
P
os
te
d
on

2
S
ep

20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
28
94
6
77
.v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
45
/3
44
78
68

The Programmable Data Plane: Abstractions, Architectures,

Algorithms, and Applications

Oliver Michel 1, Roberto Bifulco 2, Gábor Rétvári 2, and Stefan Schmid 2

1University of Vienna
2Affiliation not available

October 30, 2023

Abstract

Programmable data plane technology enables the systematic reconfiguration of the low-level processing steps applied to network

packets and is a key driver in realizing the next generation of network services and applications. This survey presents recent

trends and issues in the design and implementation of programmable network devices, focusing on prominent architectures,

abstractions, algorithms, and applications proposed, debated, and realized over the past years. We elaborate on the trends

that led to the emergence of this technology and highlight the most important pointers from the literature, casting different

taxonomies for the field and identifying avenues for future research.

1



The Programmable Data Plane: Abstractions, Architectures,
Algorithms, and Applications

OLIVER MICHEL, Faculty of Computer Science, University of Vienna, Austria

ROBERTO BIFULCO, NEC Laboratories Europe, Germany

GABOR RETVARI, Budapest University of Technology and Economics (BME), Hungary

STEFAN SCHMID, Faculty of Computer Science, University of Vienna, Austria

Programmable data plane technology enables the systematic reconfiguration of the low-level processing

steps applied to network packets and is a key driver in realizing the next generation of network services and

applications. This survey presents recent trends and issues in the design and implementation of programmable

network devices, focusing on prominent architectures, abstractions, algorithms, and applications proposed,

debated, and realized over the past years. We elaborate on the trends that led to the emergence of this

technology and highlight the most important pointers from the literature, casting different taxonomies for the

field and identifying avenues for future research.

This work is under review for possible publication. Copyright may be transferred without notice, after
which this version may no longer be accessible.

1 INTRODUCTION
Computer networks are the glue of modern technological infrastructures. They are deployed in

different environments, support a variety of use cases, and are subject to requirements ranging

from best effort to guaranteed performance. This wide-spread use and heterogeneity complicate the

design of network systems, and in particular their main building blocks, i.e., network devices. While

there is a pull towards specialization that allows network devices to be optimized for a particular

task, there is also tension to make network devices commodity and general to reduce engineering

cost. These opposites have ultimately pushed the need (and definition) of programmable networking

equipment, allowing operators to change device functionality using a programming interface.

Programmability introduces a significant change in the relationship between device vendors

and network operators. A programmable device frees the operator from waiting for the traditional

networking equipment’s years long release cycles, when rolling out new functionality. In fact, a

new feature can be quickly implemented and rolled out directly by the operator using the device

programming interface. On the other side, programmability frees device vendors from designing

networking equipment for a wide range of customer use cases; instead they can invest engineering

efforts into optimizing a set of well-defined building blocks that operators can leverage to implement

custom logic.

This new generation of programmable devices is proving to be especially helpful for operators

that now see the advent of large-scale cloud computing, big data applications and massive machine

learning, ubiquitous IoT, and the 5G mobile standard. These applications force operators to adopt

new ways to architect communication networks, making software-defined networking (SDN), edge

computing, network function virtualization (NFV), and service chaining the norm rather than the

exception. Overall, this requires network devices, such as switches, middleboxes, and network

interface cards (NICs), to support continuously evolving and heterogeneous sets of protocols and

Authors’ addresses: Oliver Michel, Faculty of Computer Science, University of Vienna, Vienna, Austria, oliver.michel@

univie.ac.at; Roberto Bifulco, NEC Laboratories Europe, Heidelberg, Germany, bifulco@neclab.eu; Gabor Retvari, Budapest

University of Technology and Economics (BME), Budapest, Hungary, retvari@tmit.bme.hu; Stefan Schmid, Faculty of

Computer Science, University of Vienna, Vienna, Austria, stefan_schmid@univie.ac.at.



2 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

functions, on top of the impressive set of features already supported today, including tunneling,

load balancing, complex filtering, and enforcing Quality of Service (QoS) constraints.

Supporting such an extensive feature set at the required flexibility, dynamicity, performance, and

efficiency with traditional fixed function devices requires careful and expensive engineering efforts

on the side of device vendors. Such efforts involve the tedious and costly design, manufacturing,

testing, and deployment of dedicated hardware components [137, 177], which introduce two main

problems. First, rolling out new functionality incurs significant cost and is slow. This pushes

vendors to support a given feature only when it becomes widely requested, impeding innovation.

Second, implementing every single network protocol in a device’s packet processing logic leads

to inefficiencies, due to wasting valuable memory space, CPU cycles, or silicon “real estate” for

features that only a small fraction of operators will ever use.

The introduction of programmable network devices addresses these issues, permitting the packet

processing functionality implemented by a device to be comprehensively reconfigured. Interest-

ingly, programmability is important both for software and hardware devices. On the one hand,

new software-based network switches, running on general-purpose CPUs, provide reconfigura-

bility through an extensive set of processing primitives out of which various pipelines can be

built using standard programming techniques [82, 135, 144, 160, 170]. Leveraging advances in I/O

frameworks [87, 169], these programmable software switches can achieve forwarding throughput

in the order of tens of Gbit/s on a single commodity server. On the other hand, more challenging

workloads, in the range of hundreds of Gbit/s, are in the realm of programmable hardware com-

ponents and devices, like programmable NICs (SmartNICs) [86, 150, 151, 209] and programmable

switches [1, 6, 21]. Similar to software switches, programmable networking hardware also offers

various low-level primitives that can be systematically assembled into complex network functions

using a domain-specific language [30] or some dialect of a general purpose language [53, 179].

While programmable data plane technologies already gained substantial popularity and adoption,

many questions around them remain unanswered. How to adapt and use the elemental packet

processing primitives to support the broadest possible selection of network applications at the

highest possible performance? How to expose the, potentially very complex, processing logic to

the operator for easy, secure, and verifiable configuration? How to abstract, replicate, and monitor

ephemeral packet processing state embedded deeply into this logic? Which are the applications

and use cases that benefit the most? Questions like these are currently among the most actively

debated ones in the networking community.

Following the footsteps of [105], in this paper we provide a survey on the current technology,
applications, trends and open issues in programmable software and hardware network devices. We

discuss available architectures and abstractions together with employed designs, applications, and

algorithmic solutions. We imagine this paper to be useful for a broad audience: researchers aiming

at getting an overview of the field, students learning about this novel exciting technology, or

practitioners interested in academic foundations or emerging applications in programmable data

planes. Finally, we provide an online reading list that will be continuously updated beyond the

writing of this paper [140]. Our focus is on the data plane and, in particular, on the reconfigurable

packet processing functionality inside the data plane responsible for enforcing forwarding decisions;

for comprehensive surveys on control plane designs and SDNs as a whole, see [57, 111, 153, 210].

The rest of the paper is organized as follows. In Section 2 we introduce the most important aspects

of programmable data planes. Then, we elaborate on architectures and platforms in Section 3, before

discussing abstractions and algorithms commonly leveraged in programmable data plane systems

in Sections 4 and 5. In Section 6, we present applications and proposed systems built on top of this

technology. Finally, we briefly summarize the work discussed in this paper through a taxonomy in



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 3

Network Control Plane

N
et

w
or

k
D

at
a 

Pl
an

e

Device
Data Plane

Device
Data Plane

Device
Data Plane

Device
Control Plane

Device
Control Plane

Device
Control Plane

(a) Conceptual visualization of the difference be-
tween network data plane and device data plane
in traditional network architectures

N
et

w
or

k
D

at
a 

Pl
an

e

Network
Controller

SDN 
Application

SDN 
Application

Device
Data Plane

Device
Data Plane

Device
Data Plane

Device
Control Plane

Device
Control Plane

Device
Control Plane

N
et

w
or

k
C

on
tr

ol
 P

la
ne SDN 

Application

northbound
SDN interface

southbound
SDN interface

(b) Separation of network control plane and data
plane in software-defined networking

Fig. 1. Traditional vs. SDN-based network architectures

Section 7, highlight some of the most compelling issues and open problems in the field in Section 8,

and conclude in Section 9.

2 THE PROGRAMMABLE DATA PLANE
Before diving deeper into this survey, we will now give a brief overview of the various developments

that led to the need for data plane programmability. As part of this, we will also describe what the

responsibilities of the data plane are and what data plane programmability exactly means.

2.1 Control Plane – Data Plane Separation
Conventional network equipment, regardless of the implementation (e.g., pure software or spe-

cialized hardware) and function (e.g., a switch, an edge router, or a gateway), has its functionality

logically split into a device control plane and a device data plane. The device control plane is in charge
of establishing packet processing policies, such as where to forward a packet or how to rewrite

its header, and managing the device, including checking its health and performing maintenance

operations. The device data plane in turn is responsible solely for executing the packet processing

policy set by the device control plane, usually at very high performance requirements. The control

planes of the individual devices within a given network scope, such as an organizational domain or

the entire Internet, interact through a distributed routing protocol. Through this interaction they

create the illusion of a single network-level control plane to the rest of the world, executing a virtual
global packet forwarding policy in a distributed fashion. Figure 1a shows the network-level and

device-level control plane and data plane architecture.

With the introduction of the Software-defined Networking (SDN) paradigm [57, 210], the network

control plane has emerged as a separate entity, a logically centralized controller, with some of

the device control plane functions separated out and moved to this network-level functionality.

The network control plane is in charge of (i) maintaining an inventory of the devices in the data

plane, (ii) accepting high-level network-wide policies (or intents) through a northbound controller

interface, (iii) compiling these high-level intents to per-device packet processing policies, and

finally (iv) programming these policies into the individual devices through a southbound controller

interface. In this architecture, the individual switches (or forwarding elements [3]) do not need to

implement all the logic required to maintain packet forwarding policies locally, e.g., they do not

run routing protocols to build routing tables; rather, they get these policies prefabricated from

the network control plane. Here, controller-switch communication occurs through a standardized



4 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

southbound API, like OpenFlow [138], ForCES [3], the P4Runtime [155], or the Open vSwitch

Database Management Protocol [4]. This architecture is depicted in Figure 1b. Note, however, that

the device control plane does not fully disappear in the SDN framework; rather, it remains in charge

of implementing the control channel towards the remote network control plane and to manage

the device data plane (see [43] for a discussion on complete device-level separation of the control

plane from the data plane).

2.2 Data Plane Functions
A device’s data plane processes network packets by performing a series of operations, including the

parsing of (a subset of) the packet, determining the sequence of processing operations that need to

be applied, and forwarding it based on the results of such operations. Packet processing entails the

following basic functional steps: parsing, classification, modification, deparsing, and forwarding. On
top of the basic functionality, most packet processing systems can provide additional services, such

as scheduling, filtering, metering, or traffic shaping.
Parsing is the process of locating protocol headers in the packet buffer and extracting the relevant

header fields into packet descriptors (metadata). These values are then used during classification
in order to match the packet with the corresponding forwarding policy, which describes the

forwarding decision to be applied to the packet (e.g., which output port to use) and the required

packet modification actions (e.g., rewriting a header field). The modification step applies the actions

retrieved during classification, andmay also include the update of some internal state, for instance to

increase a flow counter. Once all the modifications are applied, packet headers may be re-generated

from packet descriptors (deparsing), and finally in the forwarding step the packet is sent to an

output port for transmission. This step may include the application of scheduling policies, e.g., to
enforce network-level QoS policies, and traffic shaping to limit the amount of network resources a

flow/user may consume.

These steps can be expected to happen in the reported order; depending on the implementation

and underlying device, however, certain processing operations may happen multiple times for

a packet. For instance, parsing may examine only the first few bytes of a packet and, only after

performing classification and modification/update steps on the parsed data, the remaining bytes

may undergo a new parsing step. The classification–modification cycle may also be repeated

multiple times, either by sequencing multiple packet processing stages one after the other or by

recirculating the packet to the ingress phase of the pipeline for additional processing.

2.3 Data Plane Programmability
With the emergence and adoption of the SDN paradigm over the past several years, device func-

tionality has become much more flexible and dynamic. As previously explained, in conventional

network equipment the data plane functionality is deeply ingrained into the device hardware and

software. As a result, data plane functionality generally cannot be changed during the lifetime

of the device. For software-based packet processing systems, major vendor software updates are

required to change data plane functionality. This fixed functionality affects virtually all data plane

operations: The format and semantics of the entries that can be loaded into match-action tables are

fixed; devices only understand a finite set of protocol headers and fields. For example, an Ethernet

switch does not process layer 3 fields and an antiquated router will not support IPv6 or QuiC. The

types of processing actions that can be applied and the order in which these are enforced are set by

the device vendor; typically, MAC processing is followed by an IP lookup phase, before enforcing

ACLs and performing group processing. This makes it impossible to, e.g., apply IP routing lookup

to packets decapsulated from VXLAN tunnels. Finally, queuing disciplines (e.g., FIFO or priority



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 5

General-purpose Hardware
(CPU) — Sec. 3.1

Network Processors
(NPU) — Sec. 3.2

Field-programmable Gate Arrays 
(FPGA) — Sec. 3.3

Application-specific Integrated 
Circuits (ASIC) — Sec. 3.4

Pr
og

ra
m
m
ab

ili
ty

Pe
rf
or

m
an

ce

Hybrid 
Designs
Sec. 3.5 Smart

NICs
Sec. 3.6

Fig. 2. Overview of hardware architectures programmable data plane systems are commonly built upon.

queuing only, without support for BBR [35]) or the type of monitoring information available from

the data plane are predetermined.

Through SDN and the emergence of increasingly more general hardware designs, today’s data

plane devices can be reconfigured from the network control plane, either partially or in full. This

development has motivated the introduction of the term programmable data plane, referring to

the new breadth of network devices that allow the basic packet processing functionality to be

dynamically and programmatically changed. In the context of this survey, we use the following

definition for the programmable data plane.

Data plane programmability refers to the capability of a network device to expose the low-level

packet processing logic to the control plane through a standardized API, to be systematically,

rapidly, and comprehensively reconfigured.

Wewish to stress that data plane programmability here is not a binary property. Up to some degree,

configuring a conventional “fixed-function” device can be viewed as data plane programming. As the

exact boundaries between data plane configuration and programmability are still actively debated

in the community [14, 136], in the following discussion we embrace an inclusive interpretation of

the term and lay the emphasis on the comprehensiveness of the types of modifications a device

allows on the packet processing functionality. Correspondingly, we focus on the following aspects:

• new data plane architectures, abstractions, and algorithms that permit the data plane functional-

ity to be fully and comprehensively reconfigured, including the parsing of new packet header

fields, matching on dynamically defined header fields, and exposing new packet processing

primitives to the control plane, which together facilitate to deploy even completely new

network protocols in operation; and

• new applications that can be realized entirely in the data plane leveraging programmability,
including monitoring and telemetry, massive-scale data processing and machine learning, or

even complete key-value stores implemented fully inside the network devices, with zero or

minimal intervention from the control plane.

3 ARCHITECTURES
While data plane programmability initially was mostly targeted at switches (especially in data

center settings), today a wider range of devices and functions allow for low-level programmabil-

ity. Programmable data plane hardware or software is not only used for packet switching, but

increasingly for general network processing and middlebox functionality (e.g., in firewalls or load

balancers) as well [48, 123, 132]. Additionally, programmable network interface cards (often referred

to as SmartNICs) enable data plane programmability at the edge of the network. These devices can



6 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

be realized on top of one of the several different architectures for programmable data planes, or

leverage multiple architectures as part of a hybrid design.

In hardware designs, data plane functionality may be implemented in an ASIC (Application-

specific Integrated Circuit) [1, 21], an FPGA (Field-programmable Gate Array) [60, 209], or a network

processor [6, 86, 151]. These platforms generally offer high performance due to dedicated and

specialized hardware components, such as Ternary Content AddressableMemory chips (TCAM) [96]

for efficient packet matching. A software data plane device, on the other hand, is one where the data

plane executes the entire processing logic on a commodity CPU [45, 56, 77, 82, 144, 157, 160, 178]

using fast packet-classification algorithms and data structures [59, 109, 189]. The distinction between

hardware and software data planes is somewhat blurred though. For instance, a hardware-based

device may still invoke a general-purpose CPU (the “slow path”) to run functions that are not

supported natively in the underlying hardware or do not require high performance. Similarly,

modern software switches rely on the assistance of domain-specific hardware capabilities for

efficiency reasons, like Data Direct I/O (DDIO), segmentation offload (TSO/GSO), Receive Side

Scaling and Receive Packet Steering (RSS/RPS), and increasingly SmartNIC offloads to run the

packet processing logic partially or entirely in hardware. Below we present an overview of the

main design points in architectures for programmable data plane systems together with their

characteristics, use cases, and trade-offs made. The outline and high-level relationship between the

different sections is depicted in Figure 2.

