
P
os
te
d
on

5
S
ep

20
20

—
C
C
-B

Y
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
28
93
87
6.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

An In-Memory Physics Environment as a World Model for Robot

Motion Planning

Navin Ipe 1

1M.S.Ramaiah University of Applied Sciences

October 30, 2023

Abstract

This paper investigates the utilization of a physics simulation environment as the imagination of a robot, where it creates a

replica of the detected terrain in a physics simulation environment in its memory, and “imagines” a simulated version of itself

in that memory, performing actions and navigation on the terrain. The physics of the environment simulates the movement

of robot parts and its interaction with the objects in the environment and the terrain, thus avoiding the need for explicitly

programming many calculations.

1



1

An In-Memory Physics Environment as a World
Model for Robot Motion Planning

Navin K Ipe

Abstract—Conventional robots are capable of detecting terrain
and creating a 2D or 3D map of the terrain in memory,
which is utilized by the robot’s algorithms to plan navigation.
Such algorithms are primarily focused on path optimality, gaits
and joint positioning. This paper investigates the possibility of
utilizing a physics simulation environment as the imagination of
a robot, where it creates a replica of the detected terrain in a
physics simulation environment in its memory, and “imagines”
a simulated version of itself in that memory, performing actions
and navigation on the terrain. The physics of the environment
simulates the movement of robot parts and its interaction with the
objects in the environment and the terrain, thus avoiding the need
for explicitly programming many calculations. The robot chooses
the best possible action from multiple simulations of movement,
and executes it in the real world. Moreover, as the complexity
of motion increases with each degree of freedom of the robot’s
joints, this paper also explores the utility of uniform pseudo-
randomness to explore the fitness landscape of robot motility, and
compares it with Computational Intelligence algorithms. Such
techniques could potentially simplify the algorithmic complexity
of programming multi-jointed robots, and also be capable of
dynamically adjusting the “mental” simulation of the robot
when it encounters environments with different gravity, viscosity
or traction, merely by adjusting parameters of the simulated
environment.

Index Terms—Machine Learning, Computational Intelligence,
Differential Evolution, Particle Swarm Optimization, Robotics,
Uniform Randomness.

I. INTRODUCTION

THE animal brain is capable of constructing a complex
world-model of the various sensory inputs it perceives.

Within this imagined world, it is capable of simulating various
actions by utilizing memories and even mixing various senses
and past experiences. Imagination, thus offers a powerful
method of evaluating various actions and scenarios before
executing them.

In the realm of machine learning, mathematical modeling
of phenomena has been a preferred method of forming ap-
proximations that explain and predict phenomena. The deci-
mal number system, complex numbers, statistics, differential
equations, probability, Eigen and Fourier transforms are some
such mathematical methods. Biological brains appear to model
phenomena a bit differently, using specialized cells and vast
data storage [1], [2] to record and predict phenomena via an
imagination that accounts for context and estimates expected
outcomes at frequent intervals of time. Learnings from prior

Author acknowledges the support received from M S Ramaiah University
of Applied Sciences, Bengaluru, India. N. K. Ipe is with the Department
of Computer Science and Engineering, M S Ramaiah University of Applied
Sciences, Bengaluru, India (e-mail: navinipe@gmail.com).

Manuscript received: Aug 18, 2020

investigations into intelligence [3] led to the conclusion that
the creation of an intelligent machine necessitated the machine
to be an embodied consciousness that could experience the
world around it. Only then, would the machine be capable of
associating its experiences with the experiences of humans,
thus helping it understand the meaning of objects, phenomena
and words. As a first step toward building such capabilities,
this paper investigated the possibility of simulating some
aspects of the real world via a 2D physics simulation environ-
ment. A robot with a body composed of a rectangular chassis
and multiple limbs connected to rotary joints and motors, is
assigned the task of navigating through various obstacles in
the environment, until it reaches its goal of crossing a yellow
finish-line. The unique aspect of this exercise is the manner
in which the robot creates a replica of the “real-world”, in its
memory as an “imaginary world”, and is allowed to imagine
itself performing various motor actions to move its limbs in
various ways in the imaginary world, to check which of those
motions lead to the best possible motion that could take it for-
ward. When the best motion was selected, the robot performed
that motion in the “real-world”. An interesting phenomenon
noted, was that when the robot body and limbs were in a
certain start position, each time the motors were assigned the
same set of motor rates that they were assigned in the previous
attempt, there was no guarantee that the robot would move in
the same way as it did before. This was a hurdle because it
lacked repeatability and reliability, but it also offered a good
approximation of the various forces and dependencies that act
on objects in the biological world, hence roughly modelling
unpredictable motion. The reason for this unpredictability was
also investigated, because any research work tackling robot
movements in the real or simulated world, has to account for
this phenomenon and be resilient to unpredictable terrain.

