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Abstract

The degradation of road network performance due to incidents is a major concern to traffic operators. The development of urban

traffic incident management systems requires a comprehensive understanding of traffic dynamics during incidents. Recently,

the concept of the macroscopic fundamental diagram (MFD) contributed to such an understanding and has been used in a

wide range of applications. However, the MFD is merely reproducible under recurring traffic patterns. Motivated by a few

studies which argue the existence of the MFD with a clockwise hysteresis loop during incidents, we tackle this limitation of

the MFD and propose a framework to study the characteristics of the MFD under non-recurring congestion. More specifically,

we introduce a criticality score (CS) which represents network redundancy and postulate that links with a higher level of CS

impose a larger hysteresis loop on the MFD. We design an experiment in a microscopic traffic simulation to study the relation

of closed links and the resulting MFDs. The results confirm our postulation and we observe that links with similar CS have

a comparable impact on the shape of the MFD. The main contribution of this paper is the possibility to develop a framework

for incident detection in urban networks under limited sensor coverage. However, the findings of the study may strongly rely

on the assumptions, for instance, the network structure, the OD pairs, and drivers route choice during incidents. Thus, future

studies are required to study other network topologies as well as more realistic driver route choice during incidents.
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ABSTRACT1

The degradation of road network performance due to incidents is a major concern to traffic oper-2

ators. The development of urban traffic incident management systems requires a comprehensive3

understanding of traffic dynamics during incidents. Recently, the concept of the macroscopic fun-4

damental diagram (MFD) contributed to such an understanding and has been used in a wide range5

of applications. However, the MFD is merely reproducible under recurring traffic patterns. Mo-6

tivated by a few studies which argue the existence of the MFD with a clockwise hysteresis loop7

during incidents, we tackle this limitation of the MFD and propose a framework to study the char-8

acteristics of the MFD under non-recurring congestion. More specifically, we introduce a criticality9

score (CS) which represents network redundancy and postulate that links with a higher level of CS10

impose a larger hysteresis loop on the MFD. We design an experiment in a microscopic traffic11

simulation to study the relation of closed links and the resulting MFDs. The results confirm our12

postulation and we observe that links with similar CS have a comparable impact on the shape of13

the MFD. The main contribution of this paper is the possibility to develop a framework for inci-14

dent detection in urban networks under limited sensor coverage. However, the findings of the study15

may strongly rely on the assumptions, for instance, the network structure, the OD pairs, and drivers16

route choice during incidents. Thus, future studies are required to study other network topologies17

as well as more realistic driver route choice during incidents.18

Keywords: Incident detection, Urban traffic, Macroscopic Fundamental Diagram, Hysteresis loops19
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INTRODUCTION1

With the growth of traffic volumes in urban networks, traffic congestion has become a major con-2

cern for both citizens and city authorities. It increases travel time, air pollution and reduces eco-3

nomic productivity, safety, and quality of life. Generally, there are two types of congestion: (i)4

recurring congestion that occurs regularly when demand exceeds the road capacity, for example,5

every day during peak hours, and (ii) non-recurring congestion which is caused by incidents or6

planned special events which either temporarily reduce supply or suddenly increase demand. It7

is critical to distinguish these two as their required countermeasures are inherently different. The8

degradation of road network performance due to non-recurring congestion, hereafter called inci-9

dents, is a much bigger concern to traffic operators.10

Incidents are generally defined as situations where the observed traffic state significantly11

deviates from its prediction (1). Most of the incident detection methods base their algorithm on12

this logic and hence, all of them, in some form or another, are comparative algorithms (2). In-13

cident detection methods can be divided into two very broad groups. First, parametric statistical14

methods such as the class of time series analysis or state-space models, as well as non-parametric15

models which include the family of machine learning techniques e.g. neural networks or support16

vector machines. Second, methods that are based on the traffic flow theory such as e.g. McMaster17

Algorithm (3).18

The latter group mainly consists of methods that are based on the well-known fundamental19

diagram of traffic flow. The advantage of these models in comparison to the previous group is20

that they use explanatory variables that characterize traffic dynamics. However, the notation of the21

fundamental diagram is limited to uninterrupted facilities. Consequently, these incident detection22

algorithms e.g. (4, 5) are mainly confined to freeway segments. Nonetheless, a limited number23

of studies have been conducted to develop similar incident detection in urban arterials. Bell and24