3.1 General-purpose Hardware
General-purpose hardware architectures and CPUs (like x86 or ARM), commonly used in commodity

servers and deployed in data centers at massive scales, support a wide range of packet processing

tasks. For example, efforts of telecom operators towards advancing the 5G cellular network standards

and Network Function Virtualization (NFV) [100, 132, 154] rely on the capability to perform

high-performance packet processing with general-purpose servers [106, 157]. Modern virtualized

data centers usually have servers running the network access layer [2, 110], using a software

switch that connects virtual machines to the physical network [19, 144, 160, 193]. Driven by these

requirements, over the past years, software-based packet processing has made significant inroads

in the traditionally hardware-dominated network appliance market [54, 73, 162] with several

established programmable software switch platforms for efficient network virtualization (VPP [19],

BESS [77], FastClick [20], NetBricks [157], PacketShader [78], and ESwitch [144]), user space I/O

libraries (PacketShader [8], NetMap [169], Intel DPDK [87], RDMA [98], FD.io [56], and Linux XDP

with eBPF [22]), and NFV platforms [101, 112, 192, 196, 207].

At a high level, packet processing in a server is a simple process that includes copying the

packet’s data from a NIC buffer to the CPU, processing it for parsing and modification/update steps

before copying or moving the data again to another NIC buffer or to some virtual interface [123].

In practice, this process is significantly more cumbersome due to the complex architecture of

modern server hardware, whereby achieving high performance for networked applications requires

accounting for the architecture and characteristics of the underlying hardware [10]. For example,

modern multi-processor systems implement Non-uniform Memory Access (NUMA) architectures,

which make the relative location of NICs, processors, and memory relevant for the delay and

performance of data movements [20, 152]. Optimizing for the system’s memory hierarchy can

result in performance gains or penalties of several orders of magnitude [19].

To accelerate network packet input and output, several shortcuts in the path a packet takes

from the wire to the CPU both in software and at the hardware-level exist. In software, kernel-

bypass networking can be used to map the memory area used by NICs to write packets to or

read packets from directly into user space. This eliminates costly context switches and packet



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 7

copies vastly improving networking performance compared to standard sockets. Applications

using kernel-bypass frameworks, such as NetMap [169] or Intel DPDK [87], however, cannot

use any kernel networking interfaces and need to implement all packet processing functionality

they may need (e.g., a TCP stack or routing tables). The Express Data Path in the Linux kernel

(XDP) [80] alleviates this problem by allowing packet processing applications to be implemented

in a constrained execution environment in the kernel while using some of the OS host networking

stack. At the hardware-level, modern NICs implement Data Direct I/O (DDIO) [55, 85] in order to

copy a received packet descriptor directly into the CPU L3 cache bypassing the comparatively slow

main memory. Finally, as servers have evolved into multi-processors and multi-core architectures,

carefully planning for resources contention cases is important to provide high performance [196].

Given the above hardware properties and constraints, software implementations apply a number

of techniques to efficiently use the available resources [10, 123, 160]. Packets are usually processed

in batches to amortize the cost of locks on contended resources across the processing pipeline

and to improve data locality. Here, locality is important especially for the data required to process

a packet, e.g., a lookup table needed for packet classification. Furthermore, it may reduce the

amount of misses in the CPU’s instruction cache, which may be beneficial for some more complex

programs with many instructions [19]. Other typical techniques include adopting data structures

that minimize memory usage to better fit in caches [168], aligning data to cache lines to avoid

loading multiple cache lines for few additional bytes [144], and distributing packets across different

processors keeping flow affinity to avoid cache synchronization issues [101, 192].

Apart from these general optimization techniques, a software implementation can use several

further optimization strategies to accelerate packet processing [123]. For instance, ClickOS [135],

FastClick [20] and BESS [77] implement a run-to-completion model, in which each packet is entirely

processed before processing a second packet on the same core, whereas NFVnice [112] uses standard

Linux kernel schedulers and backpressure to control the execution of packet processing functions.

Differently, VPP [19] performs pipelined processing, performing each single processing step on the

entire batch of packets, before starting the next processing step. Likewise, parsing, classification and

modification/update steps can be intertwined as needed and desired by the programmer [20, 77].

Lazy parsing can be employed to avoid unnecessary and costly parsing operations, e.g., for packets

that are to be dropped early [22]. All these different approaches are of course possible due to the

flexibility of general-purpose CPUs which do not mandate any specific processing model.

3.2 Network Processors
Network processors, sometimes referred to as Network Processing Units (NPUs), are specialized

accelerators, usually employed both in switches and NICs. Unlike general-purpose hardware,

NPU architectures are specifically targeting network packet processing. Devices usually contain

several different functional hardware blocks. Some of these blocks are dedicated to network-specific

operations, such as packet load balancing, encryption, or table lookups. Some other hardware

resources are instead dedicated to programmable components that are generally used to implement

new network protocols and/or packet operations. Given its availability for research and the support

for recent data plane programming abstractions, we will describe the architecture of a Netronome

Network Function Processor (NFP) programmable NIC (cf. Fig. 3) as an example of a NPU [151].

Since network traffic is a mainly parallel workload, with packets belonging to independent

network flows, network processors are generally optimized to perform parallel computations,

with several processing cores. While the number of these cores could be in the order of tens

or hundreds, the per-core computing power is usually limited, thus most of the performance

benefits come from the ability to process many packets in parallel. In Netronome terminology, a

programmable processing core is named micro-engine (ME). Each ME has 8 threads which share



8 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

Island

ME ME…

CLS
64KB

CTM
256KB

Distributed Switch Fabric

12 MEs

…6 Islands

PCIe 
Gen 3 x8

To/From
x86

IMEM
4MB

EMEM
3MB 

(Cache)

DRAM

DRAM

Ingress
PPC

Egress
PPC

Egress
MAC

Ingress
MAC

From
Network

To
Network

Fig. 3. The architecture of a Netronome NFP’s programmable blocks. Some specialized hardware blocks (e.g.,
for cryptography tasks) are not shown.

local registers that amount for a few KBs of memory. MEs are further organized in islands. Each

island has limited shared Static Random Memory Access (SRAM) memory areas of a few hundred

KBs: the CLS and CTM memories. Generally, these memory areas are used to host data frequently

accessed, and that may be required for the processing of each network packet. Finally, the network

processors provide a memory area shared by all islands, the IMEM, of 4MB SRAM, and a memory

subsystem that combines two 3MB SRAMs, used as cache, with larger DRAMs, called EMEMs.

These larger memories generally host the forwarding tables and access control lists used by the

networking subsystem to decide how to forward (or drop) a network packet. All building blocks are

interconnected via a high-speed switching fabric, such that MEs can communicate and synchronize

with any other ME irrespective of their location. Of course, communications across islands take

longer and may impact the performance of a running program. Packets enter and exit the system

through arrays of packet processing cores (PPC) that perform packet parsing, classification, and

load balancing to the MEs. Media Access Control (MAC) units write and read the packets to and

from the network. The Netronome NFP supports different interfaces up to 2 × 40 Gbit/s Ethernet.

A PCIe interface enables communication to the system’s CPU via direct memory access (DMA).

Similar to general-purpose servers, network processors support a flexible programming model,

and do not mandate any particular order for the processing steps of a packet. For instance, it

is possible to perform the parsing of just a few bytes in the beginning of the processing, and

postpone further parsing only when the need arises. Similarly, the entire packet data is available

for processing since data can be stored at the different levels of the processor’s memory hierarchy.

The handling of the data in relation to the memory hierarchy, however, has a significant impact on

the achievable processing speed, and is therefore an important design step (and limiting factor)

when programming such devices.

3.3 Field-programmable Gate Arrays
Field-programmable Gate Arrays (FPGA) are semiconductor devices based on a matrix of intercon-

nected configurable logic blocks. Contrary to ASICs, FPGAs can be programmed and reconfigured

after manufacturing to implement custom logic and tasks. While custom ASIC designs generally

offer the best performance, modern FPGAs narrow this gap for many use cases due to increased

clock speeds and memory bandwidth [119]. High-level synthesis or specialized compilers allow

programming FPGAs using languages like C or P4 as opposed to more complex and cumbersome



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 9

Ingress Pipeline

Ingress
Parsers

Match+
Action
Stages

Ingress
Deparser

Egress Pipeline

Egress
Parsers

Match+
Action
Stages

Egress
Deparser

Packet 
Buffers

Queues
Packet 

Pointers

Fig. 4. The architecture of an RMT-like switching ASIC

hardware description languages, such as Verilog [200, 203]. The balance of high performance to-

gether with programmability make FPGAs not only interesting for prototyping but also a powerful

alternative to costly and rigid ASIC designs for production environments [16, 32, 118]. In the

context of networking, FPGAs are primarily used on NICs to offload packet processing from servers

with the goal of saving precious CPU cycles [60].

The availability and comparatively low cost compared to fully programmable switches (such

as devices with a Barefoot Tofino ASIC) make FPGAs particularly interesting for academia to

prototype high-performance network data planes. NetFPGA, for example, is a widely available

open-source FPGA-accellerated network interface card. The most recent version (FPGA SUME)

couples a Xilinx Virtex 7 FPGA with four 10Gb Ethernet ports [209]. A more recent effort in this

direction is Corundum [61], which provides an open source platform for implementing a 100Gbps

NIC on FPGA. Corundum is a collection of the basic NIC modules and building blocks, which

are ready to be implemented on several commercial FPGA cards. FPGAs have also entered the

public cloud market with Amazon Web Services offering FPGA-equipped virtual machine instances

making the technology even more accessible.

3.4 Application-specific Integrated Circuits
While in the early days of the ARPANET and the Internet, routing and packet processing was

performed in software [79], the rapid adoption and increasing scale of the Internet required more

efficient hardware-based designs (i.e., ASICs) to keep up with increasing packet rates. An ASIC is a

chip specialized and optimized for (in this case) high-performance packet processing, focusing on

implementing just the minimal set of operations required for this task. In fact, network devices

built using ASICs generally include a second general-purpose sub-system, e.g., based on CPUs,

in order to implement the device’s monitoring and control functions, as well as more complex

(and uncommon) packet processing functions that the ASIC does not support. The processing in

ASICs is usually called the fast path and, by contrast, the slow path is the processing done by the

general-purpose sub-system.

A typical ASIC is implemented as a fixed pipeline of different processing steps that are performed

sequentially, e.g., L2 processing before L3 processing or MPLS lookup. Fast SRAM or TCAM banks

alongside the pipeline store forwarding rules (such as routing entries) accessed in the individual

lookup stages. A prominent example of one of the first ASIC-based networking devices is the

Juniper M40 router [58] that provided unprecedented 40 Gbit/s routing performance through

logically separated control and data plane components within a single chassis together with a

highly customized switching chip. Most high-performance switches and routers such as the Cisco

ASR or Juniper MX series devices still leverage fixed-function ASICs. While extremely efficient,

these devices suffer from long and costly development cycles hindering flexibility and innovation.

As a result, recently, more flexible and programmable switching chip architectures, such as

Reconfigurable Match-action Tables (RMT) [31], the Protocol-independent Switch Architecture

(PISA) [37], and implementations, such as Intel Flexpipe [1], Barefoot Tofino [21], or Cavium



10 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

Xpliant [6], have been proposed. Programmable data plane devices allow network operators to

programmatically change the low-level data plane functionality in order to support novel or custom

protocols, to implement custom forwarding or scheduling logic, or to enable new applications that

are then entirely executed in hardware.

These RISC-inspired programmable ASICs are organized as a pipeline of programmable match-

action stages. Before a packet enters the pipeline, a programmable parser dissects the packet

buffer into individual protocol headers. The match-action stages then consist of memory banks

implementing tables for matching extracted packet headers and Arithmetic Logical Units (ALUs)

for actions such as modifying packet headers, performing simple calculations, or updating internal

state. The tables may further have different matching capabilities depending on the way they are

implemented in hardware. For instance, exact matching tables can be implemented as hash tables

in SRAM, while wildcard matching tables are generally implemented using more expensive TCAM.

At the end of the pipeline a deparser again serializes the individual (possibly altered) headers before

sending the packet out on an interface or passing it to a subsequent pipeline. In many switches

it is common to have at least two such pipelines, an ingress and an egress pipeline [37]. Figure 4

depicts the RMT reference design for programmable switches. We will further elaborate on the

match-action table abstraction used in this design in Section 4.1.2.

3.5 Hybrid Architectures
In addition to the platforms discussed above, interesting hybrid hardware-software designs mixing

existing concepts with fresh ideas from distributed systems and multi-processor design have

been proposed lately. While it is often believed that the performance of programmable network

processors is lower than integrated circuits, there exists literature questioning this assumption

and exploring these overheads empirically. In particular, Pongrácz et al. [162] showed that the

overhead of programmability can be relatively low. Furthermore the performance gap between

programmable and hard-wired chips is not primarily due to programmability itself but rather

because programmable network processors are commonly tuned for more complex use cases.

Past work on hybrid architectures also explored the opportunity to use Graphics Processing

Unit (GPU) acceleration. For many applications, such as network address translation or analytics,

packet processing workloads can be partitioned using a packet’s flow key (e.g., IP 5-tuple). This

makes packet processing a massively parallelizable workload, which could be in principle suitable

to be implemented in multi-threaded hardware like GPUs [78]. However, the advantages and

disadvantages of this strategy are being actively debated in the systems community [68, 99]. Kalia

et al. [99] argue that for many applications the benefits arise less from the GPU hardware itself than

from the expression of the problem in a language such as CUDA or OpenCL that facilitates memory

latency hiding and vectorization through massive concurrency. The authors demonstrate that

when applying a similar style of optimizations to different algorithm implementations, a CPU-only

implementation is more resource-efficient than the version running on the GPU. An answer to the

issues raised by Kalia et al. was given by Go et al. [68]. Their work finds that with eight popular

algorithms widely used in network applications, (i) there are many compute-bound algorithms

that do benefit from the parallel computation capacity of GPUs, and (ii) the main performance

disadvantage of GPUs comes from the need to traverse the PCIe bus to move data from the main

memory to the GPU. Nonetheless, it should be noted that in [68] there are several use cases that

require some encryption algorithm to be run on the packet data. Today, these workloads are better

handled with dedicated hardware provided both by CPUs and NICs, thereby reducing the potential

areas of applicability of GPU-based acceleration for packet processing.

Various applications are particularly suitable for hybrid hardware-software co-designs. One of

them is in the context of forwarding table optimization. In [25, 102] architectures are studied which



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 11

allow high-speed forwarding even with large rule tables and fast updates, by combining the best

of hardware and software processing. In particular, the CacheFlow system [102] caches the most

popular rules in a small TCAM and relies on software to handle the small amount of cache-miss

traffic. The authors observe that one cannot blindly apply existing cache-replacement algorithms

because of the dependencies between rules with overlapping patterns. Rather long dependency

chains must be broken to cache smaller groups of rules while preserving the semantics of the policy.

Another example for applications that commonly leverage hybrid hardware-software designs

are network telemetry and analytics systems. These systems must make difficult trade-offs between

performance and flexibility. While it is possible to run some basic analytics queries (e.g., using

sketches) entirely in the data plane at high packet rates, systems generally follow a hybrid ap-

proach where analytics tasks are partitioned between hardware and software to benefit from high

performance in hardware, as well as from programmability, concurrent measurement capabilities,

and runtime-configurable queries in software. Systems employing such a design are *Flow [188],

Sonata [75], and Marple [149]. We further elaborate on these systems in Section 6.1.

3.6 Programmable NICs
Orthogonal to the previously presented architectures, programmable Network Interface Cards, a

new platform for programmable data planes, have attracted significant attention in the networking

community over the past years. These devices (often referred to as SmartNICs) are commonly

built around NPUs and FPGAs. The design and operation of programmable NICs involve a range

of interesting aspects related to the host-network communication interface and operating sys-

tem integration they provide. SmartNICs are consequently well-suited for offloading end-to-end

mechanisms (e.g., congestion control) and applications, such as key-value stores and virtualization.