Section II presents similar work that require a legged robot
to reach a goal, Sect. III presents the design decisions and
test environment, Sect. IV investigates why the robot does not
consistently perform the expected motion, Sects. V and VI
present the reasoning behind the trial runs and the inferences
derived. The paper concludes with Sect. VII and offers some
tips for future work.

II. RELATED WORK

Various attempts have been made at building embodied and
context-aware architectures [4], [5]. Artificial Neural Networks
(ANN) are available in a large variety of structures to store
memory with respect to various contexts [6] and various
attempts have been made to utilize Computational Intelligence



2

(CI) in robot gaits [7]. However, these techniques are yet to
achieve success in solving the large problem space posed by
real-world situations. This is especially true of ANN’s which
depend so heavily on trained weights, that over-fitting, under-
fitting and the vanishing gradient problem [8] pose serious
limitations. Even concepts like neural network dropouts or
Long Short Term Memory (LSTM) afford the algorithm only a
limited memory, fixed inputs and outputs which are insufficient
to represent complex phenomena, some of which need more
prominent representation than others, as evidenced by human
homunculi [9].

In order to model space, objects and generate an imagination
without utilizing complex mathematical approximations, the
animal brain may offer clues, where spatial perception is
modeled similar to a Geographical Information System (GIS)
software. The brain has specialized sets of cells to handle
proprioception [10] and the vestibular system. To understand
and process spatial information, place cells play a role [11],
dead reckoning [12], spatial view cells [13], grid cells [14],
border cells [15], speed cells [16] and head direction cells
[17] too. Oddly, despite this vast knowledge, machine learning
(ML) algorithms are yet to model these concepts accurately.
Various researchers have attempted modeling imagination in
the memories of robots [18], [19], but the robots and the
environments chosen were simple, and CI does not appear to
be used for imagination. Techniques that utilize CI algorithms
tend to focus on navigation, path planning, locomotion [20]–
[22] and joint positioning [23]. CI algorithms have also been
used for navigation on uneven and varied terrain [24]–[26],
while Gaussian and probabilistic models have been used to
decide appropriate footholds on terrain [27]. ANN’s have also
been used to provide controller action via a multi-objective
differential evolution (DE) method [28].

III. DESIGN DECISIONS

1) Robot and environment:

Fig. 1: Robot

Fig. 2: Direction angles for movement

In order that a robot be versatile in tackling random, uneven
terrain, the limbs of the robot need to move at any desired
angle. A limb coupled with a second limb, can even produce
motion similar to a linear piston motion. In order to prevent
unnecessary tumbles on uneven terrain, a rectangular chassis
was chosen instead of a circular one. The general design of
the robot is shown in Fig. 1. Two motors are attached to the
chassis, and limbs L1 are attached to each motor. A second set
of motors are attached to the free ends of the limb, to which
limbs L2 are attached. The rotation of the motor attached to
the chassis causes L1 to move and inadvertently causes L2 to
move along with it. Motor rates range from 0 to ±6 (no unit).
More limbs can be added to the robot if necessary. The robot
was designed to tumble, rather than “walk”.

The robot was initialized in a 2D physics simulation
environment named PyMunk, where the robot’s navigation
capabilities can be tested on flat ground as well as on obstacles
of various shapes and sizes. The environment was initialized
with an acceleration due to gravity of 9m/s, the robot chassis,
with a weight of 5kg and the robot limbs with weights of
0.5kg each. There was no option to assign a weight to the
motors, so they are assumed to be weightless. Directly above
the environment (called the “real world”), another duplicate
environment is initialized. This second environment is called
“imaginary world”, and represents how the robot perceives the
real world. The robot “imagines” its actions in the imaginary
world by simulating motion of multiple replica’s of itself.
Ideally, the terrain in the imaginary world should have been
created based on the sensory perception of the robot, but for
simplicity, all objects in the real world were directly duplicated
in the imaginary world. The imaginary world was meant to
simulate the manner in which biological creatures can imagine
performing various scenarios in their mind, before choosing
what they think is the best possible action and then executing
it.

