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Abstract

We propose a combination of the Partial Element Equivalent Circuit method with metamodelling in order to achieve fast

tolerance analysis of electromagnetic systems. The proposed model combination can be interpreted as a multifidelity modelling

approach.

This technique is inspired by the Multilevel Monte Carlo method and provides great benefits in terms of computational resources.
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Abstract

We propose a combination of the Partial Element Equivalent Circuit method with metamodelling in order to achieve
fast tolerance analysis of electromagnetic systems. The proposed model combination can be interpreted as a multifidelity
modelling approach. This technique is inspired by the Multilevel Monte Carlo method and provides great benefits in
terms of computational resources.

1 Introduction

Electromagnetic (EM) solvers are fundamental for a variety of important design problems, such as microwave devices,
signal and power integrity. The Partial Element Equivalent Circuit (PEEC) method [1] has gained popularity thanks to
its ability to represent the electromagnetic behaviour of physical structures by means of circuit elements. As in general
for EM solvers, the discretisation and subsequent solution of Maxwell’s equations can results in large-scale systems
of equations demanding high computational resources. Therefore, the brute force use of EM solvers in design tasks
requiring several simulations, such as optimisation and tolerance analysis, becomes infeasible.

Among all the techniques in the literature to speed-up the design flow of complex systems, we focus on multifidelity
modelling in this work. The main idea behind multifidelity modelling is to combine models with a different level of
accuracy and computational complexity. High accuracy requires high computational resources and vice versa. Several
flavours of multifideliy models can be found in the literature [2] with applications in several domains, such as optimisation
[3] and tolerance analysis [4].

In the tolerance analysis area, the Monte Carlo (MC) technique is very easy to implement and well-established.
One drawback of this technique is the slow convergence that might potentially require a high number of simulations
to accurately estimate stochastic information (e.g., mean and variance). Several techniques have been proposed to
accelerate the MC analysis, such as Quasi Monte Carlo and Stochastic Collocation techniques [5, 6]. Multifidelity
modelling to accelerate MC has been proposed as a multilevel Monte Carlo (MLMC) method in [4]. MLMC has been
recently applied to low-frequency EM problems [7]. The EM applications in [7] are examples with a single frequency and
the mean value of some quantities of interest is estimated. If a dynamical system is analysed over a frequency range,
assuring that the same number and definition of levels is effective for each frequency might be a difficult task. The set
of models needs to satisfy some specific conditions about computational complexity and variance in order to achieve an
optimal convergence rate [4]. This affects choices such as the number of models (levels) and how to choose the levels.
In EM problems, a natural way to define levels is by changing the discretisation mesh size. One additional attractive
feature of MLMC is that an error control on the moments estimation is available, as it is the case for MC.

In this work, we propose a simple but very effective multilevel choice for systems that span a broadband frequency
range. We select only two models, one high-fidelity model and one low-fidelity model. The high-fidelity model is
defined by a PEEC model with a mesh discretisation that ensures high accuracy. This also brings a high computational
cost. The low-fidelity model is built based on metamodelling techniques. Metamodels are very efficient and provide a
functional relationship between input and output variables [8, 9]. In our case, these variables correspond to physical
design parameters and EM quantities of interest (e.g., scattering parameters), respectively. Several basis functions can
be used to build this mathematical link, such as radial basis functions, polynomials, and Gaussian processes. The
high-fidelity model is kept as a reference for accuracy and used a few times during the tolerance analysis. Instead, the
low-fidelity model is taking care of a very high percentage of the needed simulations and it is built in order to well
describe the behaviour of the high-fidelity model. We will discuss the estimation of both mean and variance of the
EM behavior of interest. Numerical results confirm that the proposed technique allows high speed-ups with respect a
standard MC for the same accuracy threshold, while keeping the choice of the levels very simple.
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2 PEEC method

The PEEC method [1] applies the Galerkin procedure to Maxwell’s equations in Lorentz gauge condition. After the dis-
cretisation of materials volumes and surfaces into elementary regions, the Electric Field Integral Equation and continuity
equations are used to obtain an EMmodel that has a circuital description. Considering a transfer function representation,
the PEEC method provides a descriptor state-representation. For example, we show below an impedance representation

(sC(s) +G(s))X(s) = BIp(s),Vp(s) = B
T
X(s) (1)

where Vp(s) and Ip(s) are the port voltages and currents, and s is the Laplace variable. Admittance and scattering
parameters representation are also possible. In the PEEC matrices above, the EM phenomena are represented in terms
of resistances, partial inductances and partial capacitances (circuit interpretation of the EM phenomena).