Thancanamootoo (6) were the first to use flow and occupancy data from loop detectors of adaptive25

traffic signal control system SCOOT to detect incidents. Sethi et al. (7) have developed two26

distinct algorithms for fixed loop detectors and probe vehicles that can be applied on single links.27

However, these methods are extremely biased and depend on the positioning of the detectors, probe28

penetration rate, the time resolution of data and fail to detect the congestion where no detector is29

available e.g. if traffic diverges on the upstream links.30

The group of incident detection methods mentioned first handles the problem of incident31

detection mostly as temporal outlier detection in single-profile sensor data using signal processing32

techniques. These methods have emerged from other fields such as wireless sensors or internet33

traffic analysis and vary from simple boxplot methods to support vector machines (8). However,34

these methods face two challenges. First, they often require labeled data as ground truth or rely35

on a prioiri data distributions. In reality, however, such information is rarely available for urban36

traffic. Data are often noisy and might be recorded by malfunctioning sensors. Second, urban road37

networks as a physical system have much more complicated dynamics in comparison to wireless38

sensor networks. Nevertheless, various researchers have applied these methods on urban networks39

to detect incidents.40

For instance, Anbaruglu et al. (9) proposed a spatiotemporal clustering approach to detect41

non-recurring congestion in London using travel time data from automated number plate recogni-42

tion (ANPR) cameras. They employ a global constant factor to decide whether the travel time of43

a link is exceeding the normal level. Such an assumption will not represent the heterogeneity of44

urban traffic dynamics. The authors extended their work in a follow-up (10) and relaxed the as-45
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sumption of a constant congestion factor by proposing a space-time scan statistics which annotates1

congestion as non-recurring if the difference between current and historical travel times is statis-2

tically significant. In another study, Zhang et al. (11) use dictionary-based compression theory to3

identify the features of both spatial and temporal patterns by analyzing multi-dimensional traffic-4

related data. We briefly review some of these studies in Section 2 to present a comprehensive5

oversight.6

Both of these two groups of methods require large historical data sets and extensive sensor7

networks, which are not available in many cities. Moreover, they are mainly applied for incident8

detection. They do not evaluate the network performance, and thus, cannot be used to develop9

proper traffic management strategies. In this paper we try to fill this gap by characterizing the10

impact of incidents on the performance of urban networks using recent findings in traffic flow11

theory i.e. the concept of the macroscopic fundamental diagram (MFD). Recently, several studies12

suggesting that instability in network caused by major disturbances imposes clockwise hysteresis13

loops in the MFD were published. The question is if the disturbances based on their impact on14

the shape of MFD can be clustered and use such clusters to detect similar exogenous instabilities.15

The contribution of the paper is twofold. First, we propose a framework that can not only be16

used for incident detection but also for development of efficient traffic management strategies to17

alleviate incidents impacts. Secondly, we study the properties and characteristics of MFD during18

non-stationary states which has received very little attention.19

The remainder of this paper is structured as follows. The theoretical background and prop-20

erties of the MFD is provided in Section 2. Then we introduce our approach for characterization21

of incidents in urban networks in Section 3. In Section 4 we present a microscopic traffic simu-22

lation case study to evaluate the efficiency of the methodology. The results of this case study are23

discussed in Section 5. We provide conclusions and directions for future work in Section 6.24

THEORETICAL BACKGROUND25

Macroscopic Fundamental Diagram26

The original idea of a macroscopic relationship between network outflow and accumulation was27

first introduced by Godfrey (12). Several researchers postulated a similar relationship (13, 14, 14)28

and Mahmassani (15) tested it in a simulation experiment. But it was only after the work of Da-29

ganzo and Geroliminis (16, 17) that the MFD gained attention. Inspired by their findings on data30

from Yokohama, many other researchers have observed a similar relationship in empirical data31

from several cities such as Toulouse, France (18), Brisbane, Australia (19), Zurich, Switzerland32