Ideally, the robot should perform actions and assess them
at fractions of a second, due to the dynamic nature of the
real world and the interactions of various body parts of the
robot. However for simplicity and to avoid computational load,
it was decided to perform actions for one full second before
performing any assessments. The robot was given four possible
directions of motion: up, down, left and right, based on
angles of equal proportion. However, during initial tests, it was
realized that right-ward motions (which would take the robot
closer to the finish line) also consisted of up and down motions
when navigating terrain, so a broader angle was assigned
to the rightward motion as shown in Fig. 2. The robot was
programmed only to deal with static environments, therefore
it was possible to execute robot motions for a full second.
An environment with moving objects would have required
frequent checks and feedback control loops, which was not
within the scope of this paper, so such mechanisms were
avoided. During initial tests, a reverse-and-repeat behaviour
was also programmed into the robot, wherein it would perform
an action, and if the action did not move it forward, the motor
rates would be reversed to bring the robot back in position.
This behaviour was switched off eventually, to be able to
perform a fair comparison between uniform random, DE and



3

PSO algorithms.
Five worlds with varied terrains were initially created for

testing. A world with a flat ground, a world with randomly
distributed rectangular obstacles of varying sizes (also tests the
possibility of the robot getting stuck within concave blockades,
notches in terrain and pits), a world with randomly distributed
spheres of varying sizes (tests the robot’s capability to handle
curved surfaces), a world with a large staircase and a world
with alternating gaps that require the robot to climb a high
obstacle and then squeeze through a tunnel-like gap. The
staircase terrain was eventually discarded as it didn’t add
value compared to the rectangular obstacles. The terrains are
depicted in Fig. 3. All surfaces in the PyMunk environment
were assigned a unitless friction of value 20. The algorithm
could be run for n number of trials, and for each trial of
each terrain that required random obstacles, the obstacles were
randomly generated and saved on disk. So when the same
terrain needed to be run again with another algorithm, it
could be loaded from disk and used. This helped ensure that
various algorithms were tested under the same terrain, while
also ensuring that each trial had a different terrain. All objects
within the terrain were fixed in position and unmovable.

A few attempts were also made to test the capability of
the robot using a single leg with two limbs and two legs
with a single limb. Both of these performed sub-optimally.
Utilizing three limbs per leg offered much better dexterity and
the capability to grip objects, but for simplicity, two legs with
two limbs each were finalized for experimentation.

A. Storage and Algorithms

An initial attempt was made to give the robot a memory,
by using a graph datastructure where each node would be
composed of a hash of the chassis angle and all the limb
angles. The hash would allow locating the right node instantly,
given any robot position. The edges of the graph would be
the distance the robot moved and the motor rates used. Such a
graph was capable of storing memories of previous movements
and positions, but had limitations of memory, since the number
of possible angles for the chassis and limbs themselves were
3605 = 6.04×1012 nodes, where 360 is the number of degrees
of the possible angles and 5 represents the chassis and the four
limbs. The multiple edges between nodes of the graph was
even higher. As the number of nodes increased, it weighed
down heavily on memory. Additionally, since the nodes were
dependent on robot angles, each different type of terrain would
result in a different type of motion, so it was impossible to
predict motion using merely the information in the graph,
unless even tactile information was also incorporated into
the identity of the nodes. This would cause an exponential
increase in the number of nodes required for memory. The
other limitation such a graph node had, was the inconsistency
caused by the physics environment, as explained in IV. These
limitations led to the decision of not storing memory in
a graph, but instead, performing new calculations for each
movement. In hind-sight, this is similar to how biological
creatures tackle terrain too. At each fraction of a second,

Algorithm 1 Robot motion
Step 1: Initialize R. Initialize s = 0.
Step 2: Initialize I with angles of I = angles of R.
Step 3: Store (x, y) positions of R as PR.
Step 4: For gen = 1 to g
Step 5: Assign motor rates to I based on random values or
Algorithm 2 or Algorithm 3 and run for one second.
Step 6: Store motor values of IF and set angles of I = angles
of R.
Step 7: Next gen
Step 8: Set angles of R = angles of IF and run for one second.
Step 9: If PR variation < 20 pixels, s = s+ 1, else s = 0.
Step 10: If s == 5 goto Step 11 else goto Step 12.
Step 11: Set random angles for R. Move motors for one
second. Repeat Step 11 five times.
Step 12: If x of PR > Lx, end program else goto Step 2.

new calculations are performed in the creature’s imagination
about the outcome of any new action to perform, based on the
perceived world.