In general, modern NICs implement various features in hardware, such as protocol offloading,

multicore support, traffic control, and self-virtualization. In the following, we only focus on the

architectural design papers and defer the applications, such as virtualization support, to Section 6.

Without specialization and device-specific optimizations operating systems commonly fail to

efficiently leverage and manage the considerable hardware resources provided by modern network

interface controllers. To reinvigorate the discussion of the design of NICs, and to overcome current

shortcomings, Shinde et al. [182] developed a network stack that represents both the physical

capabilities of the network hardware and the current protocol state of the machine as data flow

graphs. The implementation of NIC features in hardware can introduce several challenges related

to protocol dependencies, limited hardware resources, and incomplete/buggy/non-compliant im-

plementations. The slow evolution of hardware NICs due to increasing design complexity may also

not keep up in time with new protocols and rapidly changing network architectures. The SoftNIC

architecture [77] has been designed to fill the gap between hardware capabilities and user demands.

It implements sophisticated NIC features on a few dedicated processor cores, while assuming only

streamlined functionalities in hardware.

A main concern is to simplify the development of server applications that offload computation

and data to a NIC accelerator. Floem [161] is a set of programming abstractions for NIC-accelerated

applications which simplify data placement and caching, partitioning of code for parallelism, and

communication strategies between program components across devices. It also provides abstractions

for logical and physical queues, global per-packet state, remote caching, and interfacing with

external application code.

SmartNIC offloading can bring significant performance benefits compared to general-purpose

systems by leveraging specialized parallel processors, dedicated subsystems for many networking

tasks (e.g., traffic control or encryption), and efficient host communication. Different use cases

for offloading distributed applications on SmartNICs are considered in [126]. iPipe is a generic



12 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

actor-based offloading framework to run distributed applications on commodity SmartNICs. It

is built around a hybrid scheduler that combines first-come-first-serve with deficit round-robin

policies to schedule offloading tasks at microsecond-scale precision on SmartNICs.

A fundamental challenge of NICs is related to the noisy neighbor problem. Kumar et al. in [114]

systematically characterize how performance isolation can break in virtualization stacks and find a

fundamental tradeoff between isolation and efficiency. A new NIC design, PicNIC, the Predictable

Virtualized NIC, shares resources efficiently in the common case while rapidly reacting to ensure

isolation in order to provide predictable performance for isolated workloads.

Another use case arises in the context of SmartNIC-accelerated servers used to executemicroservice-

based applications in the data center. By offloading suitable microservices to the SmartNIC’s

low-power processors, one can improve server energy-efficiency without latency loss. A system

leveraging this approach is E3 [128], which follows the design philosophies of the Azure Service

Fabric microservice platform, and extends key system components to a SmartNIC. E3 addresses chal-

lenges associated with this architecture related to load balancing workloads, placing microservices

on heterogeneous hardware, and managing contention on shared SmartNIC resources.

A primary reason for high memory and processing overheads inherent to packet processing ap-

plications is the inefficient use of the memory and I/O resources by commodity NICs. FlexNIC [104]

implements a new network DMA interface that allows operating systems and applications to

install simple packet processing rules into the NIC, which then executes these operations while

transferring the packet to the host memory.

4 ABSTRACTIONS
The differences among data plane technologies are often reflected in the packet processing primitives

exposed to the control plane and programming language constructs that can be used to combine

these primitives to implement the required pipeline. Given this inherent architectural coupling, we

next discuss common abstractions used and exposed in programmable data plane systems. We start

by discussing programmable packet processing pipelines before diving deeper into abstractions

for packet parsing and scheduling. Finally, we review programming languages and compilers for

programmable data planes.

4.1 Programmable Packet Processing Pipelines
Flexible packet processing is the core capability of programmable data planes. Today’s programmable

packet processing pipelines are generally built on top of three fundamental abstractions: the data

flow graph abstraction and related switch architectures, the match-action pipeline abstraction,

and state machine switch architectures that allow to implement stateful workloads on top of the

previous abstractions. We now elaborate on each of these.

4.1.1 Data flow graphs. Early designs for packet processing systems borrowed heavily from generic

systems design [190] andmachine learning [7], adopting the data-flow graph abstraction to architect

programmable switches [147]. This model is also heavily used in stream processing frameworks

such as Apache Flink or Spark. A data flow graph describes processing logic as a graph, with the

nodes representing elemental computation stages and edges representing the way data moves from

one computation stage to the other. A nice property of this abstraction is its simplicity, allowing

the programmer to assemble a well-defined set of processing nodes into meaningful programs

using a familiar graph-oriented mental model. This way, computational primitives (nodes) are

developed only once and can then be freely reused as many times as needed to generate new

modular functionality, creating a rapid development platform with a smooth learning curve.



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 13

Perhaps the earliest programmable switch framework adopting the data flow graph abstraction

was the Click modular software router [147]. The unit of data moving through the Click graph is a

network packet on which nodes can perform simple packet processing operations, such as header

parsing, checksum computation and verification, field rewriting, or checking against ACLs. Some

nodes provide network protocol-specific functions, such as handling ARP requests and responses,

while others offer more general data flow control functions, such as load balancing, queueing, or

branching (selecting the next processing stage out of several alternatives).

ClickOS [135], FastClick [20], Vector Packet Processing (VPP) from the FD.io project [56], the

Berkeley Extensible Software Switch (BESS, [77]), and NetBricks [157] adopt a similar design,

with the difference that the fundamental data unit that moves along the data flow graph is now

a vector of packets instead of a single packet. This development stems from the observation

that batch-processing amortizes I/O costs over multiple packets, and that using the built-in Single-

Instruction-Multiple-Data (SIMD) instruction sets of modern CPUs results in more efficient software

implementations [20, 78, 87]. NetBricks, in addition, introduces a new framework for the isolation of

potentially untrusted packet processing nodes, using novel language-level constructs and zero-cost

compile-time abstractions [157].

The presence of user-defined functionality abstracted as data flow graph nodes gives a great

flexibility and extendibility [117, 135]. At the same time, this flexibility tends to make the result-

ing designs piecemeal, and heterogeneity complicates high-level network-wide abstractions and

encumbers performance optimization [120, 121].

4.1.2 Match-action processing. The match-action abstraction describes data plane programs using a

sequence of lookup tables (flow tables) organized into a hierarchical structure [30, 138, 144, 160, 178].

A subset of the packet header fields is used to perform a flow table lookup in the first table to identify

the corresponding packet processing actions, which can then instruct the switch to rewrite packet

contents, encapsulate/decapsulate tunnel headers, drop or forward the packet, or defer packet

processing to subsequent flow tables. The programmer configures the packet processing behavior

through dynamically setting the content of the flow tables, by adding, removing, or modifying

individual entries with the associated matching rules and processing actions via a standardized

API [159]. This has the benefit of exposing reconfigurable data plane functionality to operators

using the familiar notion of flows described by matching rules defined over certain header fields

(an abstraction extensively used in firewalls and ACLs). Hierachies of lookup tables, as also used by

conventional fixed-function router ASICs, are used to synthesize more complex L2/L3/L4 pipelines.

The match-action abstraction was popularized for programming switches by the OpenFlow

protocol [138], which in turn borrowed greatly from Ethane [36]. OpenFlow in its first version

allowed the definition of only a single flow table using a rather limited set of header fields; the

abstraction was later extended to a pipeline of multiple flow tables defined over a large array

of predefined header fields. With the introduction of multi-table match-action pipelines in the

OpenFlow v1.1 specification, the distinction between the data flow graph and the match-action

abstractions has become increasingly blurry [138]. As illustrated using an example in Figure 5, a

hierarchical match-action pipeline can easily be conceptualized as a special data flow graph with

lookup tables as processing nodes and “goto-table” instructions as the edges.

Currently Open vSwitch [160] remains the most popular OpenFlow software switch, using a

universal flow-caching based datapath for implementing the match-action pipeline. This design was

improved upon by ESwitch [144], introducing data plane specialization and on-the-fly template-

based datapath compilation to achieve line-rate OpenFlow software switching. Despite being widely

adopted, OpenFlow is limited in matching arbitrary header fields. This sparked research in flexible

lookup tables with rich semantics, configurable control flow, and platform-specific extensions.



14 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

Parser De-
parser

Routing
hit

Routing
miss

Routing

match: ip-dst

action: set next-hop

L2 Processing

L3 Processing

match: mac-dst

action: set out-port

match: next-hop

action: ttl -= 1, set 
mac-src, mac-dst, 
out-port

Access Control

match: mac-src, 
mac-dst, ip-src, ip-
dst, ip-proto

action: drop

Fig. 5. Simplified match-action table dependency graph for a basic router (inspired by Fig. 3 in [30]).

Driven by the advances in switching ASIC technology, the Reconfigurable Match Tables (RMT)

abstraction [31] overcomes the main limitations in OpenFlow ASICs in two ways, by letting match-

action tables to be defined on arbitrary header fields and extending the previously rather limited

set of packet processing actions available. While RMT allows for matching on arbitrary bit ranges

within a packet header and applying modifications to the packet headers in a programmable

manner, applications for this architecture are still constrained by the rigid sequential design of the

architecture. dRMT [39] relaxes some of these sequential processing constraints and provides a

more flexible architecture by separating memory banks for matching packets from processing stages.

This design allows using hardware resources more efficiently and, compared to RMT, increases the

set of programs mappable to line-rate hardware architectures. Lately, P4 [30] and the accompanying

hardware and software switch projects [1, 21, 178] have been met with increasing enthusiasm from

the side of device vendors, operators, and service providers [113, 191].

4.2 Stateful Packet Processing
In the early days of the Internet, most stateful packet processing has taken place at the end hosts

(e.g., to terminate a TCP connection) while most packet forwarding and processing within the

network operated in a stateless manner (i.e., devices do not need to keep track of any state be-

tween packets). Today, stateful network functions are commonplace and include firewalls, network

address translators, intrusion detection systems, load balancers, and network monitoring appli-

ances [198]. With the emergence of high-performance packet processing capabilities in software,

network functions are increasingly implemented in commodity servers, an approach referred to as

network function virtualization (NFV). More recently, programmable line rate switches allow for

comprehensive programmability. As a result, these devices are commonly used for tasks other than

switching and routing. We will discuss examples of new use cases and applications in Section 6.

4.2.1 Programming abstractions for stateful packet processing. Providing flexible and platform-

independent programming abstractions for stateful packet processing on programmable data plane

devices remains a challenge today. Due to the complexities and constraints associated with most

platforms, stateful packet processing is often still implemented in SDN controllers, significantly

reducing overall network performance. Toward this problem, several works propose abstractions

around finite state machines (FSM) for simplified programming of stateful packet processing

pipelines. Data plane programs defined using the FSM abstraction can then be compiled for and

offloaded to line rate hardware devices [23, 24, 148, 163]. Other more language-focused approaches

include Domino [185], which introduces the abstraction of packet transactions that allows expressing
stateful data plane algorithms in a C-like language without having to define match-action tables or

other architecture-related details. Hardware designers can specify their instruction sets through

small processing units called atoms that the Domino compiler configures based on the application



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 15

code. The work on Domino also provides a machine model for programmable line-rate switches,

called Banzai machine, that can be used as a target for Domino programs and is available to the

community. While Domino programs target a single switch, SNAP [15] allows programmers to

develop stateful networking programs on top of a “single switch” network-wide abstraction. The

SNAP compiler handles how to distribute, place, and optimize access to state arrays across multiple

hardware targets. Finally, SwingState [131] is a state management framework that enables consistent

state migration among programmable data planes by piggybacking state updates to regular network

packets. A static analyzer for the P4 language detects which state needs to bemigrated and augments

the code for in-band state transfer accordingly.

4.2.2 State management in virtualized network functions. NFV promises simplifying middlebox

deployment, improving elasticity and fault tolerance while reducing costs. In practice, however, it

remains challenging to deliver on these promises due to the tight coupling of state and processing in

NFV environments. State either needs to be shared among NF instances or is kept local for a certain

subset of network flows. In either way, keeping network-wide state consistent and thus the NF’s

behavior correct when distributing traffic for dynamic scaling or in the face of failures is non-trivial.

There are several lines of work aiming at alleviating this problem. Generally, they can be classified

in approaches that (a) keep all state local to a NF and transfer state when required [156, 165, 176],

(b) mix local and remote state [65, 166], and (c) use centralized or distributed remote state [97, 202].

Relatable to SwingState [131] in this context is StateAlyzr [106], a static analysis framework for data

plane programs. Given network function code, it identifies state that would need to be migrated

and cloned to ensure state consistency in the face of traffic redistribution or failure. The authors

find that for many network functions, their system can reduce the amount of state that needs to be

migrated significantly compared to naive solutions.

4.3 Programmable Parsers
Perhaps the most fundamental operation of every network device is to parse packet headers to

decide how packets should be processed. For example, a router uses the IP destination address

to decide where to send a packet next and a firewall compares several fields against an access

control list to decide whether to drop a packet. Packet parsing can be one of the main bottlenecks

in high speed networks because of the complexity of packet headers [67]. Packets have different

lengths and consist of several levels of headers prepended to the packet payload. At each step of

encapsulation, an identifier indicates the type of the next header or eventually the type of data

subsequent to the header leading to long sequential dependencies when parsing packets. Moreover,

headers often only provide partial information (e.g., MPLS) and do not fully specify the subsequent

header type, requiring further table lookups or speculative execution.

Implementing low-latency parsers for high-speed networks is particularly challenging. In order

to minimize overheads, switches often employ a unified packet parser. Such parsers use an algorithm

that parses all supported packet header fields in a single pass. While this can improve performance,

it also increases complexity and may become a security issue, especially for virtual switches [194].

Programmability is another key requirement as header formats may change over time, e.g., due

to new standards or due to the desire to support custom headers. Examples of more recent header

structures include PBB, VxLAN, NVGRE, STT, or OTV, among many more. In order to support new

or evolving protocols, a programmable parser can use a parse graph that is specified at runtime,

e.g., leveraging state tables implemented in RAM and/or TCAM [67].



16 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

4.4 Programmable Schedulers
Exposing programmable interfaces for scheduling and queuing strategies is another core function-

ality in the context of programmable networks. Sivaraman et al. [186] present a solution which

allows known and future scheduling algorithms to be programmed into a switch without requiring

hardware redesign. The proposed design uses the property that scheduling algorithms make two

decisions: in what order to schedule packets and when to schedule them. Additionally, the authors

exploit the fact that in many scheduling algorithms a definitive decision on these two questions

can be made at an early stage of processing, when a packet is enqueued. The resulting design

uses a single abstraction: the push-in first-out queue (PIFO), a priority queue that maintains the

scheduling order or time. Another design for a programmable packet scheduler was presented

by Mittal et al. [142]. The authors show that while it is impossible to design a universal packet

scheduling algorithm, the classic Least Slack Time First (LSTF) scheduling algorithm provides a

good approximation and can meet various network-wide objectives.

Implementing fair queuing mechanisms in high-speed switches is generally expensive since

complex flow classification, buffer allocation, and scheduling are required on a per-packet basis.

Motivated by the question of how to achieve fair bandwidth allocation across all flows traversing

a link, Sharma et al. [181] present a dequeuing scheduler, called Rotating Strict Priority, which

simulates an ideal round-robin scheme where each active flow transmits a single bit of data in

every round. This allows to transmit packets from multiple queues in approximately sorted order.

The trend toward increasing link speeds and slowdown in the scaling of CPU speeds, leads

to a situation where packet scheduling in software results in lower precision and higher CPU

utilization. While this drawback can be overcome by offloading packet scheduling to hardware

(e.g., NICs), doing so compromises on the flexibility benefits of software packet schedulers. Ideally,

packet scheduling in hardware should hence be programmable. Motivated by the insight that ”in

the era of hardware-accelerated computing, one should identify and offload common abstractions

and primitives, rather than individual algorithms and protocols”, Shrivastav in [183] proposes a

generalization of the Push-In-First-Out (PIFO) primitive used by state-of-the-art hardware packet

schedulers: Push-In-Extract-Out (PIEO)maintains an ordered list of elements, but allows dequeueing

from arbitrary positions in the list by supporting programmable predicate-based filtering when

dequeuing. PIEO supports most scheduling (work-conserving and non-work conserving) algorithms

which can be abstracted as the following scheduling policy: Assign each element (packet/flow) an

eligibility predicate and a rank. Whenever the link is idle, among all elements whose predicates are

true, schedule the one with the smallest rank. The predicate determines when an element becomes

eligible for scheduling, while rank decides in what order to schedule amongst the eligible elements.