(20), Lucerne, Switzerland, and London in the United Kingdom (21), as well as in traffic simu-33

lations (22, 23, 24). The MFD is arguably network-specific and a function of network topology,34

signal control settings and route choice (22, 23). This has made it a valuable tool to develop a35

wide range of traffic control applications such as routing strategies (25, 26, 27), perimeter traffic36

control (28, 29), on-street parking (30, 31) and congestion charging (21). While influential factors37

on the shape of MFD has been well studied under steady states, empirically derived MFDs exhibit38

multivaluedness and hysteresis loops which need to be further investigated.39

Bifurcation and Hysteresis Loops in the MFD40

Bifurcation or hysteresis loops are certain types of multivaluedness in the MFD where two groups41

of flow values for a given range of density are observed.42

The first empirical hysteresis loop was reported in Toulouse (18) where on a particular day43
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due to a social movement of truck drivers between 8 and 10 in the morning the speed on the city’s1

rind road drops and causes drivers to search for alternatives. Motivated by this observation, Gayah2

and Daganzo (32) showed that even in a perfectly symmetric network with uniform demand, a3

hysteresis loop forms during network unloading. They identify four types of MFD paths i.e. the4

single-path, the clockwise loop, the counterclockwise loop, and the figure-Eight. They conjecture5

that during recovery, when more trips are ending than starting, the network has a tendency towards6

uneven congestion distribution which results in a clockwise hysteresis loop. Saberi et al. (33, 34)7

have observed a similar phenomenon in a freeway network. Others have studied the potential rea-8

sons for hysteresis-like patterns in the MFD (25, 35, 36). Sim et al. (36) propose four possible9

reasons for bifurcation in empirical MFD: network heterogeneity, trip completion rate, detouring10

pattern, and commuting trips. Geroliminis and Sun (37) have conducted a thorough analysis of net-11

work heterogeneity and argue that hysteresis is a result of multiple congestion pockets of different12

size which are not necessarily interconnected. Since arterial networks offer a higher degree of re-13

dundancy, drivers adaptively change their routes to identify less congested links. Consequently, the14

distribution of congestion is more homogeneous whereas freeway networks are not redundant and15

therefore, congestion propagates unevenly. This assumption may not hold during non-recurring16

congestion especially when drivers cannot make perfect route choices. For example, in an empiri-17

cal study in Brisbane, Australia (19) an abnormal scatter and capacity drop is observed because of18

an accident on a major arterial resulting in a road closure during morning peak hours. The authors19

concluded that if network partitioning is performed, MFD can be used to detect incidents.20

The literature in this particular line of research i.e. the shape of MFD during non-recurring21

congestion is very limited. For instance, Zockaie et al. (38) study the shape of the MFD during the22

evacuation of a large-scale city. They conclude that adaptive drivers increase fluctuations in the23

MFD but reduce hysteresis and improve capacity. In a more recent study, Kim et al. (39) use the24

concept of MFD to develop a novel link criticality index. They remove a link from a network and25

assume the duration of the closure is short enough that neither a new user equilibrium is formed nor26

OD demand changes significantly. The authors focus only on network loading and incrementally27

increase a random demand function until the network reaches gridlock. The obtained MFD shows28

slightly lower flow for the same density of the normal operation, lower capacity but the same value29

near jam density. Based on this performance loss, the criticality of each link is evaluated. Lastly,30

Horiguchi et al. (40) propose a mesh-wised network monitoring framework to detect anomalous31

congestion. They introduce a fluidity indicator which is based on the distance of the obtained32

MFD point from the origin (0,0) and a singularity indicator which shows the probability to observe33

a point at a certain time of day. In consideration of these studies, the question arises if similar34

disruptions in dense urban networks cause comparable deviations in the shape of the MFD.35

METHODOLOGY36

In this section, we propose the methodology for the analysis and characterization of traffic flow dy-37

namics during incidents in urban networks. It is based on the concept of the MFD and is composed38

of two main parts. The first part deals with the criticality of each link in a network by introduc-39

ing a criticality score (CS) that reflects the impact of closing each road on the performance of the40

network. The second part of the methodology quantifies the properties of MFDs using a set of41

explanatory variables.42

Then, for a given network with predefined OD demand, we postulate that closing links with43

similar CS results in a comparable change in the shape MFD. In other words, the characteristics44
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of the scatter and hysteresis loop imposed on the flow-density plane of the MFD by an incident1

can be related to a set of features explaining how critical that link is for the network. Quantifying2

the impact of incidents and linking them to the characteristics of the network allows us to detect3

incidents under incomplete sensor coverage and improve network performance by implementing4

efficient traffic management measures. Please note that the main assumption is that demand is5

recurrent. This implies that any deviation from the expected MFD curve is caused by exogenous6

disruptions.7

Criticality Score8

First, we define our criticality score (CS), which is similar to the definition of betweenness central-9

ity in graph theory, generalized for directed graphs by White and Borgatti (41). In network science,10

edge Betweenness centrality is often applied to indicate how critical an edge is to a given graph. It11

is defined as the fraction of shortest paths between all pairs of nodes passing through an edge. A12

higher value of a betweenness centrality represents a bridge-like connector between two parts of a13

graph. The removal of such a connector may affect the shortest path between many pairs of nodes.14