The entries of the partial inductance sub-matrix Lp(s) and potential coefficient sub-matrix P(s) in the block-structure
of the matrix C(s) are defined as follows

Lpn,m(s) = µ

∫

Vn

∫

Vm

g(r, r′, s) dVmdVn (2)

Pn,m(s) =
1

ε

∫

Sn

∫

Sm

g(r, r′, s) dSmdSn. (3)

using the scalar Green’s functions with retardation of the type

g(r, r′, s) =
1

4π

e−sτ

|r− r′|
(4)

with the delay equal to τ = |r−r
′|

c0
and c0 equal to the speed of light in vacuum. The reader can refer to [1] for more

details about the PEEC method. Several flavours of the PEEC method exists depending on how the exponential function
in the integrals above is treated. For this work, we used the so called center-to-center approximation:

Lp(cc)n,m(s) = e
−s

Rn,m
c0 Lp(qs)n,m, P (cc)

n,m(s) = e
−s

Rn,m
c0 P (qs)

n,m (5)

where Rn,m is the Euclidean distance between the centers of the mesh cells n and m. The delay center-to-center between
each couple of mesh cells is used to approximate the delay of the interaction of each mesh cell couple and the exponential
term is taken out of the integrals. This PEEC formulation has been proven accurate for several application cases and less
computationally expensive than the PEEC solution where the integrals are kept into the integrals when computing the
partial inductances and potential coefficients terms. This formulation is also more accurate than the so-called quasi-static
(qs) case where the exponential terms are just fixed equal to one.

3 MC and Multifidelity modelling

In the design of a system of interest, design parameters such as layout features influence the system behaviour and
therefore the design performances. Design tasks, such as optimisation and tolerance analysis, require multiple simulations
where the design parameters are varied. Let us consider d design parameters as ξ = [ξ1, ..., ξd] ∈ R

d, then we can introduce
the influence of these parameters into the state-space PEEC equations (1) as

(sC(s, ξ) +G(s, ξ))X(s,ξ) = BIp(s),Vp(s, ξ) = B
T
X(s,ξ) (6)

Our contribution targets tolerance analysis and the estimation of stochastic quantities, such as mean and variance, of
some EM quantities of interest that depend on random variations of the ξ parameters. We estimate stochastic moments
of the scattering parameters S(s, ξ) in this work. The formulas in what follows are considered for a scalar function for
ease of notation. The extension towards vectors and matrices is straightforward considering element-wise operations.
The m-th raw and central stochastic moment of S(s, ξ) (without loss of generality, we assume here continuous random
variables) can be expressed as

E[Qm(s, ξ)] =

∫

Γ

Qm(s,ξ)W (ξ)dξ (7)

with m ∈ N, where E[·] represents the expectation operation, the Q(s,ξ) quantity can denote S(s, ξ) or S(s, ξ) −
E[S(s, ξ)], for raw and central moments, respectively. We call here µ′

m(Q) and µm(Q) the m-th raw and central
moments, respectively. W (ξ) is a joint probability density function.

In this work, we use the following assumption: although the exact EM behaviour is not perfectly known due to
Maxwell’s equations discretisation in EM solvers, the common way to use EM solvers in engineering to get accurate
results is by choosing settings (e.g., a fine mesh discretisation) that can provide a high accuracy. Therefore, we assume
that the response S(s, ξ) provided by the PEEC solver is the correct EM response. An estimation of the moments
above described can be obtained by the MC approach, where a set of random samples based on the joint probability
density function of ξ is used. After the function S(s, ξ) is sampled in the ξ space, the collected data can be used to
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estimate stochastic moments by sample-based formulas. It is important to use estimators that are unbiased and have
minimal variance compared with other unbiased estimators. In this perspective, for example the mean E[S(s, ξ)] and
variance E[(S(s, ξ) − E[S(s, ξ)])2] can be estimated using R independent and identically distributed (i.i.d.) samples
SR := (S(s, ξr))r=1,...,R as

E[S(s, ξ)] ≈ m1(SR(s, ξ)) =

R
∑

r=1

S(s, ξr)

R
(8a)

E[(S(s, ξ)− E[S(s, ξ)])2] ≈ h2(SR(s,ξ)) =
RT2 − T 2

1

(R − 1)R
(8b)