With the hardware design of the PIEO scheduler, also presented in [183], the scalability of this

approach is demonstrated.

4.5 Programming Languages and Compilers
An important dimension of programmable data planes regards the programming languages and

compilers used to realize the data plane functionality. Over the last years, we have witnessed several

promising efforts that go beyond low-level SDN protocols, such as OpenFlow, ForCES, or NETCONF.

New high-level dataplane programming languages allow to specify packet processing policies

within a specific switch architecture in terms of abstract, generic, and modular language constructs.

These efforts are largely driven by the needs of operators toward more complex SDN applications.

Furthermore, the capabilities of modern, more flexible and programmable line rate networking

hardware has motivated language approaches to specify the switch processing architecture (i.e.,

the layout of match-action tables and protocols supported in the parsing stage). The conceptual



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 17

SDN Controller

Programmable Switch

Switch Architecture
Parsers, M+A Table Sequence, 

Actions

Data Plane Rules
M+A Table Content

Operator

Define Policy
e.g., Pyretic, NetCore

Configure/Query Rules
e.g., OpenFlow, ForCES

Define Data Plane Architecture
e.g., P4, Domino

Fig. 6. Comparison of Languages and Protocols used in Programmable Data Planes

differences between these two classes of language abstractions found in programmable data plane

systems today are depicted in Figure 6.

4.5.1 SDN policy definition. Languages for SDN programming generally differ in the amount of

visibility that should be provided in SDNs (see [44] for a discussion on this). A well known language

is Frenetic, a programming language for writing composable SDN applications using a set of high

level topology and packet-processing abstractions. Pyretic [62] improves on Frenetic by adding

support for sequential composition, more advanced topology abstractions, and an abstract packet

model that introduces virtual fields into packets. Modular applications can be written using the static

policy language NetCore [145, 146], which provides primitive actions, matching predicates, query

policies, and policies. Maple [199] simplifies SDN programming (1) by allowing a programmer to

use a standard programming language to design an arbitrary, centralized algorithm, controlling the

behavior of the entire network, and (2) by providing an abstraction where the programmer-defined,

centralized policy is applied to every packet entering a network.

Providing solid mathematical foundations to networking is one of the basic desires of SDNs.

NetKAT [13] is one of the major efforts towards this objective. NetKAT proposes primitives for

filtering, modifying, and transmitting packets, operators for combining programs in parallel and

in sequence, and a Kleene star operator for iteration. NetKAT comes with provable guarantees

that the language is sound and complete. In general, functional languages have become popular to

provide such higher levels of abstractions, also including languages such as PFQ-Lang [28], which

allows to exploit multi-queue NICs and multi-core architectures.

4.5.2 Low-level data plane definition. At the heart of today’s programmable data planes lies the

question of how to specify and reconfigure the low-level architecture and configuration of pro-

grammable switching chips (i.e., the layout and sequence of match-action tables, the protocols

understood by the protocol parser, and the actions supported) in an expressive and flexible manner.

Furthermore, challenges arise in the design of compilers and the targeted hardware architectures

of such language-based abstractions.

A first and most prominent language abstraction and compiler for specifying low-level packet

processing functionality within programmable data planes is P4 [30]. Motivated by the limitation

of existing SDN control protocols, such as OpenFlow, which only allow for a fixed set of packet

header fields and actions, P4 makes it possible to define hardware packet processing pipelines

together with the header parsers and deparsers, match-action tables, and low-level actions that

can be applied to each packet. This language abstraction allows for protocol-independent packet

processing by matching on arbitrary bit ranges and applying user-defined actions. Abstract P4

programs are then compiled for the underlying data plane target in a separate step. The origins of

P4 go back to work by Lavanya et al. [95] who study how to map logical lookup tables to physical

tables while meeting data and control dependencies in the program. The authors also present

algorithms to generate solutions optimized for latency, pipeline occupancy, or power consumption.



18 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

The compiled data plane program is then used to configure the underlying hardware or software

target, and the P4-defined match-action tables are populated at runtime using a specific control

interface, such as the P4 Runtime [74].

P4 rapidly gained immense popularity in the research community and is used in countless projects.

Particularly, the wide range of supported targets from software switches to full reconfigurable

ASICs as well as strong industry adoption make P4 a key enabling technology for comprehensive

and flexible data plane programmability. For example, P4FPGA [200] is a open source compiler and

runtime for P4 programs on FPGAs. By combining high-level programming abstractions offered by

P4 with a flexible and powerful hardware target, P4FPGA allows developers to rapidly prototype and

deploy new data plane applications. A second work in this direction is P4->NetFPGA [84], which

integrates the function described with P4 in the NetFPGA processing pipeline. Other compilers

exist for different software switching architectures, SmartNICs, and reconfigurable ASICs.

Extended programmability in the data plane also opens avenues for introducing bugs or writing

insecure code. Ensuring correctness of programs is therefore also of high importance for data plane

programs. Network verification and program analysis approaches aim at alleviating these issues.

While widely in use in traditional network paradigms, network verification for fully programmable

data plane systems is still an area of ongoing research. To this end, Dumitrescu et.al. [52] propose a

new tool and algorithm, called netdiff, to check the equivalence of related P4 programs and FIB

updates in order to detect inconsistent behavior and bugs in data plane implementations. Also

with the goal of simplifying P4 development, better testing programs, and identifying bugs early,

Bai et al. propose NS-4 [17] a comprehensive simulation framework for P4-defined data planes. NS-4

integrates with the popular network simulator ns-3 and can efficiently simulate large multi-node

networks running data planes written in P4.

5 ALGORITHMS AND HARDWARE REALIZATIONS
The realization of programmable data planes various algorithms, often to be implemented in

hardware. In this section, we discuss some of the major algorithms and hardware building blocks

used in programmable data planes.

5.1 Reconfigurable Match-action Tables
Traditional OpenFlow hardware switch implementations allow packet processing on a fixed set

of fields only. Reconfigurable match tables such as RMT [31] allow the programmer to match on

and modify all header fields (or arbitrary bit ranges) making the devices significantly more flexible

and capable. RMT for example is a RISC-inspired pipelined architecture for switching chips which

provides a minimal set of action primitives to specify how headers are processed in hardware. This

makes it possible to change the forwarding plane without requiring new hardware designs.

5.1.1 Exact matching tables. Large networks (such as data centers running millions of VMs) require

efficient algorithms and data structures for their forwarding information bases (FIB) to that scale to

millions of entries on commodity switching chips. An attractive approach to realize such memory-

efficient and fast exact match FIB operations in software switches is to employ highly concurrent

hash tables. For example, solutions based on cuckoo hashing such as CuckooSwitch [208] have

been shown to be able to process high packet rates across the PCI bus of the underlying hardware

while maintaining a forwarding table of one billion forwarding entries

5.1.2 Prefix matching tables. Programmable switches implementing match-action tables in hard-

ware generally need to support different types of operations and tables. Besides exact matches,

especially IP address lookups and prefix matching are frequent operations and have thus received

much attention in the research community. Besides optimizing lookup time, improving memory



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 19

efficiency of match-action table representations in hardware is an imporant problem given the

heavily constrained resources on these devices. A natural solution to improve the memory effi-

ciency of IP forwarding tables is to employ FIB aggregation, by replacing the existing set of rules

by an equivalent but smaller representation. Such aggregations can either be performed statically

(such as ORTC [50]) or dynamically (such as FIFA [129], SMALTA [197], or SAIL [204]). Rétvári

et al. [168] explored the application of compressed data structures to reduce FIB table sizes to an

information-theoretical optimum without sacrificing the efficiency of standard operations such

as longest prefix match and FIB update. An implementation of their approach in the Linux kernel

(using a re-design of the IP prefix tree) shows the feasibility and benefit of this approach.

Inspired by Zipf’s law, i.e., the empirical fact that certain rules are used much more frequently

than others, caching represents another optimization opportunity. For instance, it may be sufficient

to cache only a small fraction of the rules on the fast expensive hardware fast path; less frequently

used rules can be then moved to less expensive storage; e.g., to the DRAM of the route processor or

software-defined controller. Different FIB caching schemes use different algorithms that minimize

the number of updates needed to the cache [25, 26].

In the context of virtual routers used for flexible network services such as customer-specific

and policy-based routing, further challenges related to resource constraints arise. In particular,

supporting separate FIBs for each virtual router can lead to significant memory scaling problems.

Fu et al. [63] proposed to use a shared data structure and a fast lookup algorithm that capitalizes

on the commonality of IP prefixes between virtual FIB instances.

5.1.3 Wildcard packet classification. Packet classification, the core mechanism that enables net-

working services such as firewall packet filtering and traffic accounting, is typically either imple-

mented using ternary TCAMs or software. Both TCAM and software-based approaches usually

entail trade-offs between (memory) space and (lookup) time.

Content-addressable memory (CAM) and Ternary CAM (TCAM) chips are the most important

component in programmable switch ASICs to perform packet classification on configurable header

fields. Using dedicated circuitry, rules can be matched in priority order and in only a single clock

cycle. In particular, TCAMs classify packets in constant time by comparing a packet with all

classification rules of ternary encoding in parallel.

A major design challenge of large-capacity CAMs is to reduce power consumption associated

with the vast amount of parallel active circuitry, without sacrificing speed or memory density, and

while supporting (typically required) multidimensional packet classification [96]. Despite their

high speed, TCAMs can also suffer from a range expansion problem: When packet classification

rules have fields specified as ranges, converting such rules to TCAM-compatible rules may result

in an explosion of the number of rules.

One approach to reduce TCAM power consumption for high-dimensional classification is to

employ pre-classifiers, e.g., considering just two fields such as the source and destination IP

addresses. The high dimensional problem can thereby use only a small portion of a TCAM for

a given packet. Ma et al. [133] showed how to design a pre-classifier such that a given packet

matches at most one entry in the pre-classifier, avoiding rule replication. SAX-PAC in turns exploits

the observation that many practical classifiers include lots of independent rules, allowing the

corresponding matches to be made in arbitrary order and usually considering only a small subset

of dimensions [109]. TCAM Razor [124], furthermore, strives to generate a semantically equivalent

packet classifier that requires the least number of TCAM entries. It is also known that the negative

space-time tradeoff which seems inherent in the design of classifiers, can sometimes be overcome

allowing for, e.g., range constraints [109].



20 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

Perhaps the most prominent application of generic wildcard packet classifiers, the Open vSwitch

fast-path packet classifier [160] uses a combination of extensive multi-level hierarchical flow-

caching and the venerable Tuple Space Search scheme (TSS) [189]. TSS exploits the observation

that real rule databases typically use only a small number of distinct field lengths, therefore, by

mapping rules to tuples, even a simple linear search of the tuple space can provide significant

speedup over a naive linear search over the filters. In TSS, each tuple is maintained as a hash table

that can be searched in constant time. While TSS is used extensively in practice, recently it has

been shown that the linear search phase can be exploited in a malicious algorithmic complexity

attack to exhaust data plane resources and launch a denial of service attack [41, 42].

5.2 Fast Table Updates
Match-action tables should not only support a fast lookup but also fast updates for inserting,

modifying, or deleting rules. Such updates can be accelerated by partitioning and optimizing

the TCAM. For example, Hermes [38] trades off a nominal amount of TCAM space for assuring

improved performance. Also a hybrid software-hardware switch such as ShadowSwitch [27] can

help lowering the flow table entry installation time. In particular, since software tables are very fast

to be updated, forwarding table updates should happen in software first before being propagated

to TCAM to offload software forwarding and to achieve higher overall throughput. Lookups in

software should be performed only in case there are no entries matching a packet in hardware.

Solutions such as ShadowSwitch further exploit the fact that deleting entries from TCAM is much

faster than adding them, hence translating an entry installation to a mix of installation in software

tables and deletion from hardware tables.

6 APPLICATIONS
Recently, there is a trend towards moving certain general information-processing functionality

formerly implemented either entirely in software on end hosts or on dedicated hardware appliances

right into the network data plane. The ability to program network devices suddenly changes a

dumb pipe that only moves data into a complete, sophisticated data processing pipeline that is able

to transform data at unprecedented rates inside the network. Applications that have been offloaded

to the network in this manner include monitoring and telemetry, massive-scale data-processing

and machine learning, and even complete key-value stores. Network devices already sit in the data

path and as a result offloading additional functionality here minimizes the need for additional,

potentially expensive, data movement and reduces the end-to-end processing latency. In addition,

many applications may benefit from the new visibility into the network (e.g., queue occupation

levels) or from the energy savings possible by running conventional compute tasks on low-power

programmable NICs [127].

One may wonder which types of applications may benefit most from being offloaded into the

programmable data plane [172]. Is there an over-arching scheme that would help identify when to

consider the data plane implementation for a particular use case? Judging from recent examples, we

see that the typical applications are the ones that (1) process massive amounts of network-bound data
or have a strong networking component in some way (e.g., implement request-response patterns),

(2) pose stringent latency and/or throughput requirements, and (3) can be decomposed into a small set
of simple primitives that lend themselves readily to be implemented partially or entirely on top of

the packet processing primitives exposed by the underlying programmable data plane devices.

A typical example would be measurement/telemetry applications, which allow operators to

inspect traffic passing through the network at line rate. Today, telemetry mostly occurs “outside the

network”, e.g., by mirroring traffic flows to a separate middlebox, raising non-trivial performance

and resource consumption concerns. Recently it has been observed that many measurement tasks



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 21

can be expressed in terms of simple primitives called sketches that can be implemented “inside the

network” on programmable switches, resulting in orders of magnitude improvements in speed,

latency, and resource consumption at the cost of a minimal loss in precision [83, 187].

Below, we highlight some of the well known examples for data plane offloading from the literature,

including virtual switching, in-network computation, telemetry, distributed consensus, resilient

and efficient forwarding, and load balancing.

6.1 Monitoring, Telemetry, and Measurement
Perhaps the most interesting applications for data plane offloading are related to network mea-

surement, telemetry, monitoring, and diagnosis. This is due to these applications having all the

traits that make them most suitable for data plane-based implementations, namely massive traffic

scale and stringent performance requirements. Moreover, some applications can be realized using

sketches that can efficiently be implemented in switches. The current state-of-the-art involves

mirroring monitored traffic to dedicated middleboxes, involving costly duplication of all traffic of

interest to an external link; consequently, the efficiency gain with a data plane implementation

is enormous. Programmable data planes can be a game changer in this context, providing deep

insights into the network, even to end hosts, as we discuss in the following.

At the heart of many approaches lies the goal to improve the visibility into network behavior.

Jeyakumar et al. [90] present a solution which not only provides improved visibility to end-hosts but

also allows to quickly introduce new data plane functionality, via a new Tiny Packet Program (TTP)

interface. Rooted in the work on Smart Packets [174] originally proposed for on-switch network

management and monitoring based on the Active Network paradigm [57], TTPs are embedded into

packets by end hosts and can actively query and manipulate internal network state. The approach

is based on the “division of labor” principle: switches forward and execute TTPs in-band at line

rate, and end hosts perform flexible computation on the network state exposed by the TTPs. The

authors also present a number of use case descriptions motivating in-band network telemetry. The

general framework for in-band network telemetry (INT) was later presented by Kim et al. in [107].

As a step toward generalized measurement, one direction of work has looked at sketches as a

new data plane structure for network analytics. Sketches, which leverage probabilistic, sub-linear

data structures, are an efficient way to maintain summarizing statistics and metrics over large

input datasets [12]. OpenSketch [205] provides a library of such sketches while UnivMon [130]

introduces a universal streaming scheme, where a generic sketch in hardware preprocesses packet

records at high rates and software applications compute application-specific metrics. Recently,

SketchVisor [83] presented a comprehensive network measurement framework which augments

sketch-based measurement in the data plane with a fast path that is activated under high traffic

load to provide high-performance local measurement with slight degradation in accuracy.

To make network monitoring systems more flexible, researchers have sought ways to allow

network operators to write network measurement queries directly and in a more expressive way,

instead of relying on a particular sketch. These queries can then be compiled to run on modern

programmable switches at line rate. Marple [149] identified a set of fixed operators that can be

compiled to programmable hardware and used to compose a wide range of network monitoring

queries. This approach offers great performance for any analytics tasks that can fit entirely in a PFE,

but it also requires software offload once the device’s SRAM and ALU resources are full. Sonata [75]

improved on this hardware restrictive model by more intelligently dividing a query into parts

that are executed on the PFE and parts that are executed on a general-purpose software stream

processor. Motivated by the limited processing capabilities of software stream processing systems,

Sonata introduced a method of iterative refinement, which can reduce the amount of traffic sent to



22 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

software. This iterative refinement, however, comes at the cost of using significant SRAM and ALU

resources on the switch and also requires relaxing the temporal and logical constraints of a query.