In transportation networks, shortest paths are usually defined based on generalized cost including15

distance, travel time, comfort etc. which are time-varying and depend mostly on the level of con-16

gestion. Calculating such a dynamic cost function requires a comprehensive understanding of the17

network, which is usually missing. In addition to the length of the shortest path, it is important to18

evaluate the number of existing alternatives for the shortest path. This feature is usually referred19

to as redundancy and considers the number of alternative paths for a given OD pair. In the case20

of a road closure, redundancy plays a vital role in compensating the impacts of closure through an21

even distribution of congestion. Hence, it is a critical feature of the network. Therefore, instead22

of betweenness centrality, we propose a simpler alternative approach focusing only on redundancy23

for homogeneous networks i.e. networks with links with identical fundamental diagram, equal24

length and traffic signal configuration as follows.25

Let G (V,E) be a directed graph representing the road network where V and E are the sets of26

nodes and edges, respectively. We denote the adjacency matrix of the network by A and calculate27

the number of all shortest paths between each pair of nodes. Using simple graph theory, one can28

prove that the number of paths with length k between node i and j is the (A )k
i j where A k is kth29

power of Matrix A . In other words, the number of paths with length k from node i to node j is30

equal to the element ak
i, j of matrix A k. Thus, the total number of all possible paths for network A31

from length of 1 to maximum possible length kmax is:32

NA
p = ∑

(i, j)

kmax

∑
k=1

ak
i j f or (i, j) ∈V ×V (1)

We define the CS of a link by the reduction in the total number of paths once we close that link33

CSl = NA
P −NAl

P . Al represents the adjacency matrix of the network after removal of link l. Higher34

values of CS indicate that more drivers must be rerouted to reach their destination and some links35

become oversaturated due to lack of alternative routes between the first-order adjacency of the36

closed link. Such an assumption implies that drivers learn about the closure just before they reach37

the closed road which is realistic in case of unexpected incidents. In our use case, this is par-38

ticularly important because as suggested in the literature (33) adaptive drivers have a significant39

influence on the shape of hysteresis loops and network capacity. Please note that this is only true40
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for homogeneous networks with an existing MFD.1

Characterization of the MFD Hysteresis Loop2

In order to categorize the incidents, we must quantify their impacts on the MFD. We use a set of3

explanatory variables to measure the differences between two MFDs. Saberi and Mahmassani (34)4

have characterized the hysteresis loop by its shape. They describe a loop by its height ∆q, width ∆k,5

and the area covered by this rectangular SH = ∆q×∆k. However, these variables are not enough6

to identify a hysteresis loop uniquely. For example, as it is shown in Figure 1, two hysteresis loops7

can have an identical area but one (MFD 2 in Figure 1) shows higher average speed. Thus, we take8

into account the average speed of traffic states related to the hysteresis loop. Furthermore, incidents9

cause a capacity loss in the MFD which should be measured as well denoted by qni. Additionally,10

it is important to consider the number of observations that form the hysteresis loop, as an indicator11

for the duration of instability in the MFD. Table 1 summarizes the explanatory variables to describe12

the MFD. It is important to note that we avoid replacing density with occupancy to reduce potential13

error sources while converting occupancy to density. Only for the calculation of average speeds,14

we assume an average vehicle length of 5 m and a detector length of 2 m.15

FIGURE 1 : Explanatory variable for hysteresis loops characteristics

TABLE 1 : Explanatory variables to describe MFD with hysteresis loop

Variable Explanation Unit
qni capacity loss (veh/h/ln)
∆q flow drop (loop height) (veh/h)
∆o occupancy changes (loop width) (%)
SH area of the loop approximated by rectangular (veh/h)(%)
v̄H average speed over the hysteresis loop (km/h)
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SIMULATION EXPERIMENT1