The simplest way to describe the algorithm is as such:
Robots are initialized in the imaginary world with the same
angles and position as the real robot R. Each imaginary robot
I = {I1, I2 . . . , Ip} of population size p is allowed to move
its limbs in various directions and motor rates for one second.
Such attempts are made for g generations. The motor rates
generating the greatest magnitude of movement in the positive
x direction (the fittest robot IF ) are utilized to move the real
robot, and the real robot’s limbs are moved for one second.
If the robot is stuck in the same position for five consecutive
attempts, the algorithm switches to a state where it performs
a random motion for each second, for five seconds. This was
found to be very effective to get the robot un-stuck. Once
the robot is un-stuck, the algorithm switches to the normal
imagination motion followed by real robot motion, until the
robot crosses the finish line Lx. All random values used
were generated from uniform random functions based on the
Mersenne Twister pseudo-random number generator.

The differential evolution (DE) algorithm presented as Al-
gorithm 2 and the particle swarm optimization (PSO) algo-
rithm presented as Algorithm 3 are a little different from
convention, since the fitness values could be calculated only
after all I robots had completed motion. The algorithms were
also given an rr = 0.1 probability (determined by a uniform
random function random(0, 1) ranging from values 0 to1) to
randomly initialize motor rates of 10% of the robots. In PSO,
the fitness of a robot at time t is If (t), and it is compared
with the fitness values calculated in the previous run of PSO,
depicted as If (t− 1). Also stored, are the personal best motor
rates, depicted by bp.

IV. PHYSICS INCONSISTENCY

Objects in simulated 3D and 2D physics environments tend
to have slightly unpredictable or jittery motion, sometimes
causing objects to move with an explosive velocity. A similar
slight inconsistency was noticed when the fittest robot IF
sometimes moved a little differently for the exact same motor



4

(a) Flat ground (b) Rectangular obstacles

(c) Spherical obstacles (d) Alternating obstacles

Fig. 3: The 2D simulation environments

Algorithm 2 Modified Differential Evolution
Step 1: Determine IF .
Step 2: Set rr = 0.1, cr = 0.3, βv = 2, rβ = 1/40.
Step 3: For each Ip in I
Step 4: If Ip == IF , goto Step 3 else goto Step 5.
Step 5: Randomly select 3 robots I1, I2, I3 from I , excluding
IF .
Step 6: Get motor rates of selected robots rp, r1, r2, r3.
Step 7: If random(0, 1) > rr, set random motor rates and
goto Step 10 else goto Step 8.
Step 8: If random(0, 1) ≤ cr, motor rates = r1 +
round (βv × (r2 − r3)).
Step 9: If motor rates out of range of ±6, motor rates = rp,
else rp =motor rates.
Step 10: If βv > rβ , βv = βv − rβ .
Step 11: Next Ip

rate and position. In order to investigate the cause of this
phenomenon, a separate test environment was setup to measure
the variation in the start and end positions of the robot after
one second of motion according to a specific motor rate (the

Algorithm 3 Modified Particle Swarm Optimization
Step 1: Determine fittest robot IF and fitness If for all I .
Step 2: Set rr = 0.1, c1 = 1, c2 = 2. Set velocities v and
personal best rates b for all robots to 0.
Step 3: For each Ip in I
Step 4: if Ip == IF , goto Step 3 else goto Step 5.
Step 5: Get motor rates of current robot rp and fittest robot
rF .
Step 6: If random(0, 1) > rr, set random motor rates and
goto Step 13 else goto Step 7.
Step 7: If If (t) > If (t− 1), If (t− 1) = If (t) and bp = rp.
Step 8: C = c1 × random(0, 1)× (bp − rp).
Step 9: S = c2 × random(0, 1)× (rF − rp).
Step 10: vp = vp + C + S.
Step 11: rp = rp + vp
Step 12: Clamp values of vp and rp.
Step 13: Next Ip.

robot moves for fifty frames each second). The robot was re-
initialized to the same start position at each repetition and run
with the same motor rate. This was repeated a hundred times.