Further applications of in-network measurement are related to heavy hitter detection [164, 187],

traffic matrix estimation [69], and TCP performance measurements [66]. First, HashPipe [187]

realizes heavy-hitter detection entirely in the data plane. HashPipe implements a pipeline of hash

tables, which retain counters for heavy flows while evicting lighter flows over time. Second, Gong

et al. [69] show that by designing feasible traffic measurement rules (installed in TCAM entries of

SDN switches) and collecting the statistics of these rules, fine-grained estimates of the traffic matrix

are also possible. Finally, Dapper [66] allows to analyze TCP performance problems in real time

right near the end-hosts, i.e., at the hypervisor, NIC, or top-of-rack switch. This makes it possible

for the operator to determine whether a particular connection is limited by the sender, the network,

or the receiver, and to intervene accordingly in a timely manner.

Finally, an orthogonal line of work identified that programmable switches, while not suitable for

practical and ubiquitous offload of analytics tasks due to resource constraints, are useful for accel-

erating and enhancing telemetry systems. Instead of compiling entire queries to a programmable

switch, *Flow [188] places parts of the select and grouping logic that is common to all queries into

a hardware match-action pipeline. In *Flow, programmable line rate switches export a stream of

grouped packet vectors (GPVs) to software processors. A GPV contains a flow key, e.g., IP 5-tuple,

and a variable-length list of packet feature tuples, e.g., timestamps and sizes, from a sequence of

packets in that flow. GPVs are generated through a novel in-network key-value cache that can be im-

plemented as a sequence of match-action tables for programmable switches. The authors expanded

on the telemetry system with a customized, high-performance network analytics platform [141].

6.2 Virtual Switching
Virtual networking is heavily used in data centers and cloud computing infrastructure. At the heart

of cloud computing lies the idea of resource sharing and multi-tenancy: independent instances (e.g.,
applications or tenants) can concurrently utilize the physical infrastructure including their compute,

storage, and management resources [110]. While physically integrated, network virtualization

enables logical isolation of resources for each tenant. Virtual switches are network components

located in the virtualization layer of servers that connect tenants’ compute and storage resources

(e.g., virtual machines (VMs), storage volumes, etc.), provisioned at the server, to the rest of the

data center and the public Internet [2, 88, 110].

Network virtualization and multi-tenancy is typically implemented at the virtual switches that

are co-located with the physical servers/hypervisors (e.g, Open vSwitch [160]). Using flow table-
level isolation the flow tables in the virtual switch are divided into per-tenant logical data paths

that are populated with sufficient flow table entries to link the tenants’ resources into a common

interconnected workspace [2, 88, 110]. This workspace practically is an overlay network realized

through a tunneling protocol, such as VXLAN [5]. As an alternative to this host-based virtual

switch model, tagging packets for network virtualization can also be offloaded to the NIC [60, 70].

Despite the widespread deployment of virtual networking [45, 60, 94], providing sufficient (logical

and performance) isolation remains a key challenge. For example, serious isolation problems with

the Open vSwitch [160] have been reported in [195]: an adversary could not only break out of the

VM and attack all applications on the host, but could also manifest as a worm, and compromise an

entire data center. Another severe performance isolation vulnerability, also in OVS, was reported

in [41, 42] and can result in a low-resource cross-tenant denial-of-service attack. Such attacks

may exacerbate concerns surrounding the security and adoption of public clouds [175]. Jin et

al. [91] were the first to point out the security weakness of co-locating the virtual switch with the



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 23

hypervisor, proposing stronger isolation mechanisms. In response, MTS [193] proposes placing

per-tenant virtual switches in virtual machines for increased security isolation.

6.3 In-network Computation
In-network computation typically addresses the performance bottlenecks and scalability limits that

massive-scale machine learning and big data frameworks implemented in data centers face [7, 49].

Big data/machine learning applications, such as query processing, graph processing, and deep

learning, exhibit a very special communication pattern. First, as in many of these applications

the output size is a fraction of the input size, these applications usually substantially reduce and

aggregate the data during processing (e.g., take the sum of the inputs, or find the minimum). It

is therefore beneficial to apply these functions as early as possible to decrease the amount of

network traffic and reduce congestion. Second, these applications are usually characterized by

simple arithmetic/logic operations which make them suitable to parallelization and execution on

programmable switches. Third, in many algorithms these operations are also commutative and

associative which implies that they can be applied separately and in arbitrary order on different

portions of the input data without affecting the correctness of the end result.

Correspondingly, most big data applications follow the map-reduce pattern to achieve massive

horizontal scaling: large-scale computation instances are first partitioned across many edge servers

that do partial processing on smaller chunks before the results are again aggregated to obtain the

final result. Such many-to-few communication patterns are, however, poorly supported in most

network gear incurring significant performance bottlenecks in data center-based deployments.

The first attempt at departing from performing data aggregation at edge servers was Cam-

doop [40] which supports on-path aggregation for map-reduce applications on top of a direct-

connect data center fabric where all traffic is forwarded between servers without switches. While

Camdoop significantly reduces network traffic and provides a performance increase, it requires a

custom network topology and is incompatible with common data center infrastructure. Netagg [134]

was a proposal to avoid the limitations of Camdoop by implementing on-path aggregation inside

the network layer at dedicated middleboxes. Netagg improves job completion times significantly

across a wide range of big data workloads and frameworks including Apache Hadoop and Apache

Solr search. Later, SHArP [72] removed dedicated “network accelerator” middleboxes from the

in-network computation stack and presented a generic programmable data plane hardware archi-

tecture for efficient data reduction, relying on scalable in-network trees and pipelining to reduce

latency for big data processing in data centers.

Liu et al. lay the foundations of a general in-network computation framework by presenting

a minimal set of abstractions they call IncBricks [127]: an in-network caching fabric with basic

computing primitives based on programmable network devices. The authors in [180] furthermore

ask the related general question of how to overcome the limitations imposed by the usually scarce

resources provided on programmable switches, like limited state storage and limited types of

operations, for in-network computation tasks. They identify general building blocks that can be

used to mask these limitations of programmable switches using approximation techniques and

then implement several approximate variants of congestion control and load balancing protocols,

such as XCP, RCP, and CONGA [11] that require explicit support from the network.

Recent innovations in in-network computation are based on the observation that the network

itself may also be used as an accelerator for workloads that are (at first sight) unrelated to networking

or packet processing. In particular, machine learning and artificial intelligence workloads have

emerged as promising candidates to be (partially) implemented within the network [171]. More

specifically, programmable network devices may be a suitable engine for implementing a CPU’s

Artificial Neural Networks co-processor. N2Net [184] is an example of an in-network neural



24 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

network, based on commodity switching chips deployed in network switches and routers. Another

interesting application that can be implemented in the network is string matching for accelerating

information retrieval and language processing use cases. PPS [89] is an in-network string matching

implementation for programmable switches. The PPS compiler translates a set of keywords to

Deterministic Finite Automata (DFA) that can then be realized in hardware as a sequence of match-

action tables. The authors show that the resulting matching throughput is significantly higher than

comparable software implementations.

6.4 Distributed Consensus
Another interesting application for programmable data planes is related to distributed consensus

algorithms: the coordination among controllers or switches in order to perform a computation

jointly and reliably, even in the presence of network failures, arbitrary communication delays, or

Byzantine participants. Applications include leader selection, clock synchronization, state replica-

tion, publish-subscribe patterns, and general multi-write key-value stores. Perhaps viewable as

a special case of in-network computation, distributed consensus still deserves special discourse

not only because of the substantial research treatment that it received over the past years but also

because it exhibits a special network requirement profile: while general in-network computation

is mostly throughput-bound, distributed consensus is much more latency-oriented, often posing

delay requirements on the order of a single server-to-server round-trip time (or even less, see [92]).

NetPaxos [47] demonstrates the feasibility of implementing the venerable Paxos distributed

consensus protocol [115, 116] in network devices, either using certain OpenFlow extensions or by

making some assumptions about how the network orders messages. Although neither of these

protocols can be fully implemented without changes to the underlying switch firmware, the authors

argue that such changes are feasible in existing hardware. Dang et al. [46] also show the performance

benefits achievable by offloading Paxos into the data plane and describe an implementation in P4.

In-band mechanisms and functionality in the data plane can also be used for synchronization

and coordination of other components in distributed systems, such as SDN controllers. Schiff et

al. [173] propose a synchronization framework based on atomic transactions implemented in data

plane switches and show that their approach allows to realize fundamental consensus primitives in

the presence of failures. The authors also discuss applications for consistent policy composition.

Recently, NetChain [92] provides scale-free coordination in data centers within a single server-

to-server round trip time (RTT), or even less (half of an RTT!). This is achieved by allowing

programmable switches to store data and process queries entirely in the data plane, which eliminates

the query processing at coordination servers and cuts the end-to-end latency perceived by clients to

as little as the processing delay from their own software stack plus network delay. NetChain relies

on new protocols and algorithms guaranteeing strong consistency and switch failure handling.

Further interesting applications related to consistency arise in the context of key-value stores.

For example, NetCache [93] implements a small key-value store cache in a programmable hardware

switch. The switch works as a cache at the data center’s rack-level, handling requests directed to the

rack’s servers. The implementation deals with consistency problems and shows how to overcome

the constraints of hardware to provide throughput and latency improvements. SwitchKV [122]

generalizes this idea by implementing a generic data plane-based key-value query accelerator,

with significant improvements in both system throughput and latency. Programmable network

switches act as fast key-value caches by keeping track of cached keys and routing requests to the

appropriate nodes at line speed based on the query keys encoded in packet headers, so that the data

plane cache nodes absorb the hottest queries and therefore no individual key-value store backend

server is overloaded. Furthermore, specialized in-switch key-value stores for network measurement

collection and aggregation appear in *Flow [188], Marple [149], and IncBricks [127].



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 25

Perhaps, an unlikely place to find distributed consensus protocols is in the programmable

devices themselves. However, deep inside a typical programmable switch lies a rather complex

distributed appliance, with multiple match-action tables, parsers, queues, etc., closely cooperating

to perform consistent, high-performance packet processing. It turns out that consistently applying

modifications to this pipeline is a rather complex task, in sore need for strong consistency guarantees.

Lately, BlueSwitch [76] has presented a programmable network hardware design that supports

a transactional packet-consistent configuration mechanism: all packets traversing the data path

will encounter either the old configuration or the new one, and never an inconsistent mix of the

two. This will help avoiding network transients like blackholes and micro-loops that often plague

today’s operational networks [71].

6.5 Resilient, Robust, and Efficient Forwarding
Data planes operate at much faster pace than the typical control plane usually implemented in

software. This motivates to move functionality for maintaining connectivity under failures into the

switches. At the same time, offloading control planes is non-trivial.

The authors in [44] make the observation that typical SDN workloads impose significant com-

munication overheads due to frequent interaction between the control and data plane. Some of the

control plane functionality, however, can be efficiently offloaded from the controller to the switch

itself. In order to meet the needs of high-performance networks, the authors propose and evaluate

DevoFlow, a modification of the OpenFlow model which breaks the tight coupling between the SDN

control plane and the data plane in a way that maintains a useful amount of visibility for the former

without imposing unnecessary communication costs. For common SDN applications, DevoFlow

requires notably fewer flow table entries and results in reduced controller-switch communication

compared to a traditional OpenFlow realization. Molero et al. [143] take this idea further and make

a general case for offloading control plane protocols (e.g., a routing protocol) entirely to the data

plane. Motivated by long convergence times of traditional routing protocols, the authors show that

modern programmable switches are powerful enough to run many control plane tasks directly in

hardware. As a proof of concept, the authors implement a path vector protocol for programmable

data planes in P4. Their implementation rapidly converges in the case of link failure while fully

respecting BGP-like routing policies.

The design of resilient data planes has been studied intensively in the literature. In order to provide

high availability, connectivity, and robustness, dependable networks must implement functionality

for in-band network traversals, e.g., to find failover paths in the presence link failures [29]. Here,

mechanisms based on dynamic state at the switches provide interesting advantages compared to

simple stateless mechanisms or mechanisms based on packet tagging. Liu et al. [125] propose to

move responsibility for maintaining basic network connectivity entirely into the data plane, which

operates much faster than the control plane. Their approach to ensure connectivity via data plane

mechanisms relies on link reversal routing, adapted to handle operational concerns like message

loss or arbitrary delay from the original algorithm by Gafni and Bertsekas [64] (see also [158]).

Holterbach et.al. [81] provide an implementation for automatic data-driven fast reroute entirely in

the dataplane. Their system, Blink, runs on programmable line-rate switches and detects remote

outages by analyzing TCP behavior directly within the switch. In case of failure, Blink quickly

restores connectivity and reroutes traffic via backup paths without control plane involvement.

6.6 Load Balancing
Related to resilient routing, programmable data planes provide unprecedented flexibilities and

performance in how traffic can be dynamically load balanced across multiple forwarding paths,

workers, or backend servers. For instance, Hedera [9] can also be viewed as a load balancer.



26 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

The aim is to implement the “resource pooling” principle using horizontal scaling [201], making

a collection of independent resources behave like a single pooled resource in order to exploit

statistical multiplexing, load distribution, and improved failure resilience.

A well-known example is HULA [103], a scalable load balancing solution using programmable

data planes. HULA is motivated by the shortcomings of Equal-Cost Multi Path (ECMP) as well as of

existing congestion-aware load balancing techniques such as CONGA [11]. Due to limited switch

memory, these approaches can only maintain a subset of congestion-tracking state at the edge

switches and hence do not scale. HULA is flexible and scalable as each switch tracks congestion

only for the best path to a destination through a neighboring switch. Another example of a load

balancing application is SilkRoad [139], which leverages programmable switching ASICs to build

faster load balancers.

Beyond multipath load balancers, MBalancer [33] addresses the load-balancing problem in the

context of key-value stores. In particular, distributed key-value stores often have to deal with highly

skewed key-popularity distributions, making it difficult to balance load across multiple backends.

MBalancer is a switch-based L7 load balancing scheme, which offloads requests from bottleneck

Memcached servers by identifying the (typically small number of) hot keys in the data plane,

duplicating these hot keys to many (or all) Memcached servers, and then adjusting the switches’

forwarding tables accordingly.

7 TAXONOMIES FOR PROGRAMMABLE SWITCHES
In Figures 7 and 8, we present a broad classification of the key papers discussed throughout

this survey. This taxonomy is split between foundational contributions that enable data plane

programmability (Figure 7) and works that leverage programmable data planes in exciting use

cases and for novel applications (Figure 8).

Additionally, as an annex to this survey, an annotated reading list for students, practitioners,

and researchers interested in the area of programmable data plane technologies is also available

online [140].

8 RESEARCH CHALLENGES
To sum up this survey and share our learnings, in the following, we provide a short discussion of

major open issues and research challenges we see in this space.

8.1 Improved Abstractions
Which abstractions provide an optimal tradeoff between supported functionality, resulting performance,
and API simplicity?

A first major research challenge revolves around novel abstractions. As we have seen, the art and
science of programmable switch architectures revolve around abstractions. Ideally, an abstraction

should be simple enough to capture just the right amount of configurable data plane functionality to

admit efficient hardware and software implementations, but profound enough to allow higher layers

to synthesize complex packet processing behavior on top of. Moreover, such an abstraction should

be easily exposable to the control plane through a secure and efficient data plane API [138, 155].

It should adequately handle global state embedded in the data plane and provide a well-defined

consistency model [202]. It should admit analytic performance models [18, 144] and automatic

program transformations for performance optimization [144]. It should separate static semantics

from dynamic behavior [167]. And last but not least, it should embrace a convenient mental model

that is familiar to network operators and programmers. Not surprisingly, many of the open problems

in the field are related to finding the right abstraction for the data plane functionality.