In this section, we present the framework of a microscopic simulation experiment to investigate2

our initial postulation and show the results. The discussion on the obtained results is provided3

in section 5. For the simulation, we use the microscopic traffic simulation SUMO (42). Please4

note that we are neither aiming at evaluating a realistic scenario nor questioning the equilibrium5

condition during incidents. The primary goal is to study a controlled environment where drivers6

route choice behavior remains manageable. Our toy network is represented by a unidirectional grid7

of size 5×5 to reduce the problem size. Such a network can represent an urban network with strong8

directional flows e.g. high demand during morning peak towards the city center. Grid networks9

were previously used for investigating the relationship between route choice and the shape of the10

MFD (24, 25, 43, 44). The network is composed of 60 nodes from which 12 (South and West11

side) are only origins, 12 are only destinations (North and East side) and the 36 in the middle are12

signalized intersections with 90 s of cycle length and 40 s of green time without any offset. The13

network consists of 60 links with a length of 300 m, each with two lanes and a speed limit of14

50 km/h. We put one loop detector on both lanes of each link. The data aggregation interval is15

set to 3 minutes. The distance to the stop line is drawn from a uniform distribution for each loop16

detector. This results in an MFD with little bias as suggested by (43). Additionally, we relax the17

assumption of complete sensor coverage and investigate the MFDs based on randomly selected18

30% of all detectors. Yet, we observe similar results for this case. We exclude measurements19

at the generation and destination links as they may cause significant bias in our network variable20

calculations.21

The demand incrementally increases along with origin links as shown in Figure 2, where22

qin is additionally incrementally increased over time. The duration of the simulation is 2 hours23

and 30 minutes, plus 15 minutes in the beginning for warm-up and 15 minutes in the end for24

egress. For the first hour the demand is increased by a factor between 2 and 8 every 15 minutes25

and similarly decreases during the second hour. To ensure congestion does not only appear at the26

boundary edges where inflows are added, we add some random trips in the network with different27

trip lengths during these two hours to ensure some traffic is cruising in the network as background28

congestion. We purposefully replicate similar network configuration used in (44) to compare our29

results with their findings. We compare the MFDs from several scenarios: a base scenario in30

which we use the demand profile described above and seven different road closure scenarios in31

each of which a different link is closed from the beginning to the end of the simulation. Drivers32

are not informed about this incident and those who originally traverse the closed link to reach their33

destination are only informed about the closure one intersection upstream of the closed road and34

only then start to look for the fastest alternative. In case there is no alternative available, the closest35

destination node is assigned to the vehicle as its new destination. This occurs only to vehicles that36

must drive straight all the way.37

Base Scenario38

The base scenario represents a dynamic user equilibrium condition that is achieved by setting the39

maximum relative standard deviation of travel time for each OD pair to 0.01 as the convergence40

criterion. The MFD obtained from this scenario serves as our benchmark MFD to which we com-41

pare the other MFDs from incident scenarios. Figure 3 shows a small clockwise hysteresis loop42

during network unloading from 08:00 to 08:45. During this time the standard deviation of occu-43

pancy across the links of the network reaches its maximum value. This is a common phenomenon44
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FIGURE 2 : The studied grid-network with the inflow and outflow at its boundaries. Edge IDs
with a red circle around their ID are studied for closure scenarios

observed in many other simulation and empirical studies as discussed in Section 2. Please note1

the smaller loop, right after the hysteresis loop ends, is caused by a sudden increase in network2

accumulation at 08:45.3

FIGURE 3 : Left: MFD from the base scenario. The standard deviation of occupancy is maximum
during unloading part of the hysteresis loop. Right: time series of flow and occupancy showing
lower flow for the same occupancy level during unloading.
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Incident Scenarios1

In total, we conduct 8 different incident scenarios by closing links 242, 203, 194, 187, 146, 106,2

67 and 21 which can be seen in Figure 2. In order to compare the scenarios, we first calculate the3

criticality of each link using the introduced CS in section 3. Together with the characteristics of the4

hysteresis loop obtained from the MFD of each scenario we present an overview of each scenario in5

Table 2. Generally, the capacity loss qin decreases linearly as the value of CS decreases. However,6

there is an exception for the scenario where links 106 and 21 are closed. A possible explanation7

for this is the strong directional flow in the network from bottom left to the top right. The spillback8

caused by the closure of these links would extremely limit overall vehicular flow since they are9

closer to the entry point of demand. In an extreme case, closure of link 21 blocks almost all the10

possible inflow from the left side of the network resulting in a different demand scenario and thus11

is not further discussed. Due to the symmetrical topology, links 242 and 203 have identical CS12

values but due to randomly generated background traffic, the MFDs in these two scenarios are not13

identical. This can be clearly seen in the capacity drop and the size of the hysteresis loop.14