5

Twenty such trials were performed, with each trial having
different motor rates. The dependence of the robot position
was checked using the motor rates, the chassis angles, the limb
angles and the contact made by each limb with the ground. Fig.
4 depicts correlations performed, where Fig. 4a shows a box-
plot of dx (pixel distance from start position to end position
in x axis) and dy (pixel distance from start position to end
position in y axis) for 100 simulations of each trial. Figure
4b allows checking if the wide variations in dx had anything
to do with the motor rates being high. Sufficient correlation
with motor rates was not found. The angles and contact with
the ground (Limb touch) were examined from multiple trials,
where, as a sample, Figs. 4c and 4d depict a consolidation of
a hundred trials each, shown by dots of a particular colour
where the x axis represents the number of frames in each
second. In each of the Touch figures in figures like Fig. 4c, a
value of 0 means no contact was made with the ground, and
any value of 1 or more means that the corresponding limb
made contact with the ground at those many points on the
limb, per frame (multiple parts of the limb can be touching
the ground at certain points of time).

Since the inconsistencies in movement could not be corre-
lated to the motor rates or the angles or the contact made with
the ground, a correspondence was initiated with the creator
of PyMunk, during which a series of experiments performed,
highlighted two issues.

1) Internal caches retain some state between steps, causing
different motion even when the same motor rate is
executed. This could be solved by deleting the robot
and re-creating it.

2) Even when robot is deleted and re-created, the torque
exerted when it pushes onto an object, can sometimes
cause explosive motions, where the robot parts briefly
get separated from their joints. This could possibly be
due to a coordinate, force, angle or number becoming
NaN , Inf or a very large number. This issue could
potentially be mitigated by setting a max force on the
motors and checking the impulse on the joints to detect
when it is too high.

Although only the possible causes of the unpredictability
could be hypothesized, these findings imply that conventional
machine learning techniques that depend on consistent outputs
to “learn”, would benefit from accounting for the uncertainties
in such simulation environments. A plus point being that
since the biological world is highly multi-dimensional and
unpredictable, the uncertainties in the simulation environment
could help in designing resilient algorithms.

V. TRIALS

As mentioned in Sect. III-A, the robots were initially run
with a learning component, where various motions were stored
in a graph, but since the graph required tactile information and
a very large storage, the approach was deemed impractical
and the robots were run by storing only each robot’s motor
rates and positions as memory. Trials were conducted on the
various available terrains, where the objective of the robot

was to maximize the distance it moved in the positive x
direction in each attempt, to reach a finish line at the end
of the environment. Trial V-C was programmed with the
added functionality of moving randomly to get out of a stuck
position. The time taken by each robot is shown in Table I.

A. Trials with g = 4, p = 5

On flat ground, a small population and few generations
showed good results, and the uniform random function was
able to consistently locate better global optima, compared to
DE and PSO. However, in the rectangular obstacles terrain,
locating optimal solutions was more difficult, and the robot
took longer to reach the finish line. As a result, a decision
was taken to expand the number of generations to 30.

B. Trials with g = 30, p = 5

Not surprisingly, running a greater number of generations
helped locate better global optima and helped the robot reach
the finish line faster in the flat terrain, the rectangles terrain
and the spheres terrain. During this trial run, the results of the
spheres terrain brought about an assumption that running 30
generations may not really be required, and fewer generations
would suffice if a larger population could explore larger
expanses of the fitness landscape. Therefore, the alternator
terrain trial was not run, and instead trials with two generations
and a population size of 30 were initiated.

C. Trials with g = 2, p = 30

One of the reasons the rectangles terrain took longer than
usual, was the fact that robots tended to get stuck in concave
spaces at the beginning of the terrain, before getting unstuck
and moving toward the finish line. One of the reasons they got
stuck, was the sub-optimal identification of the best motion,
due to fewer generations. Trial V-B had 30×5 = 150 searches
on the fitness landscape per attempt, but the current trial had
only 2 × 30 = 60 searches. It was also interesting to note
a trend that in all trials until this stage, the uniform random
algorithm gave a better result than DE or PSO in a majority
of the runs.

D. Trials with g = 30, p = 30

In order to improve the search for a better global optimum,
the number of generations and population were kept at 30.
A higher number would have been more beneficial, but was
limited at 30, keeping in mind the computational load. The
searches per attempt reached 30 × 30 = 900, which helped
locate better movements at each attempt (albeit plagued by
the physics inconsistencies mentioned in Sect. IV).