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 27

Foundations
Architectures/Platforms

Software: OVS [160], BESS [77], VPP [56], PISCES [178], NetBricks [157]

Network Processors: Netronome NFP [151], Intel XScale [86]

FPGAs: NetFPGA [209], P4FPGA [200]

ASICs: Barefoot Tofino [21], Cavium XPliant [6], Intel Flexpipe [1]

Abstractions/Building Blocks

Match-action: Ethane [36], OpenFlow [138], RMT [31], P4 [30], PISCES [178]

Data Flow: Click [147], VPP [56], BESS [77], NetBricks [157]

State: FAST [148], OpenState [23], NetBricks [157], Domino [185], SNAP [15], FlowBlaze [163]

Algorithms

Matching: CuckooSwitch [208], FIB Compression [168], Online FIB Aggr. [26]

Table Updates: Hermes [38], ShadowSwitch [27]

Scheduling: PPS [186], PIEO [183], Approx. Fair Queueing [181], Universal Sched. [142]

Languages

Defining Policy: DevoFlow [44], Pyretic [62], NetCore [145], Maple [199], PFQ [28]

Defining Low-level Processing: Packet Programs [95], P4 [30], Domino [185], Netdiff [52]

Fig. 7. Taxonomy of works laying the foundations of programmable data plane technology

Applications
Monitoring: OpenSketch [205], Marple [149], Sonata [75], INT [107], *Flow [188]

Switching: OVS [160], OVS Security [195], AccelNet [60], Network Virt. [110]

In-network computation: Camdoop [40], IncBricks [127], NetAI [171], N2Net [184]

Consensus: NetPaxos [47], Switchy Paxos [46], NetChain [92], NetCache [93]

Resiliency: Connectivity in the Data Plane [125], Blink [81], Hedera [9]

Load balancing: CONGA [11], SilkRoad [139], Hula [103], MBalancer [33]

Fig. 8. Taxonomy of key applications built on top of programmable data planes

8.2 Efficient Reconfigurability
How to support more efficient yet consistent reconfigurability in the data plane?
A related issue regards the support for reconfigurability. Alongside the move from the rigid

programming model of OpenFlow to the more flexible P4 world, comes the desire to expose

every aspect of processing functionality a switch may perform to be reconfigured for different and

changing use cases in a flexible and efficient manner. This is not limited to the way packet processing

policies are represented in the data plane, including the method by which packets are associated

with the respective processing actions to be executed on them, but extends to further critical

packet processing operations, and the reconfigurability thereof, ranging from programmable packet

parsing [67] to universal scheduling and queuing schemes [142, 186]. In particular, changing data

plane behavior at runtime without disrupting packet processing [188] remains an open problem.

8.3 Scalability
How to realize high performance implementations of data planes, especially stateful ones?



28 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

The need to scale systems to handle massive workloads increasingly pushes designers to explore

more complex solutions that handle some state already in the data plane [93, 139, 180]. While

stateless packet processing approaches are rather solid at this point in time, stateful approaches are

still in their infancy and no clear winner has emerged yet. The complexity of a stateful abstraction

lays in the need to address state management problems (e.g., consistency) in a programmer-friendly

way while guaranteeing high performance. This is especially challenging as frequently reading

from and writing to memory, as it is continuously required in packet processing workloads, is still

one of the main sources of performance issues in modern computing systems [31, 51].

8.4 Network Automation
How to design more automated and self-adjusting networks that are able to map high-level policies to
the underlying physical infrastructure and autonomously adapt their configuration and operation to
changing demands or failures?
A major current trend in networking concerns automation. Over the last years, the vision of

“self-driving” communication networks which adapt and optimize themselves towards their current

workload has emerged. Related to this trend is also the notion of “intent-based networking” which

describes the vision of designing and operating networks in terms of higher-level business policies,

and letting the network deal with low-level concerns in an automated, data-driven, agile, secure, and

verifiable way [34]. Recent progress in high-level network programming languages has delivered

important insights to realize the vision of intent-based networking in the form of efficient language

constructs and modular composition frameworks [62, 95, 108, 146, 199, 206]. Yet, it is still not clear

how to best expose data plane functionality to the operator offering the maximum programming

freedom while masking the underlying complexities efficiently. Ideally, an “intent-based data plane

compiler” should actively attempt to find the data plane representation that would yield the highest

performance [144] with the minimal data plane footprint [124, 168], built on a firm theoretical

foundation for optimizing data plane programs and reasoning about performance [18, 144].

8.5 Verification and Monitoring
How to design efficient verification and monitoring frameworks which allow the operator or intent
layer to (provably) test the correctness and performance of the network state and load?

Data plane compilation, that is, downward mapping from the intent layer to the data plane is just

one side of the coin. In fact, highly related to the challenges associated with automatically adapting

the network to changing environments is the need to verify the correctness and sufficiency of a

configuration change. To close the control loop, an upwards mapping is also necessary, which

would permit the control plane to monitor and verify the operations of the data plane. Indeed,

recent results indicate that the network should be architected from the ground up with verifiability

in mind [108], which may require the definition of new abstractions. In general, given the mission-

critical role the data plane plays, the success of novel data plane technologies will depend on the

reliability guarantees they can provide.

These and other research directions, related to abstractions, performance, automation, and

security, will likely continue to require the attention of researchers for many years in an effort to

find improved tradeoffs and new opportunities in an evolving context.

9 CONCLUSION
Motivated by the changing demands in packet processing toward flexibility, programmability, and

high performance, novel ideas and solutions are needed to quickly and cost-efficiently support

change. Programmable networks in general and programmable data planes in particular provide

exactly that: an inexpensive alternative to supporting all possible packet processing functionality at



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 29

once. Programmable networks hence also support niche solutions: solutions which would not have

been worthwhile realizing for vendors, due to the small-scale market. While the body of existing

work in this field covered in this survey is already vast, the field is still rapidly evolving and we

believe network programmability is still in its infancy.

REFERENCES
[1] Intel FlexPipe. http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-

switchfm6000-series-brief.pdf.

[2] Ovn, bringing native virtual networking to ovs. http://networkheresy.com/ovn-bringing-native-virtual-networking-

to-ovs/.

[3] Rfc 3746: Forwarding and control element separation (forces) framework. https://tools.ietf.org/html/rfc3746.

[4] Rfc 7047: The open vswitch database management protocol. https://tools.ietf.org/html/rfc3746.

[5] Rfc 7348: Virtual extensible local area network (VXLAN). https://tools.ietf.org/html/rfc7348.

[6] XPliant ethernet switch product family. http://www.cavium.com/XPliant-Ethernet-Switch-ProductFamily.html.

[7] Abadi, M., Barham, P., Chen, J., et al. TensorFlow: a system for large-scale machine learning. In Proc. USENIX
OSDI ’16 (2016), USENIX.

[8] Advanced Networking Lab/KAIST. Packet I/O Engine. https://github.com/PacketShader/Packet-IO-Engine.

[9] Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., and Vahdat, A. Hedera: Dynamic flow scheduling for

data center networks. In Proc. USENIX NSDI ’10 (2010).
[10] Alipourfard, O., and Yu, M. Decoupling algorithms and optimizations in network functions. In Proceedings of the

17th ACM Workshop on Hot Topics in Networks (2018), HotNets ’18, p. 71–77.
[11] Alizadeh, M., Edsall, T., Dharmapurikar, S., et al. Conga: Distributed congestion-aware load balancing for

datacenters. In Proc. ACM SIGCOMM ’14 (2014).
[12] Alon, N., Matias, Y., and Szegedy, M. The space complexity of approximating the frequency moments. In Proc.

ACM STOC ’96 (1996).
[13] Anderson, C. J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C., and Walker, D. Netkat: Semantic

foundations for networks. In Proc. ACM POPL ’14 (2014).
[14] Antichi, G., Benson, T., Foster, N., Ramos, F. M. V., and Sherry, J. Programmable Network Data Planes (Dagstuhl

Seminar 19141). Dagstuhl Reports 9, 3 (2019), 178–201.
[15] Arashloo, M. T., Koral, Y., Greenberg, M., Rexford, J., and Walker, D. SNAP: Stateful network-wide abstractions

for packet processing. In Proc. ACM SIGCOMM ’16 (2016).
[16] Arista. Whitepaper: Four key trends in the networked use of fpgas. https://www.arista.com/assets/data/pdf/

Whitepapers/Trends-in-FPGA-WP.pdf.

[17] Bai, J., Bi, J., Kuang, P., et al. NS4: Enabling programmable data plane simulation. In Proc. ACM SOSR ’18.
[18] Bansal, M., Schulman, A., and Katti, S. Atomix: A framework for deploying signal processing applications on

wireless infrastructure. In Proc. USENIX NSDI ’15 (2015), USENIX.
[19] Barach, D., Linguaglossa, L., Marion, D., Pfister, P., Pontarelli, S., and Rossi, D. High-speed software data

plane via vectorized packet processing. IEEE Comm. 56, 12 (2018).
[20] Barbette, T., Soldani, C., and Mathy, L. Fast userspace packet processing. In Proc. ANCS ’15 (2015), IEEE.
[21] Barefoot Networks. Barefoot Tofino: world’s fastest P4-programmable Ethernet switch ASICs. https://

barefootnetworks.com/products/brief-tofino/.

[22] Bertin, G. XDP in practice: Integrating XDP into our DDoS mitigation pipeline. In Netdev (2017).

[23] Bianchi, G., Bonola, M., Capone, A., and Cascone, C. OpenState: programming platform-independent stateful

Openflow applications inside the switch. SIGCOMM CCR 44, 2 (4 2014).
[24] Bianchi, G., Bonola, M., Pontarelli, S., et al. Open Packet Processor: a programmable architecture for wire speed

platform-independent stateful in-network processing. CoRR abs/1605.01977 (2016).

[25] Bienkowski, M., Marcinkowski, J., Pacut, M., Schmid, S., and Spyra, A. Online tree caching. In Proc. SPAA ’17.
[26] Bienkowski, M., Sarrar, N., Schmid, S., and Uhlig, S. Online aggregation of the forwarding information base:

Accounting for locality and churn. IEEE/ACM TON 26, 1 (2018).
[27] Bifulco, R., and Matsiuk, A. Towards scalable SDN switches: Enabling faster flow table entries installation. In Proc.

ACM SIGCOMM ’15 (2015), ACM.

[28] Bonelli, N., Giordano, S., Procissi, G., and Abeni, L. A purely functional approach to packet processing. In Proc.
ANCS ’14 (2014), ACM.

[29] Borokhovich, M., Rault, C., Schiff, L., and Schmid, S. The show must go on: Fundamental data plane connectivity

services for dependable sdns. Elsevier Comp. Comm. 116 (2018).

http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switchfm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switchfm6000-series-brief.pdf
http://networkheresy.com/ovn-bringing-native-virtual-networking-to-ovs/
http://networkheresy.com/ovn-bringing-native-virtual-networking-to-ovs/
https://tools.ietf.org/html/rfc3746
https://tools.ietf.org/html/rfc3746
https://tools.ietf.org/html/rfc7348
http://www.cavium.com/XPliant-Ethernet-Switch-ProductFamily.html
https://github.com/PacketShader/Packet-IO-Engine
https://www.arista.com/assets/data/pdf/Whitepapers/Trends-in-FPGA-WP.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Trends-in-FPGA-WP.pdf
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/


30 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

[30] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C., Talayco, D., Vahdat, A.,

Varghese, G., et al. P4: Programming protocol-independent packet processors. ACM SIGCOMM CCR 44, 3 (2014).
[31] Bosshart, P., Gibb, G., Kim, H.-S., et al. Forwarding metamorphosis: Fast programmable match-action processing

in hardware for SDN. In Proc. ACM SIGCOMM ’13 (2013), ACM.

[32] Brebner, G., and Jiang, W. High-speed packet processing using reconfigurable computing. IEEE Micro 34, 1.
[33] Bremler-Barr, A., Hay, D., Moyal, I., and Schiff, L. Load balancing memcached traffic using software defined

networking. In IFIP Networking (2017), pp. 1–9.

[34] Butler, B. What is intent-based networking? https://www.networkworld.com/article/3202699/lan-wan/what-is-

intent-based-networking.html, 2017.

[35] Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., and Jacobson, V. Bbr: Congestion-based congestion control.

Commun. ACM 60, 2 (January 2017), 58–66.

[36] Casado, M., Freedman, M. J., Pettit, J., Luo, J., McKeown, N., and Shenker, S. Ethane: Taking control of the

enterprise. In Proc. ACM SIGCOMM ’07 (2007), ACM.

[37] Cascaval, C., and Daly, D. P4 architectures. https://p4.org/assets/p4-ws-2017-p4-architectures.pdf.

[38] Chen, H., and Benson, T. Hermes: providing tight control over high-performance SDN switches. In Proc. CoNEXT
’17 (2017), ACM.

[39] Chole, S., Fingerhut, A., Ma, S., et al. dRMT: disaggregated programmable switching. In Proc. ACM SIGCOMM ’17.
[40] Costa, P., Donnelly, A., Rowstron, A., and O’Shea, G. Camdoop: Exploiting in-network aggregation for big data

applications. In Proc. USENIX NSDI ’12 (2012), USENIX.
[41] Csikor, L., Divakaran, D. M., Kang, M. S., Kőrösi, A., Sonkoly, B., Haja, D., Pezaros, D. P., Schmid, S., and

Rétvári, G. Tuple space explosion: A denial-of-service attack against a software packet classifier. In Proc. ACM
CoNEXT ’19 (2019).

[42] Csikor, L., Rothenberg, C., Pezaros, D. P., Schmid, S., Toka, L., and Retvari, G. Policy injection: A cloud dataplane

dos attack. In Proc. ACM SIGCOMM Posters and Demos (2018).
[43] Csikor, L., Toka, L., Szalay, M., Pongrácz, G., Pezaros, D. P., and Rétvári, G. Harmless: Cost-effective transitioning

to sdn for small enterprises. In Proceedings of IFIP Netwoking (2018).

[44] Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P., and Banerjee, S. Devoflow: scaling flow

management for high-performance networks. In ACM SIGCOMM CCR (2011), vol. 41, ACM.

[45] Dalton, M., Schultz, D., Adriaens, J., et al. Andromeda: Performance, isolation, and velocity at scale in cloud

network virtualization. In Proc. USENIX NSDI ’18 (2018), USENIX.
[46] Dang, H. T., Canini, M., Pedone, F., and Soulé, R. Paxos made switch-y. ACM SIGCOMM CCR 46, 2 (2016).
[47] Dang, H. T., Sciascia, D., Canini, M., et al. NetPaxos: Consensus at network speed. In Proc. ACM SOSR ’15.
[48] Dargahi, T., Caponi, A., Ambrosin, M., Bianchi, G., and Conti, M. A survey on the security of stateful SDN data

planes. IEEE Communications Surveys Tutorials 19, 3 (thirdquarter 2017), 1701–1725.
[49] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V., et al.

Large scale distributed deep networks. In Advances in Neural Information Processing Systems 25.
[50] Draves, R., King, C., Venkatachary, S., et al. Constructing optimal ip routing tables. In Proc. IEEE INFOCOM ’99.
[51] Drepper, U. What every programmer should know about memory. Web page, last accessed April 21 2018, 2007.

[52] Dumitrescu, D., Stoenescu, R., Popovici, M., Negreanu, L., and Raiciu, C. Dataplane equivalence and its

applications. In Proc. USENIX NSDI ’19 (2019).
[53] Duncan, R., and Jungck, P. packetC: language for high performance packet processing. In 2009 11th IEEE International

Conference on High Performance Computing and Communications (June 2009), IEEE HPCC 2009, pp. 450–457.

[54] Egi, N., Greenhalgh, A., Handley, M., Hoerdt, M., Huici, F., and Mathy, L. Towards high performance virtual

routers on commodity hardware. In Proc. CoNEXT ’08 (2008), ACM.

[55] Farshin, A., Roozbeh, A., Jr., G. Q. M., and Kostić, D. Reexamining direct cache access to optimize I/O intensive

applications for multi-hundred-gigabit networks. In Proc. USENIX ATC ’20 (2020), USENIX.
[56] FD.io. The fast data project. project website, 2016.

[57] Feamster, N., Rexford, J., and Zegura, E. The road to SDN. Queue 11, 12 (12 2013), 20:20–20:40.
[58] Fedorkow, G. The juniper m40 router. https://computerhistory.org/blog/the-juniper-m40-router/.