For a better understanding, we compare the links with a similar CS and plot three groups15

of MFDs as it is shown in the top row of Figure 4. We can see that higher values of CS impose a16

larger hysteresis loop on the MFD. Moreover, we can easily observe the congested branch of MFD17

in scenarios 243 and 194. The spillback caused by the closure of these links propagates back to the18

origins and brings the network close to gridlock. The larger size of the loop implies longer queues19

and a spillback near to the closed link while other links of the network are in free-flow state. As20

mentioned above, these observations also hold for the case that only 30 % of all links are equipped21

with loop detectors.22

Another important metric for the analysis of macroscopic traffic dynamics is the trip com-23

pletion rate which was originally used in (17). It is defined as the number of vehicles exiting the24

network to the number of vehicles in the network. The decrease in this rate indicates lower network25

production if the average trip length remains unchanged. The bottom row of Figure 4 depicts the26

trip completion rate for the three pairs of scenarios. Similar to their MFDs, we observe that the27

changes in trip completion rates are also very similar in scenarios with close CS values. Please28

note that this rate is not constant due to changes in average trip length in the network during the29

loading and unloading phase.30

By carefully analyzing the MFDs and the trip completion rate time series, we can observe31

that in all the scenarios the point at which MFDs during incident situations deviate from the base32

TABLE 2 : Criticality score and the characteristics of the hysteresis loop for each scenario

Closure scenario Link CS qni ∆q ∆o SH v̄H
link-242 126 469 262 11.4 2986 31.8
link-203 126 413 206 11.1 2286 31.7
link-194 90 490 202 10.2 2424 34.7
link-146 60 501 122 6.14 749 37.8
link-106 40 440 121 4.94 597 38.0
link-67 20 542 147 3.93 577 38.2

link-187 5 566 118 3.37 397 38.6
link-21 1 445 315 6.63 2088 37.5
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FIGURE 4 : Top: Similar scenarios exhibit comparable hysteresis loops in the MFD. Bottom: trip
completion rate for the similar groups of scenarios follow comparable pattern.

scenario MFD is at occupancy of around 8% and flow of 400 veh/h/ln. Moreover, the time at which1

this splitting happens is more or less identical in all of the scenarios. We will discuss the reasons2

for this in the next section.3

Network heterogeneity is a well-studied factor that affects the shape of MFD by inducing4

scatter and hysteresis loops. Thus, it is necessary to investigate the existence of heterogeneity in5

more detail. The most common measure to quantify it is the standard deviation of occupancy. The6

distribution of congestion across the network at different time intervals of the simulation is illus-7

trated in Figure 5. We can see that in some situations some links are fully congested (occupancy8

100 %) and some other empty (occupancy 0 %). This happens for scenarios in which a link in the9

middle of the grid network is closed than a link at closer to destination links. By comparing the10

first and the second row of the histograms, we observe that both mean and standard deviation of11

occupancy are increasing. Whereas in the third row of histograms, both values decrease again and12

reach values similar to the ones in the histograms in the first row. Overall, this analysis confirms13

the distribution of congestion in scenarios 187 and 67 is closer to the base scenario as indicated by14

the associated MFDs.15

DISCUSSION16

After presenting the result of our simulation experiment, we discuss the findings and limitations17

of our approach. We compare our results to studies that have used the concept of the MFD under18

other non-recurring congestion and seek potential generalization of the findings.19

First of all, we can confirm our initial postulation and conclude that more critical links in20

the network induce larger hysteresis loop and higher capacity loss in the MFD. These results are21

in line with those from (39) who have earlier used the concept of the MFD to develop a criticality22
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FIGURE 5 : Occupancy distribution across the links of the network during different time intervals
for the selected scenarios.