VI. INFERENCES

A. Uniform randomness is effective

The objective of using CI algorithms, is to locate a near-
optimal solution in a fitness landscape by exploiting areas
with good fitness. However, when the fitness landscape is



6

(a) dx, dy variations (b) Motor rates

(c) Angles and contact points in each frame of trial 5 (d) Angles and contact points in trial 7

Fig. 4: Determining the cause of variation in motion patterns

extremely huge and computational resources are scarce, it may
be simpler and more beneficial to utilize uniformly random
functions. Table I lists the average time taken for the real
robot to reach the finish line. Utilizing the values that were
obtained before averaging, a hypothesis test was designed to
test whether there was a significant difference or advantage
to using CI algorithms, as compared to uniform pseudo-
randomness. The null hypothesis H0 was that in highly multi-
dimensional fitness landscapes, uniform pseudo-randomness
could locate equally good local optima as the CI algorithms,
thus resulting in completion times that are more-or-less similar.
The alternate hypothesis H1 was that CI algorithms would
produce a significant improvement in results since they explore
the fitness landscape near any local optima, while continuing
to explore globally too, so the completion times of DE and
PSO should show a significant difference from the uniformly
random results.

Figure 5 depicts the positive skewed distribution of the time

Fig. 5: Probability density functions of Random, DE and PSO

the real robot took to reach the finish line. The skews were
2.13, 2.16 and 3.77 for random, DE and PSO respectively. A
0.05 confidence interval was considered when utilizing a one-



7

TABLE I: Trials

gen. (g) Popu. (p) Terrain Algo. Avg. time (s)
for 10 trials

5 4 Flat
Random 18.43

DE 31.38
PSO 24.8

Rectangles Random 143.12

30 5

Flat
Random 13.6

DE 16.77
PSO 17.29

Rectangles
Random 46.34

DE 51.01
PSO 62.79

Spheres
Random 28.99

DE 28.56
PSO 27.42

2 30

Flat
Random 22.17

DE 24.33
PSO 28.4

Rectangles
Random 115

DE 90.43
PSO 144.13

Spheres
Random 43.0

DE 38.17
PSO 45.73

Alternator
Random 210.2

DE 248.23
PSO 214.9

30 30

Flat
Random 18.08

DE 17.05
PSO 17.51

Rectangles
Random 67.36

DE 82.56
PSO 101.47

Spheres
Random 36.0

DE 41.85
PSO 46.95

Alternator
Random 132.55

DE 146.5
PSO 130.71

way Mann-Whitney rank to test the hypothesis, resulting in p−
value = 0.378 for random versus DE and p− value = 0.241
for random versus PSO. H0 was not rejected, thus proving
that the utilization of uniformly random numbers instead of CI
algorithms can be considered a viable option. A larger number
of generations and a larger population of imagined robots can
help locate better global optima, resulting in more efficient
and effective robot locomotion.

B. Physics simulations are a viable alternative

The fitness landscape for a robot that can move its limbs at
any angle, is highly multi-dimensional. Each limb could move
with one among 130 motor rates, ranging between values of
−6 and +6 (no unit). Each L1 limb’s motion caused L2’s
motion and from each such inadvertent L2 position, L2 could
perform its own motion. Besides, each motor motion begins
at one of 360 possible limb angles, and the motion of the
robot depends on which limb makes contact with the terrain.
These are affected by the number of contact points, motor
rates and angles of contact. Given such a vast range of motion
and possibilities, it is evident why biological creatures have a
limited range of motion, and why certain specific motions are
repeated frequently, even though they may not be optimal.
Robots would also benefit from storing favorite motions, and
possessing the capability to move the limb back to a starting

position for a chosen motion, rather than continuing motion
from an existing position. The fact that the robot successfully
reached the finish line by selecting the motor rates it imagined
in a simulated replica of the real world, shows that such
simulations could indeed be considered a viable alternative to
explicit programming, since when the fitness landscape is so
vast for such a simple robot, the complexity of programming
the movements for highly multi-jointed robots would be a
much more cumbersome task, especially given the various
terrains and varied effects of gravity, viscosity or buoyancy
it would encounter. Normally, physics simulations incorporate
delays, to allow simulated objects to interact with each other
in realtime. So a robot would move a certain distance in one
second. As an improvement to current methods, the physics
simulation algorithms could be re-designed to calculate all
physical interactions of that one second, in a fraction of a sec-
ond, thus allowing multiple simulations of a large population
of robots to be performed in fractions of a second, multiple
times.