[59] Feldman, A., and Muthukrishnan, S. Tradeoffs for packet classification. In Proc. INFOCOM 2000 (2000).
[60] Firestone, D., Putnam, A., Mundkur, S., et al. Azure accelerated networking: Smartnics in the public cloud. In

Proc. USENIX NSDI ’18 (2018), USENIX.
[61] Forencich, A., Snoeren, A. C., Porter, G., and Papen, G. Corundum: An open-source 100-Gbps NIC. In 28th IEEE

International Symposium on Field-Programmable Custom Computing Machines (2020).
[62] Foster, N., Guha, A., Reitblatt, M., Story, A., Freedman, M. J., Katta, N. P., Monsanto, C., Reich, J., Rexford, J.,

Schlesinger, C., et al. Languages for software-defined networks. IEEE Comm. Magazine 51, 2 (2013).

https://p4.org/assets/p4-ws-2017-p4-architectures.pdf
https://computerhistory.org/blog/the-juniper-m40-router/


The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 31

[63] Fu, J., and Rexford, J. Efficient ip-address lookup with a shared forwarding table for multiple virtual routers. In

Proceedings of the 2008 ACM CoNEXT Conference (New York, NY, USA, 2008), ACM CoNEXT ’08, ACM, pp. 21:1–21:12.

[64] Gafni, E., and Bertsekas, D. Distributed algorithms for generating loop-free routes in networks with frequently

changing topology. IEEE transactions on communications 29, 1 (1981), 11–18.
[65] Gember-Jacobson, A., Viswanathan, R., Prakash, C., Grandl, R., Khalid, J., Das, S., and Akella, A. Opennf:

Enabling innovation in network function control. SIGCOMM Comput. Commun. Rev. 44, 4 (August 2014), 163–174.
[66] Ghasemi, M., Benson, T., and Rexford, J. Dapper: Data plane performance diagnosis of tcp. In Proceedings of the

Symposium on SDN Research (2017), ACM, pp. 61–74.

[67] Gibb, G., Varghese, G., Horowitz, M., and McKeown, N. Design principles for packet parsers. In Proc. ACM/IEEE
ANCS ’13 (2013).

[68] Go, Y., Jamshed, M. A., Moon, Y., Hwang, C., and Park, K. APUNet: revitalizing GPU as packet processing accelerator.

In Proc. USENIX NSDI ’17 (2017), USENIX.

[69] Gong, Y., Wang, X., Malboubi, M., Wang, S., Xu, S., and Chuah, C.-N. Towards accurate online traffic matrix

estimation in software-defined networks. In Proc. ACM SOSR ’15 (2015), ACM.

[70] Gospodarek, A. The Rise of SmartNICs – offloading dataplane traffic to...software. https://youtu.be/AGSy51VlKaM,

2017. Open vSwitch Conference.

[71] Goyal, M., Soperi, M., Baccelli, E., Choudhury, G., Shaikh, A., Hosseini, H., and Trivedi, K. Improving

convergence speed and scalability in ospf: A survey. IEEE Communications Surveys & Tutorials 14, 2 (2012), 443–463.
[72] Graham, R. L., Bureddy, D., Lui, P., et al. Scalable hierarchical aggregation protocol (sharp): a hardware architecture

for efficient data reduction. In Proc. IEEE COM-HPC ’16 (2016), IEEE.
[73] Greenhalgh, A., Huici, F., Hoerdt, M., Papadimitriou, P., Handley, M., and Mathy, L. Flow processing and the

rise of commodity network hardware. SIGCOMM Comput. Commun. Rev. 39, 2 (March 2009), 20–26.

[74] Group, P. A. W. P4runtime specification. https://github.com/p4lang/p4runtime.

[75] Gupta, A., Harrison, R., Canini, M., Feamster, N., Rexford, J., andWillinger, W. Sonata: Query-driven Streaming

Network Telemetry. In Proc. ACM SIGCOMM ’18 (2018), ACM.

[76] Han, J. H., Mundkur, P., Rotsos, C., Antichi, G., Dave, N., Moore, A. W., and Neumann, P. G. Blueswitch: enabling

provably consistent configuration of network switches. In Proc. ACM/IEEE ANCS ’15 (2015), IEEE.
[77] Han, S., Jang, K., Panda, A., Palkar, S., Han, D., and Ratnasamy, S. SoftNIC: A software NIC to augment hardware.

Tech. Rep. UCB/EECS-2015-155, EECS Department, University of California, Berkeley, May 2015.

[78] Han, S., Jang, K., Park, K., and Moon, S. PacketShader: a GPU-accelerated software router. In Proceedings of the
ACM SIGCOMM 2010 Conference (New York, NY, USA, 2010), ACM SIGCOMM ’10, ACM, pp. 195–206.

[79] Heart, F. E., Kahn, R. E., Ornstein, S. M., Crowther, W. R., and Walden, D. C. The interface message processor

for the arpa computer network. In Proc. ACM AFIPS ’70 (Spring) (1970), ACM.

[80] Høiland-Jørgensen, T., Brouer, J. D., Borkmann, D., et al. The express data path: Fast programmable packet

processing in the operating system kernel. In Proc. ACM CoNEXT ’18 (2018), ACM.

[81] Holterbach, T., Molero, E. C., Apostolaki, M., Dainotti, A., Vissicchio, S., and Vanbever, L. Blink: Fast

connectivity recovery entirely in the data plane. In Proc. USENIX NSDI ’19 (2019), USENIX.
[82] Honda, M., Huici, F., Lettieri, G., and Rizzo, L. mSwitch: a highly-scalable, modular software switch. In Proc. ACM

SOSR ’15 (2015), ACM.

[83] Huang, Q., Jin, X., Lee, P. P. C., Li, R., Tang, L., Chen, Y.-C., and Zhang, G. Sketchvisor: Robust network measurement

for software packet processing. In Proc. ACM SIGCOMM ’17 (2017), ACM.

[84] Ibanez, S., Brebner, G., McKeown, N., and Zilberman, N. The p4->netfpga workflow for line-rate packet processing.

In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (New York, NY,

USA, 2019), FPGA ’19, Association for Computing Machinery, p. 1–9.

[85] Intel. Intel data direct i/o. https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html.

[86] Intel. IXP4XX product line of network processors. http://www.intel.com/content/www/us/en/intelligent-systems/

previous-generation/intel-ixp4xx-intel-network-processor-product-line.html.

[87] Intel. Intel DPDK: Data Plane Development Kit. http://dpdk.org, 2016.

[88] Jain, R., and Paul, S. Network virtualization and software defined networking for cloud computing: a survey. IEEE
Communication Magazine 51, 11 (2013).

[89] Jepsen, T., Alvarez, D., Foster, N., et al. Fast string searching on pisa. In Proc. ACM SOSR ’19.
[90] Jeyakumar, V., Alizadeh, M., Geng, Y., Kim, C., and Mazières, D. Millions of little minions: Using packets for low

latency network programming and visibility. In ACM SIGCOMM CCR (2014), vol. 44, ACM.

[91] Jin, X., Keller, E., and Rexford, J. Virtual switching without a hypervisor for a more secure cloud. In Proc. USENIX
Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services (HotICE) (2012).

[92] Jin, X., Li, X., Zhang, H., Foster, N., Lee, J., Soulé, R., Kim, C., and Stoica, I. Netchain: Scale-free sub-rtt coordination.

In Proc. USENIX NSDI ’18 (2018), USENIX.

https://youtu.be/AGSy51VlKaM
https://github.com/p4lang/p4runtime
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://dpdk.org


32 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

[93] Jin, X., Li, X., Zhang, H., Soulé, R., Lee, J., Foster, N., Kim, C., and Stoica, I. NetCache: balancing key-value stores

with fast in-network caching. In Proc. ACM SOSP ’17 (2017), ACM.

[94] Jing, C. Zero-Copy Optimization for Alibaba Cloud Smart NIC Solution. http://www.alibabacloud.com/blog/zero-

copy-optimization-for-alibaba-cloud-smart-nic-solution_593986, 2018. Accessed: 03-01-2019.

[95] Jose, L., Yan, L., Varghese, G., and McKeown, N. Compiling packet programs to reconfigurable switches. In Proc.
USENIX NSDI ’15 (2015), USENIX.

[96] K., P., and S., A. Content-addressable memory (cam) circuits and architectures: A tutorial and survey. IEEE Journal of
Solid-State Circuits 41, 3 (2006), 712–727.

[97] Kablan, M., Alsudais, A., Keller, E., and Le, F. Stateless network functions: Breaking the tight coupling of state

and processing. In Proc. USENIX NSDI ’17 (2017).

[98] Kalia, A., Kaminsky, M., and Andersen, D. G. Using RDMA efficiently for key-value services. In Proc. ACM
SIGCOMM ’14 (2014), ACM.

[99] Kalia, A., Zhou, D., Kaminsky, M., and Andersen, D. G. Raising the bar for using GPUs in software packet

processing. In Proc. USENIX NSDI ’15 (2015), USENIX.
[100] Katia Obraczka, Christian Rothenberg, A. R. SDN, NFV and their role in 5G, 2016. ACM SIGCOMM Tutorial.

[101] Katsikas, G. P., Barbette, T., Kostić, D., Steinert, R., and Jr., G. Q. M. Metron: NFV service chains at the true

speed of the underlying hardware. In USENIX NSDI (2018), pp. 171–186.
[102] Katta, N., Alipourfard, O., Rexford, J., and Walker, D. Cacheflow: Dependency-aware rule-caching for software-

defined networks. In Proc. ACM SOSR ’16 (2016), ACM.

[103] Katta, N., Hira, M., Kim, C., Sivaraman, A., and Rexford, J. Hula: Scalable load balancing using programmable

data planes. In ACM Symposium on SDN Research (SOSR) (2016), ACM, p. 10.

[104] Kaufmann, A., Peter, S., Sharma, N. K., Anderson, T., and Krishnamurthy, A. High performance packet processing

with FlexNIC. SIGPLAN Not. 51, 4 (March 2016), 67–81.

[105] Keshav, S., and Sharma, R. Issues and trends in router design. IEEE Comm. Magazine 36, 5 (5 1998).
[106] Khalid, J., Gember-Jacobson, A., Michael, R., Abhashkumar, A., and Akella, A. Paving the way for nfv:

Simplifying middlebox modifications using StateAlyzr. In Proc. USENIX NSDI ’16 (2016), USENIX.
[107] Kim, C., Sivaraman, A., Katta, N., et al. In-band network telemetry via programmable dataplanes. In ACM

SIGCOMM ’15 Demos (2015).
[108] Kim, H., Reich, J., Gupta, A., Shahbaz, M., Feamster, N., and Clark, R. Kinetic: Verifiable dynamic network control.

In Proc. USENIX NSDI ’15 (2015), USENIX.
[109] Kogan, K., Nikolenko, S., Rottenstreich, O., Culhane, W., and Eugster, P. SAX-PAC (Scalable And eXpressive

PAcket Classification). In Proc. ACM SIGCOMM ’14 (2014), ACM.

[110] Koponen, T., Amidon, K., Balland, P., et al. Network virtualization in multi-tenant datacenters. In Proc. USENIX
NSDI ’14 (2014), USENIX.

[111] Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., and Uhlig, S. Software-defined

networking: A comprehensive survey. Proceedings of the IEEE 103, 1 (2015), 14–76.
[112] Kulkarni, S. G., Zhang, W., Hwang, J., Rajagopalan, S., Ramakrishnan, K. K., Wood, T., Arumaithurai, M., and

Fu, X. NFVnice: Dynamic Backpressure and Scheduling for NFV Service Chains. In ACM SIGCOMM (2017), pp. 71–84.

[113] Kumar, N. Juniper advancing disaggregation through P4 runtime integration, 2018. https://forums.juniper.net/t5/The-

New-Network/Juniper-Advancing-Disaggregation-Through-P4-Runtime-Integration/ba-p/319195.

[114] Kumar, P., Dukkipati, N., Lewis, N., et al. PicNIC: Predictable virtualized NIC. In Proc. ACM SIGCOMM ’19.
[115] Lamport, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21, 7 (July 1978).

[116] Lamport, L. Fast Paxos. Distributed Computing 19, 2 (2006), 79–103.
[117] Laufer, R., Gallo, M., Perino, D., and Nandugudi, A. CliMB: enabling network function composition with Click

middleboxes. In Proc. ACM HotMiddlebox ’16 (2016), ACM.

[118] Lavasani, M., Dennison, L., and Chiou, D. Compiling high throughput network processors. In Proc. ACM/SIGDA
FPGA ’12 (2012), ACM.

[119] Leong, P. H. W. Recent trends in fpga architectures and applications. In 4th IEEE International Symposium on
Electronic Design, Test and Applications (delta 2008) (2008), pp. 137–141.

[120] Lévai, T., Németh, F., Raghavan, B., and Rétvári, G. Batchy: Batch-scheduling data flow graphs with service-level

objectives. In Proc. USENIX NSDI ’20 (2020), USENIX.
[121] Li, B., Tan, K., Luo, L. L., Peng, Y., Luo, R., Xu, N., Xiong, Y., Cheng, P., and Chen, E. Clicknp: Highly flexible and

high performance network processing with reconfigurable hardware. In Proc. ACM SIGCOMM ’16 (2016), ACM.

[122] Li, X., Sethi, R., Kaminsky, M., Andersen, D. G., and Freedman, M. J. Be fast, cheap and in control with switchkv.

In Proc. USENIX NSDI ’16 (2016), USENIX.
[123] Linguaglossa, L., Lange, S., Pontarelli, S., Rétvári, G., Rossi, D., Zinner, T., Bifulco, R., et al. Survey of

performance acceleration techniques for network function virtualization. Proceedings of the IEEE (2019), 1–19.

http://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
http://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
https://forums.juniper.net/t5/The-New-Network/Juniper-Advancing-Disaggregation-Through-P4-Runtime-Integration/ba-p/319195
https://forums.juniper.net/t5/The-New-Network/Juniper-Advancing-Disaggregation-Through-P4-Runtime-Integration/ba-p/319195


The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 33

[124] Liu, A. X., Meiners, C. R., and Torng, E. TCAM Razor: A systematic approach towards minimizing packet classifiers

in TCAMs. IEEE/ACM Trans. Netw. 18, 2 (April 2010), 490–500.
[125] Liu, J., Panda, A., Singla, A., Godfrey, B., Schapira, M., and Shenker, S. Ensuring connectivity via data plane

mechanisms. In 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI) (2013), pp. 113–126.
[126] Liu, M., Cui, T., Schuh, H., Krishnamurthy, A., Peter, S., and Gupta, K. Offloading distributed applications onto

SmartNICs using iPipe. In Proc. ACM SIGCOMM ’19 (2019), ACM.

[127] Liu, M., Luo, L., Nelson, J., Ceze, L., Krishnamurthy, A., and Atreya, K. Incbricks: Toward in-network computation

with an in-network cache. SIGOPS Oper. Syst. Rev. 51, 2 (April 2017), 795–809.
[128] Liu, M., Peter, S., Krishnamurthy, A., and Phothilimthana, P. M. E3: Energy-efficient microservices on smartnic-

accelerated servers. In Proc. ATC ’19 (2019), USENIX.
[129] Liu, Y., Zhang, B., and Wang, L. Fifa: Fast incremental fib aggregation. In Proc. IEEE INFOCOM ’13 (2013), IEEE.
[130] Liu, Z., Manousis, A., Vorsanger, G., Sekar, V., and Braverman, V. One Sketch to Rule Them All: Rethinking

Network Flow Monitoring with UnivMon. In Proc. ACM SIGCOMM ’16 (New York, NY, USA, 2016), ACM.

[131] Luo, S., Yu, H., and Vanbever, L. Swing state: Consistent updates for stateful and programmable data planes. In

Proceedings of the Symposium on SDN Research (New York, NY, USA, 2017), ACM SOSR ’17, ACM, pp. 115–121.

[132] Lévai, T., Pongrácz, G., Megyesi, P., Vörös, P., Laki, S., Németh, F., and Rétvári, G. The price for programmability

in the software data plane: The vendor perspective. IEEE Journal on Selected Areas in Communications 36, 12 (2018).
[133] Ma, Y., and Banerjee, S. A smart pre-classifier to reduce power consumption of tcams for multi-dimensional packet

classification. ACM SIGCOMM Comput. Commun. Rev. 42, 4 (August 2012), 335–346.
[134] Mai, L., Rupprecht, L., Alim, A., Costa, P., Migliavacca, M., Pietzuch, P., and Wolf, A. L. Netagg: Using

middleboxes for application-specific on-path aggregation in data centres. In Proc. ACM CoNEXT ’14, ACM.