Both (8a)-(8b) represent an unbiased estimator of the corresponding moments [10]. For the estimation of the second
central moment (the variance), we use the so-called h-statistics that provides an unbiased estimator with minimal
variance with respect to other unbiased estimators [10]. Based on the samples S(s, ξr), r = 1, ..., R, Ta in h-statistics is
defined as a power sum Ta =

∑R

r=1 S
a(s, ξr) with a ∈ N. Generalisation of (8a)-(8b) for higher order moments can be

found in [10, 11].
In this work, we consider mean and variance as the stochastic moments of interest. The described estimators are

based on random sampling. Their mean square error (MSE) can be defined in general as a bias term squared and a
variance term (we omit (s, ξ) into S(s, ξ) and SR(s, ξ) for ease of notation in what follows). In the case of an unbiased
estimator, such as m1 and h2, only the variance term will appear [11]

MSE(m1(SR)) = E[(m1(SR)− µ′
1(S))

2] = Var(m1(SR)) (9a)

MSE(h2(SR)) = E[(h2(SR)− µ2(S))
2] = Var(h2(SR)) (9b)

Var(m1(SR)) =
µ2(S)

R
,Var(h2(SR)) =

µ4(S)

R
−

µ2
2(S)(R − 3)

(R − 1)R
(9c)

Using h2(SR) to estimate µ2(S) provides an unbiased estimator of Var(m1(SR)). For this formula, estimating the needed
samples R to achieve a certain target MSE is straightforward. An unbiased estimator for Var(h2(SR)) is discussed in
[11]. Both variance terms in (9c) are of order O(R−1), which allows reformulating Var(h2(SR)) in a more suitable form
in order to estimate the needed samples R to achieve a certain target MSE [11]. The maximum number of samples
between the two estimations is then chosen. We note that MC and the proposed multifidelity approach start from an
initial number of samples, the needed number of samples to achieve the chosen MSE value is estimated, then new
simulations are performed and the loop continues till the chosen MSE value is achieved.

The MLMC technique generalises the MC technique. A set of models is combined in a specific form. Let us consider
L+ 1 levels and therefore L+ 1 models that provide {Sl(s, ξ)}

L
l=0 as corresponding output. We assume the L-th model

is the most accurate and computationally expensive, while the 0-th model is the least accurate and computationally
expensive in the set of L+1 levels. We assume the L-th model gives what we consider the exact EM behaviour SL = S
and this model is also used by the MC analysis. The estimation of mean and variance of S(s, ξ) can be obtained as
described in [4] and [11], respectively

E[S(s, ξ)] ≈ m1,MLMC({Sl,Rl
}Ll=0) = m1(S0,R0

) +
L
∑

l=1

m1(Sl,Rl
− Sl−1,Rl

) (10)

E[(S(s, ξ)−E[S(s, ξ)])2] ≈ h2,MLMC ({Sl,Rl
}Ll=0) = h2(S0,R0

) +

L
∑

l=1

(h2(Sl,Rl
)− h2(Sl−1,Rl

)) (11)

Considering the assumption SL = S, both estimators m1,MLMC and h2,MLMC are unbiased. Concerning their MSE
(thus their variance), we assume to use i.i.d. samples to sample and evaluate S0(s, ξ) and each pair [Sl(s, ξ), Sl−1(s,ξ)].
The following variance formula for the m1,MLMC estimator can be obtained [4]

Var(m1,MLMC) = Var(m1(S0,R0
)) +

L
∑

l=1

Var(m1(Sl,Rl
− Sl−1,Rl

)) (12)

A similar formula can be obtained for h2,MLMC as a sum of variance contributions. However, the formula is more
involved and we refer to [11] for the details.

For a chosen MSE value related to the computation of mean and variance of S(s, ξ), the number of samples {Rl}
L
l=0

needed to achieve this error level and minimize the total computational cost of the tolerance analysis can be found by
simple analytical formulas obtained after a constrained minimisation problem [4, 11]. Therefore, as in (9c), the needed
number of samples can be easily computed [4, 11].

Choosing the number and definition of levels might not be a simple choice, especially for a broadband design of
interest. These choices strongly influence the speed-up that MLMC can achieve over MC.