VII. CONCLUSION

This paper demonstrated that an embodied consciousness (a
robot) could navigate various kinds of terrains and surfaces,
by imagining various possibilities of the action and terrain in
memory, by simulating the physics of the actions. Moreover,
it is not necessary to utilize CI algorithms to locate global
optima in a highly multi-dimensional fitness landscape (in-
fact, on many occasions, DE and PSO’s converging nature led
to the robot getting stuck at local optima). A simple uniform
random number generator is capable of locating the global
optimum.

It is also important to note the following, for future work:
1) Checks and balances are necessary every fraction of a

second, to ensure that objects in a physics simulation do
not react adversely during interaction with each other.

2) Natural phenomena are simple, but appear complex
due to being highly interconnected. Rather than create
complex models to represent this complexity, it helps to
observe anomalies and utilize simple concepts to grow
complex solutions.

3) Biological processes are optimized to conserve energy.
This builds into the system, a fatigue or laziness, and a
need to settle for a local optimum (sub-optimal solution
to any given problem). Robots do not necessarily require
a focus on optimization and efficiency. Robots can
be designed to utilize abundantly available resources,
allowing the robot to explore and experiment freely.
The molecular levels of Nature seem to be designed as
such – with an abundance that simultaneously allows
wastefulness and efficiency, thus allowing discovery of
new possibilities in a vastly multi-dimensional universe.

4) Higher forms of biological intelligence are intelligent,
not just due to high data storage capability, but also
due to performing multiple iterations of associations and
correlations between stored data and then performing
trial and error experiments to vary the outcome of obser-
vations. This is done over a period of millions of years.



8

These are a crucial task that simplistic algorithms like
ANN cannot perform effectively, due to being dependent
on neural weights, rather than depending on a database
containing a lifetime of acquired information. A full-
fledged event-based memory for intelligent machines
however [29], could augment or even replace the need
for utilizing physics simulations to create an in-memory
world-model.

REFERENCES

[1] F. Sargolini, M. Fyhn, T. Hafting, B. L. McNaughton, M. P. Witter,
M.-B. Moser, and E. I. Moser, “Conjunctive representation of position,
direction, and velocity in entorhinal cortex,” Science, vol. 312, no. 5774,
pp. 758–762, 2006. I

[2] D. Nikolić, “The brain is a context machine,” Review of psychology,
vol. 17, no. 1, pp. 33–38, 2010. I

[3] N. Ipe, “Facts and anomalies to keep in perspective when designing an
artificial intelligence,” 2020. I

[4] I. Kotseruba, O. J. A. Gonzalez, and J. K. Tsotsos, “A review of 40
years of cognitive architecture research: Focus on perception, attention,
learning and applications,” arXiv preprint arXiv:1610.08602, pp. 1–74,
2016. II

[5] P. Ye, T. Wang, and F.-Y. Wang, “A survey of cognitive architectures in
the past 20 years,” IEEE transactions on cybernetics, vol. 48, no. 12,
pp. 3280–3290, 2018. II

[6] A. Tchircoff, “The mostly complete chart of neural networks, explained,”
Towards Data Science, pp. 1–29, 2017. II

[7] C. Rong, Q. Wang, Y. Huang, G. Xie, and L. Wang, “Autonomous evo-
lution of high-speed quadruped gaits using particle swarm optimization,”
in Robot Soccer World Cup. Springer, 2008, pp. 259–270. II

[8] S. Hochreiter, “The vanishing gradient problem during learning recurrent
neural nets and problem solutions,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107–116,
1998. II

[9] W. Penfield and E. Boldrey, “Somatic motor and sensory representation
in the cerebral cortex of man as studied by electrical stimulation,” Brain,
vol. 60, no. 4, pp. 389–443, 1937. II

[10] J. Winter, T. J. Allen, and U. Proske, “Muscle spindle signals combine
with the sense of effort to indicate limb position,” The Journal of
physiology, vol. 568, no. 3, pp. 1035–1046, 2005. II

[11] J. O’Keefe, N. Burgess, J. G. Donnett, K. J. Jeffery, and E. A. Maguire,
“Place cells, navigational accuracy, and the human hippocampus,”
Philosophical Transactions of the Royal Society of London. Series B:
Biological Sciences, vol. 353, no. 1373, pp. 1333–1340, 1998. II