[135] Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M., Bifulco, R., and Huici, F. ClickOS and the art of

network function virtualization. In Proc. NSDI ’14 (2014), USENIX.
[136] McCauley, J., Panda, A., Krishnamurthy, A., and Shenker, S. Thoughts on load distribution and the role of

programmable switches. SIGCOMM Comput. Commun. Rev. 49, 1 (February 2019), 18–23.

[137] McKeown, N. Programmable forwarding planes are here to stay. In Proc. ACM SIGCOMM NetPL ’17 (2017).

[138] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., and Turner,

J. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM CCR 38, 2 (3 2008), 69–74.
[139] Miao, R., Zeng, H., Kim, C., Lee, J., and Yu, M. Silkroad: Making stateful layer-4 load balancing fast and cheap using

switching ASICs. In Proc. ACM SIGCOMM ’17 (2017), ACM.

[140] Michel, O., Rétvári, G., Bifulco, R., and Schmid, S. The programmable data plane reading list. https:

//programmabledataplane.review/.

[141] Michel, O., Sonchack, J., Keller, E., and Smith, J. M. Packet-level analytics in software without compromises. In

Proc. USENIX HotCloud ’18 (2018), USENIX.
[142] Mittal, R., Agarwal, R., Ratnasamy, S., and Shenker, S. Universal packet scheduling. In Proc. USENIX NSDI ’16.
[143] Molero, E. C., Vissicchio, S., and Vanbever, L. Hardware-accelerated network control planes. In Proc. ACM HotNets

’18 (2018), ACM.

[144] Molnár, L., Pongrácz, G., Enyedi, G., Kis, Z. L., Csikor, L., Juhász, F., Kőrösi, A., and Rétvári, G. Dataplane

specialization for high-performance OpenFlow software switching. In Proc. ACM SIGCOMM ’16 (2016), ACM.

[145] Monsanto, C., Foster, N., Harrison, R., andWalker, D. A compiler and run-time system for network programming

languages. In Proc. ACM POPL ’12 (2012), ACM.

[146] Monsanto, C., Reich, J., Foster, N., Rexford, J., and Walker, D. Composing software-defined networks. In Proc.
USENIX NSDI ’13 (2013), USENIX.

[147] Morris, R., Kohler, E., Jannotti, J., and Kaashoek, M. F. The Click modular router. In ACM Trans. on Computer
Systems (2000), ACM Trans. on Computer Systems 2000.

[148] Moshref, M., Bhargava, A., Gupta, A., Yu, M., and Govindan, R. Flow-level state transition as a new switch

primitive for SDN. In Proc. ACM HotSDN ’14.
[149] Narayana, S., Sivaraman, A., Nathan, V., Goyal, P., Arun, V., Alizadeh, M., Jeyakumar, V., and Kim, C. Language-

directed hardware design for network performance monitoring. In Proc. ACM SIGCOMM ’17 (2017), ACM.

[150] NetCope. FPGA NICs Specification. https://www.netcope.com/en/products/fpga-boards.

[151] Netronome. Netronome NFP-6000 Flow Processor. https://www.netronome.com/m/documents/PB_NFP-6000_.pdf.

[152] Neugebauer, R., Antichi, G., Zazo, J. F., Audzevich, Y., López-Buedo, S., and Moore, A. W. Understanding pcie

performance for end host networking. In Proc. ACM SIGCOMM ’18.
[153] Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., and Turletti, T. A survey of software-defined

networking: Past, present, and future of programmable networks. IEEE Comm. Surveys & Tutorials 16, 3 (2014).
[154] Ordonez-Lucena, J., et al. Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges. IEEE

Communications Magazine 55, 5 (2017), 80–87.

https://programmabledataplane.review/
https://programmabledataplane.review/
https://www.netcope.com/en/products/fpga-boards
https://www.netronome.com/m/documents/PB_NFP-6000_.pdf


34 Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid

[155] P4.org. P4 Runtime. https://p4.org/p4-runtime.

[156] Palkar, S., Lan, C., Han, S., Jang, K., Panda, A., Ratnasamy, S., Rizzo, L., and Shenker, S. E2: A framework for nfv

applications. In Proc. ACM SOSP ’15 (2015), ACM.

[157] Panda, A., Han, S., Jang, K., Walls, M., Ratnasamy, S., and Shenker, S. NetBricks: taking the V out of NFV. In

Proc. USENIX OSDI ’16 (2016), USENIX.
[158] Park, V. D., and Corson, M. S. A highly adaptive distributed routing algorithm for mobile wireless networks. In

IEEE INFOCOM (1997), vol. 3, pp. 1405–1413.

[159] Pfaff, B. Converging approaches in software switches. https://benpfaff.org/~blp/keynote.pdf, 2016.

[160] Pfaff, B., Pettit, J., Koponen, T., et al. The design and implementation of Open vSwitch. In Proc. USENIX NSDI ’15.
[161] Phothilimthana, P. M., Liu, M., Kaufmann, A., Peter, S., Bodik, R., and Anderson, T. Floem: A programming

system for NIC-accelerated network applications. In Proc. USENIX OSDI ’18 (2018), USENIX.
[162] Pongrácz, G., Molnár, L., Kis, Z. L., and Turányi, Z. Cheap silicon: A myth or reality? picking the right data plane

hardware for software defined networking. In Proc. ACM SIGCOMM HotSDN ’13 (2013), ACM.

[163] Pontarelli, S., Bifulco, R., Bonola, M., et al. FlowBlaze: Stateful packet processing in hardware. In Proc. USENIX
NSDI ’19 (2019).

[164] Popescu, D. A., Antichi, G., and Moore, A. W. Enabling fast hierarchical heavy hitter detection using programmable

data planes. In Proc. SOSR ’17 (2017), ACM.

[165] Qazi, Z. A., Tu, C.-C., Chiang, L., et al. Simple-fying middlebox policy enforcement using sdn. ACM SIGCOMM
CCR 43, 4 (2013).

[166] Rajagopalan, S., Williams, D., Jamjoom, H., and Warfield, A. Split/merge: System support for elastic execution in

virtual middleboxes. In Proc NSDI ’13 (2013), nsdi’13, USENIX.
[167] Rétvári, G., Molnár, L., Pongrácz, G., and Enyedi, G. Dynamic compilation and optimization of packet processing

programs. In Proc. ACM SIGCOMM NetPL ’17 (2017), ACM.

[168] Rétvári, G., Tapolcai, J., Kőrösi, A., Majdán, A., and Heszberger, Z. Compressing IP forwarding tables: Towards

entropy bounds and beyond. In Proc. ACM SIGCOMM ’13 (2013), ACM.

[169] Rizzo, L. Netmap: a novel framework for fast packet I/O. In Proc. USENIX ATC ’12 (2012), USENIX.
[170] Rizzo, L., and Lettieri, G. Vale, a switched ethernet for virtual machines. In Proc. ACM CoNEXT ’12 (2012), ACM.

[171] Sanvito, D., Siracusano, G., and Bifulco, R. Can the network be the ai accelerator? In SIGCOMMWorkshop on
In-Network Computing (NetCompute) (2018), pp. 20–25.

[172] Sapio, A., Abdelaziz, I., Aldilaijan, A., Canini, M., and Kalnis, P. In-network computation is a dumb idea whose

time has come. In Proceedings of the 16th ACM Workshop on Hot Topics in Networks (2017), ACM, pp. 150–156.

[173] Schiff, L., Schmid, S., and Kuznetsov, P. In-band synchronization for distributed sdn control planes. ACM SIGCOMM
Computer Communication Review (CCR) 46, 1 (2016), 37–43.

[174] Schwartz, B., Jackson, A. W., Strayer, W. T., Zhou, W., Rockwell, R. D., and Partridge, C. Smart packets:

applying active networks to network management. ACM Transactions on Computer Systems (TOCS) 18, 1 (2000), 67–88.
[175] SecuritytWeek. CSA’s cloud adoption, practices and priorities survey report. http://www.securityweek.com/data-

security-concerns-still-challenge, 2015. Accessed: 09-01-2019.

[176] Sekar, V., Egi, N., Ratnasamy, S., Reiter, M. K., and Shi, G. Design and implementation of a consolidated middlebox

architecture. In Proc. USENIX NSDI ’12.
[177] Sezer, S., Scott-Hayward, S., Chouhan, P. K., et al. Are we ready for SDN? Implementation challenges for

software-defined networks. IEEE Comm. Magazine 51, 7 (2013).
[178] Shahbaz, M., Choi, S., Pfaff, B., Kim, C., Feamster, N., McKeown, N., and Rexford, J. PISCES: a programmable,

protocol-independent software switch. In Proc. SIGCOMM ’16 (2016), ACM.

[179] Shahbaz, M., and Feamster, N. The case for an intermediate representation for programmable data planes. In Proc.
SOSR ’15 (2015), ACM.

[180] Sharma, N. K., Kaufmann, A., Anderson, T., Krishnamurthy, A., Nelson, J., and Peter, S. Evaluating the power

of flexible packet processing for network resource allocation. In Proc. USENIX NSDI ’17 (2017), USENIX.

[181] Sharma, N. K., Liu, M., Atreya, K., and Krishnamurthy, A. Approximating fair queueing on reconfigurable

switches. In Proc. USENIX NSDI ’18 (2018), USENIX.
[182] Shinde, P., Kaufmann, A., Roscoe, T., and Kaestle, S. We need to talk about NICs. In Proc. USENIX HotOS ’13.
[183] Shrivastav, V. Fast, scalable, and programmable packet scheduler in hardware. In Proc. ACM SIGCOMM ’19.
[184] Siracusano, G., and Bifulco, R. In-network neural networks. CoRR abs/1801.05731 (2018).
[185] Sivaraman, A., Cheung, A., Budiu, M., et al. Packet transactions: High-level programming for line-rate switches.

In Proc. ACM SIGCOMM ’16 (2016), ACM.

[186] Sivaraman, A., Subramanian, S., Alizadeh, M., et al. Programmable packet scheduling at line rate. In Proc. ACM
SIGCOMM ’16 (2016), ACM.

https://p4.org/p4-runtime
https://benpfaff.org/~blp/keynote.pdf
http://www.securityweek.com/data-security-concerns-still-challenge
http://www.securityweek.com/data-security-concerns-still-challenge


The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 35

[187] Sivaraman, V., Narayana, S., Rottenstreich, O., Muthukrishnan, S., and Rexford, J. Heavy-hitter detection

entirely in the data plane. In Proc. ACM SOSR ’17 (2017), ACM.

[188] Sonchack, J., Michel, O., Aviv, A. J., Keller, E., and Smith, J. M. Scaling Hardware Accelerated Network Monitoring

to Concurrent and Dynamic Queries With *Flow. In Proc. USENIX ATC ’18 (2018), USENIX.
[189] Srinivasan, V., Suri, S., and Varghese, G. Packet classification using tuple space search. In Proc. ACM SIGCOMM

’99 (1999), ACM.

[190] Stevens, W. P., Myers, G. J., and Constantine, L. L. Structured design. IBM Systems Journal 13, 2 (1974), 115–139.
[191] Stratum project. Developing an open source reference implementation for white box switches supporting next-

generation SDN interfaces, 2018. https://stratumproject.org.

[192] Sun, C., Bi, J., Zheng, Z., et al. NFP: enabling network function parallelism in NFV. In Proc. ACM SIGCOMM ’17.
[193] Thimmaraju, K., Hermak, S., Retvari, G., and Schmid, S. MTS: Bringing Multi-Tenancy to Virtual Networking. In

Proc. USENIX ATC ’19 (2019), USENIX.
[194] Thimmaraju, K., Shastry, B., Fiebig, T., Hetzelt, F., Seifert, J.-P., Feldmann, A., and Schmid, S. The vamp attack:

Taking control of cloud systems via the unified packet parser. In Proc. CCS Workshop (2017).

[195] Thimmaraju, K., Shastry, B., Fiebig, T., Hetzelt, F., Seifert, J.-P., Feldmann, A., and Schmid, S. Taking control of

sdn-based cloud systems via the data plane. In Proc. ACM SOSR ’18 (2018), ACM.

[196] Tootoonchian, A., Panda, A., Lan, C., Walls, M., Argyraki, K., Ratnasamy, S., and Shenker, S. ResQ: enabling

SLOs in network function virtualization. In USENIX NSDI (2018), pp. 283–297.
[197] Uzmi, Z. A., Nebel, M., Tariq, A., Jawad, S., Chen, R., Shaikh, A., Wang, J., and Francis, P. Smalta: practical and

near-optimal fib aggregation. In Proc. CoNEXT ’11 (2011), ACM.

[198] Verdú, J., Nemirovsky, M., García, J., and Valero, M. Workload characterization of stateful networking applications.

In 6th International Symposium on High Performance Computing (2008), ISHPC, Springer Berlin Heidelberg.

[199] Voellmy, A., Wang, J., Yang, Y. R., Ford, B., and Hudak, P. Maple: simplifying sdn programming using algorithmic

policies. ACM SIGCOMM CCR 43, 4 (2013), 87–98.
[200] Wang, H., Soulé, R., Dang, H. T., Lee, K. S., Shrivastav, V., Foster, N., and Weatherspoon, H. P4fpga: A rapid

prototyping framework for p4. In Proc. ACM SOSR ’17 (2017), ACM.

[201] Wischik, D., Handley, M., and Braun, M. B. The resource pooling principle. ACM SIGCOMM CCR 38, 5 (2008).
[202] Woo, S., Sherry, J., Han, S., et al. Elastic scaling of stateful network functions. In Proc. USENIX NSDI ’18.
[203] Xilinx. Vivado high-level synthesis. https://www.xilinx.com/products/design-tools/vivado.html.

[204] Yang, T., Xie, G., Liu, A. X., et al. Constant ip lookup with FIB explosion. IEEE/ACM TON 26, 4 (2018).
[205] Yu, M., Jose, L., and Miao, R. Software Defined Traffic Measurement with OpenSketch. In Proc. USENIX NSDI ’13.
[206] Yuan, Y., Lin, D., Alur, R., and Loo, B. T. Scenario-based programming for SDN policies. In Proc. ACM CoNEXT ’15.
[207] Zheng, Z., Bi, J., Wang, H., Sun, C., Yu, H., Hu, H., Gao, K., and Wu, J. Grus: Enabling latency SLOs for GPU-

accelerated NFV systems. In IEEE ICNP (2018), pp. 154–164.

[208] Zhou, D., Fan, B., Lim, H., Kaminsky, M., and Andersen, D. G. Scalable, high performance ethernet forwarding

with cuckooswitch. In Proc. CoNEXT ’13 (2013), ACM.

[209] Zilberman, N., Audzevich, Y., Covington, G. A., and Moore, A. W. Netfpga sume: Toward 100 gbps as research

commodity. IEEE Micro 34, 5 (2014), 32–41.
[210] Zilberman, N., Watts, P. M., Rotsos, C., and Moore, A. W. Reconfigurable network systems and software-defined

networking. Proceedings of the IEEE 103, 7 (July 2015), 1102–1124.

https://stratumproject.org
https://www.xilinx.com/products/design-tools/vivado.html

	Abstract
	1 Introduction
	2 The Programmable Data Plane
	2.1 Control Plane – Data Plane Separation
	2.2 Data Plane Functions
	2.3 Data Plane Programmability

	3 Architectures
	3.1 General-purpose Hardware
	3.2 Network Processors
	3.3 Field-programmable Gate Arrays
	3.4 Application-specific Integrated Circuits
	3.5 Hybrid Architectures
	3.6 Programmable NICs

	4 Abstractions
	4.1 Programmable Packet Processing Pipelines
	4.2 Stateful Packet Processing
	4.3 Programmable Parsers
	4.4 Programmable Schedulers
	4.5 Programming Languages and Compilers

	5 Algorithms and Hardware Realizations
	5.1 Reconfigurable Match-action Tables
	5.2 Fast Table Updates

	6 Applications
	6.1 Monitoring, Telemetry, and Measurement
	6.2 Virtual Switching
	6.3 In-network Computation
	6.4 Distributed Consensus
	6.5 Resilient, Robust, and Efficient Forwarding
	6.6 Load Balancing

	7 Taxonomies for Programmable Switches
	8 Research Challenges
	8.1 Improved Abstractions
	8.2 Efficient Reconfigurability
	8.3 Scalability
	8.4 Network Automation
	8.5 Verification and Monitoring

	9 Conclusion
	References