What we propose is to reduce the number of levels to only two levels. This removes in principle some flexibility, but
it provides a very simple and effective choice. Therefore, we are in the scenario of one high-fidelity model (HFM) and
one low-fidelity model (LFM). The LFM is generated by using metamodelling techniques and it accurately approximates

3



the HFM. Therefore, we consider a metamodel as Smetamodel(s, ξ) ≈ SL(s,ξ). In this work, the LFM is created by
using a latin hypercube sampling (LHS) approach and radial basis functions (RBF) and polynomial functions for the
metamodel construction. The LHS collects the data SL(s, ξq), q = 1, ..., Q and the metamodel is then built

Smetamodel(s, ξ) =

Q
∑

q=1

wq(s)φ(ξ− ξq) +

B
∑

b=1

wb(s)pb(ξ) (13)

Different radial basis functions φ(ξ − ξq) exist in the literature. We selected as an example the multiquadrics basis

functions φ(ξ − ξq) =
√

r2q + c2 where rq represents the euclidean distance between ξ and ξq and c is a positive

parameter. Other choices are possible. The B polynomial functions were chosen to be [1, ξ(1), ξ(2), ..., ξ(d)].
The HFM (level 1) is kept as a reference for accuracy and called a few times (this means a few samples) during the

tolerance analysis. Instead, the LFM (level 0) takes care of a very high percentage of the needed simulations and it
accurately approximates the behaviour of the HFM. In this way, their difference (level 1 - level 0) will be low and a few
samples will be called by this difference term in the related MLMC formulas. We note that it might be tempting to use
only the LFM. However, this will introduce a bias term into the MSE formulas, which might be difficult to compute
accurately. We note that having a more or less accurate LFM will bring less or more samples for the difference term
(level 1 - level 0) into the MLMC formulas. The generation of a metamodel can be automated by adaptive sampling
and modelling techniques. However, this is beyond of the scope of this work.

4 Numerical results

A finger capacitor was used as a validation example. Fig. 1 shows the layout of the structure. The thickness of
conductors and dielectrics is equal to 100 µm and 840 µm, respectively; WP = 300 µm, WC = 400 µm, WR = 700
µm. The stochastic parameters are uniform random variables varying in the ±10% range with central values L=1400
µm, W=600 µm, G=200 µm, LP=950 µm and GR=650 µm. The electrical port of interest is defined by the blue dots.
The metal is copper, while the substrate is made by a dielectric with relative permittivity of 6.5. The frequency range
of interest is [1 − 7] GHz and it was sampled by 51 samples. Each frequency sample is considered separately for the
tolerance analysis. The 5D space of the stochastic parameters is composed of ξ = [L,W,G,LP,GR]. This space was
sampled by a MC technique and the proposed technique. The HFM is a PEEC model with a mesh resolution λmin/40
(λ is the wavelength). A higher mesh resolution leads to the same accuracy of the EM results (and therefore to an
unnecessary higher computational complexity), while a lower mesh resolution leads to accuracy losses. This is the only
model used by the MC approach. The EM quantity of interest is the scattering parameter S11(s = j2πfrequency, ξ).
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Figure 1: Layout of the finger capacitor.

The average CPU time needed by the HFM model for one frequency sample simulation is 178 s, while the same CPU
time quantity for the metamodel is equal to 1 ms. The LHS sampling to build the metamodel Smetamodel(j2πfrequency, ξ)
used 50 samples in the ξ space. We consider an MSE equal to 10−6 as accuracy objective for the estimators of mean
and variance of the real and imaginary part of S11. Fig. 2 shows the speed-up obtained by the proposed technique with
respect to a MC analysis, when both techniques target the same MSE value. This speed-up is calculated considering
for each frequency sample: a) for the MC, the CPU time needed to run the MC using the HFM; b) for the proposed
technique, the CPU time needed to collect the S11 data samples related to the LHS sampling, to build the metamodel
and to run the MLMC analysis with the two levels (LFM and HFM). The needed number of samples to run these two
techniques is chosen by (9c) for MC and by the formulas in [4, 11] for the proposed two-level multifidelity technique.
Both techniques were initialised with 50 ξ random samples for each level involved (the HFM level only in MC, the
LFM and HFM levels in the multifidelity scheme). Fig. 3 compares the mean and variance estimation of the real and
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imaginary part of S11 for the MC analysis and proposed technique. As clearly demonstrated by the results, the proposed
multifidelity scheme achieves a significant speed-up ensuring the same MSE of a MC analysis.
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Figure 2: Speed-up of the proposed technique with respect to a MC analysis.
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Figure 3: Mean and variance of the real and imaginary part of S11.

5 Conclusion

A two-level multifidelity method has been proposed for fast tolerance analysis of EM systems that span a broadband
frequency range. The combination of the PEEC method with metamodelling results to be very effective in accurately
estimating stochastic quantities of interest, while achieving high speed-ups with respect to a MC analysis. Pertinent
numerical results have validated the proposed technique.
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