[12] I. Q. Whishaw, D. J. Hines, and D. G. Wallace, “Dead reckoning
(path integration) requires the hippocampal formation: evidence from
spontaneous exploration and spatial learning tasks in light (allothetic)
and dark (idiothetic) tests,” Behavioural brain research, vol. 127, no.
1-2, pp. 49–69, 2001. II

[13] E. T. Rolls, “Spatial view cells and the representation of place in the
primate hippocampus,” Hippocampus, vol. 9, no. 4, pp. 467–480, 1999.
II

[14] C. F. Doeller, C. Barry, and N. Burgess, “Evidence for grid cells in
a human memory network,” Nature, vol. 463, no. 7281, pp. 657–661,
2010. II

[15] C. Barry, C. Lever, R. Hayman, T. Hartley, S. Burton, J. O’Keefe,
K. Jeffery, and N. Burgess, “The boundary vector cell model of place
cell firing and spatial memory,” Reviews in the Neurosciences, vol. 17,
no. 1-2, p. 71, 2006. II

[16] E. Kropff, J. E. Carmichael, M.-B. Moser, and E. I. Moser, “Speed
cells in the medial entorhinal cortex,” Nature, vol. 523, no. 7561, pp.
419–424, 2015. II

[17] J. S. Taube, R. U. Muller, and J. B. Ranck, “Head-direction cells
recorded from the postsubiculum in freely moving rats. i. description
and quantitative analysis,” Journal of Neuroscience, vol. 10, no. 2, pp.
420–435, 1990. II

[18] C. Blum, A. F. Winfield, and V. V. Hafner, “Simulation-based internal
models for safer robots,” Frontiers in Robotics and AI, vol. 4, p. 74,
2018. II

[19] S. Rockel, D. Klimentjew, L. Zhang, and J. Zhang, “An hyperreality
imagination based reasoning and evaluation system (hires),” in 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 5705–5711. II

[20] B. Tang, Z. Zhu, and J. Luo, “Hybridizing particle swarm optimization
and differential evolution for the mobile robot global path planning,”
International Journal of Advanced Robotic Systems, vol. 13, no. 3, p. 86,
2016. II

[21] B. Patle, A. Pandey, D. Parhi, A. Jagadeesh et al., “A review: On path
planning strategies for navigation of mobile robot,” Defence Technology,
vol. 15, no. 4, pp. 582–606, 2019. II

[22] Z.-Y. Yang and C.-F. Juang, “Evolutionary locomotion control of a
hexapod robot using particle swarm optimized fuzzy controller,” in
2014 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, 2014, pp. 3861–3866. II

[23] N. Rokbani, E. Benbousaada, B. Ammar, and A. M. Alimi, “Biped robot
control using particle swarm optimization,” in 2010 IEEE International
Conference on Systems, Man and Cybernetics. IEEE, 2010, pp. 506–
512. II

[24] O. Janrathitikarn and L. N. Long, “Gait control of a six-legged robot on
unlevel terrain using a cognitive architecture,” in 2008 IEEE Aerospace
Conference. IEEE, 2008, pp. 1–9. II

[25] K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox, “Motion
planning for legged robots on varied terrain,” The International Journal
of Robotics Research, vol. 27, no. 11-12, pp. 1325–1349, 2008. II

[26] Q. Nguyen, A. Agrawal, X. Da, W. C. Martin, H. Geyer, J. W. Grizzle,
and K. Sreenath, “Dynamic walking on randomly-varying discrete
terrain with one-step preview.” in Robotics: Science and Systems, vol. 2,
no. 3, 2017. II

[27] C. Plagemann, S. Mischke, S. Prentice, K. Kersting, N. Roy, and W. Bur-
gard, “Learning predictive terrain models for legged robot locomotion,”
in 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2008, pp. 3545–3552. II

[28] J. Teo and H. A. Abbass, “Coordination and synchronization of loco-
motion in a virtual robot,” in Proceedings of the 9th International Con-
ference on Neural Information Processing, 2002. ICONIP’02., vol. 4.
IEEE, 2002, pp. 1931–1935. II

[29] N. Ipe, “Context and event-based cognitive memory constructs for
embodied intelligence machines,” 2020. 4


