (CVD) method. The morphology image and height profile of the $PdSe_2$ film was characterized by the atomic force microscopy (AFM), as shown in Fig. 1(b). The measured thickness is ~ 8 nm. Fig. 1(c) shows the Raman spectrum of $PdSe_2$ film with an excitation laser wavelength at 514 nm. Three

typical phonon modes of A_g^1 (~145.5 cm⁻¹), B_{1g}^2 (~222.5 cm⁻¹), and A_g^3 (~258.8 cm⁻¹) are observed, where the A_g^1 and B_{1g}^2 vibrational modes correspond to the movement of Se atoms and the A_g^3 mode relates to the relative movements between Pd and Se atoms [7, 8].

3. Z-scan measurements

The third-order optical nonlinear response of the PdSe₂ films was characterized via the open- (OA) and closedaperture (CA) Z-scan methods [9]. A femtosecond laser source at 800 nm wavelength was used to excite the samples, with a laser pulse duration of ~140 fs. Fig. 2(a) shows the OA Z-scan curve for the PdSe₂ film at the (incident) laser intensity of 17.15 GW/cm². Typical reverse saturation absorption (RSA) can be observed, with the transmission decreasing as the PdSe₂ sample was moved through the focal point. Various mechanisms, including two-photon absorption (TPA) and free carrier absorption (FCA), may contribute to the RSA behavior [9, 10]. By fitting the OA data, the nonlinear absorption coefficient α_{NL} is measured to be ~ 2.82×10⁻⁸ m/W, which is comparable to the values of graphene [11] and WS₂ [3].

Fig. 2 Measured (a) OA and (b) CA curves of PdSe₂ film at laser intensity of 17.15 GW/cm².

We also characterize the Kerr nonlinearity of PdSe₂ films via the CA Z-scan method. Fig. 2(b) displays the CA data of the multilayer PdSe₂ film. Obviously, the normalized transmittance of sample exhibits a transition from peak to valley when the sample passes the focal plane. The typical peak-valley CA configuration reflects a negative Kerr coefficient n_2 , indicating the optical self-defocusing effect in 8 nm-PdSe₂ film. The measured n_2 of PdSe₂ is $\sim -7.65 \times 10^{-16} \text{ m}^2/\text{W}$ at an intensity of 17.15 GW/cm². Compared with other 2D materials (Table 1), n_2 for PdSe₂ is lower than graphene and BP, but still two orders of magnitude higher than bulk silicon [12-14], which demonstrates the high potential of PdSe₂ as a new optical material for nonlinear photonic applications. Further, like Si-Ge heterostructures, [15] PdSe₂ may also offer interesting possibilities for second order nonlinear effects courtesy of its complex anisotropic nonlinear optical characteristics.

Material	Laser parameter	Thickness	$\alpha_{\rm NL}$ (m/W)	$n_2 ({ m m}^2/{ m W})$	Reference
Graphene	1150 nm, 100 fs	5-7 layers	$3.8 imes 10^{-8}$	$-5.5 imes 10^{-14}$	[11]
MoS_2	1064 nm, 25 ps	25 µm	$(-3.8 \pm 0.59) \times 10^{-11}$	$(1.88 \pm 0.48) imes 10^{-16}$	[1]
WS_2	1040 nm, 340 fs	57.9 nm	$(1.81\pm0.08) imes10^{-8}$	$(-3.36 \pm 0.27) \times 10^{-16}$	[3]
PtSe ₂	800 nm, 150 fs	4.6 nm	$-8.80 imes10^{-8}$	-	[5]
PtSe ₂	1030 nm, 340 fs	17 layers	-	$(-3.76 \pm 0.46) \times 10^{-15}$	[6]
PdSe ₂	800 nm, 140 fs	8 nm	$(2.82 \pm 0.16) imes 10^{-8}$	$(-7.65 \pm 0.83) \times 10^{-16}$	This work

Table 1. Comparison of α_{NL} and n_2 of various 2D layered materials

4. References

 S. Bikorimana *et al.*, "Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS₂,WSe₂, MoS₂ and Mo_{0.5}W_{0.5}S₂," *Opt. Exp.* 24(18), 20685-95 (2016).

[2] G. Wang et al., "Broadband saturable absorption and exciton-exciton annihilation in MoSe₂ composite thin films," Opt. Mater. Exp. 9(2), 483-496 (2019).

[3] N. Dong et al., "Dispersion of nonlinear refractive index in layered WS₂ and WSe₂ semiconductor films induced by two-photon absorption," Opt. Lett. 41(17), 3936-3939 (2016).

[4] A. D. Oyedele et al., "PdSe₂: Pentagonal 2D layers with high air stability for electronics," J. Am. Chem. Soc. 139(40), 14090-14097 (2017).

[5] G. Wang *et al.*, "Ultrafast carrier dynamics and bandgap renormalization in layered PtSe₂," *Small.* **15**(34), 1902728 (2019).

[6] L. Wang *et al.*, "Nonlinear optical signatures of semiconductor to semimetal transition in PtSe₂," *Laser Photon. Rev.* 13(9), 1900052 (2019).
[7] Q. Liang *et al.*, "High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe₂," *Adv. Mater.* 31(24), 1807609 (2019).

[8] Jiang et al., "Anisotropic growth and STM of ultrathin even-layered PdSe₂ ribbons," Small, 15(45), 1902678 (2019).

[9] L. Jia et.al., "Highly nonlinear BiOBr nanoflakes for hybrid integrated photonics." APL Photon. 4(9), 090802 (2019).

[10] P. Olszak et.al., "Spectral and temperature dependence of TPA and free-carrier absorption in InSb." Phys. Rev. B 82(23), 235207 (2010).

[11] G. Demetriou *et.al.*, "Nonlinear optical properties of multilayer graphene in the infrared," *Opt. Exp.* **24**(12), 13033–13043 (2016).

[12] D. J. Moss *et.al.*, "New CMOS-compatible platforms based on SiN and Hydex for nonlinear optics," *Nat. Photon.* 7(8), 597–607 (2013).
[13] Y. Yang *et.al.*, "Enhanced FWM in waveguides integrated with graphene oxide." *APL Photon.* 3(12), 120803 (2018).
[14] J.Wu *et.al.*, "Enhanced nonlinear FWM in MRRs integrated with layered GO films", in press, *Small* (2020). DOI: 10.1002/smll.201906563

[14]J.Wu *et.al.*, "Enhanced nonlinear FWM in MRRs integrated with layered GO films", in press, *Small* (2020). DOI: 10.1002/smll.201906563
 [15] E. Ghahramani, D.J. Moss, and J.E. Sipe, "Large 2nd order nonlinear optical response of strained odd period Si/Ge superlattices on (001) Si substrates", Physical Review Letters vol. 64, no. 23, pp.2815-2818 (1990). DOI:10.1103/PhysRevLett.64.2815.