index for links of a network by removing a link from the network and calculating the reduction in1

weighted average flow. Additionally, we observe that the closure of links with similar CS results2

in comparable changes in the shape of the MFD. This is particularly interesting since it enables us3

to develop incident detection algorithms. We can cluster the links of a given network into a limited4

number of clusters based on their criticality and then detect possible road closures by observing5

the changes in the shape of MFD. Thus, we can detect an incident by traffic measurements at other6

locations in the network. Moreover, the proposed CS is a proxy for redundancy in the network7

which lets us conclude that the MFD in networks with higher redundancy is more stable as drivers8

have more route choices. Such property was suggested in (37) as well.9

As mentioned earlier, we designed our network similar to the one from Parzani et al. (44)10

to reproduce comparable MFDs. In their paper, the authors divide the network based on a route11

overlapping factor in five clusters and derive an MFD for each. For the cluster that is mainly com-12

posed of links at the center of the network, the MFD shows a higher trip production with a smaller13

hysteresis loop, whereas the cluster composed of links at boundaries shows smaller production and14

lower critical density. This implies that these links contribute less to the average MFD of the entire15

network and therefore, their closure would have minor impacts on the MFD.16
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Another finding of the study is related to the type of hysteresis loops. Two types of hystere-1

sis loops were introduced in (34) We observe a third type of hysteresis loop in which flow increases2

as occupancy decreases. This can happen during situations where several links of the network are3

fully congested (at jam density) and inflow is near zero while outflow increases. Imagine a case4

where a link is saturated and congestion propagates to the origin links which blocks the inflow5

demand. Consequently, demand remains constant and flow is driven only by supply starts to dissi-6

pate. In our specific case, for the scenarios where links 242 and 203 are closed, at the beginning7

of the simulation the inflow is much larger than the outflow. After the peak in demand is reached,8

the links of the network are mostly saturated and we have mainly outflow resulting in a signifi-9

cant reduction of the inflow/outflow ratio. Once several links reach free-flow state again, this ratio10

is balanced and the hysteresis loop is closed. From there, the unloading phase of the network11

continues on the same curve as the loading phase.12

We want to highlight another interesting observation made in this study. The point at which13

the MFD obtained from the incident scenario diverges from the base MFD was the same in all of14

scenarios. Interestingly, in the MFD of the base scenario the hysteresis loop starts exactly at the15

same point. This implies that our network gets unstable at flow 400 veh/h/ln and occupancy 8 %.16

This behavior does not change with removing one link from the network for the same demand.17

Even though we cannot generalize this conclusion, but the existence of a point at which bifurcation18

occurs as a property of the network is valuable for the development of traffic control measures.19

CONCLUSION AND FUTURE WORK20

In this paper, we present a framework to study the macroscopic traffic dynamics in urban networks21

during incidents. More specifically, we use a microscopic traffic simulation to study the charac-22

teristics of the MFD and the induced hysteresis loop due to a road closure. We introduce a link23

criticality score (CS) which reflects the changes in network redundancy by removing a link from24

the network. An important finding of the study is that redundancy is directly connected to the shape25

and size of the hysteresis loop. A higher number of alternative paths alleviates the impacts of road26

closure by assisting the drivers to find alternative routes which results in an even distribution of27

congestion across the network. The results of the simulation show that higher CS value imposes28

larger hysteresis loops in the MFD. Such a property can be used to develop incident detection al-29

gorithms for urban networks. The main advantage of this approach is that MFD can be estimated30

by a limited number of loop detectors which most cities have already in place. In other words, our31

proposed framework can detect incidents occurring on links without sensors by observing traffic32

on other links in the same network.33

One of the main limitations of this study is that the results may strongly rely on the assump-34

tions regarding the network structure, the OD pairs, and drivers’ route choice during incidents.35

Therefore, future works will focus on different network structures with various demand profiles.36

Moreover, the behavior of drivers while facing a closed road must be further investigated. The in-37

fluence of route choice on the shape of MFD suggests that if drivers have access to real-time travel38

information they may avoid the congestion, which significantly affects the characteristics of the39

MFD. This was investigated in a previous study by the authors (45) in which they show that imple-40

menting rerouting strategies can improve network production and avoid gridlock. Additionally, we41

assumed detectors are located in a way that bias in the data is minimized. In reality, however, such42

an assumption is rare and hence the bias from measurement on the shape of the hysteresis loop43

should be studied. Such bias can also arise from the selection of time-space window for data ag-44
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gregation and needs a careful analysis, which was not covered in this study. Finally, our proposed1

CS is static and does not consider the traffic condition. This indicator can be further improved by2

taking into account the traffic volume or travel time of the links.3
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