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Abstract—Hardware distortions (HWDs) render drastic effects
on the performance of communication systems. They are re-
cently proven to bear asymmetric signatures; and hence can be
efficiently mitigated using IGS, thanks to its additional design
degrees of freedom. Discrete AS can practically realize the IGS
by shaping the signals’ geometry or probability. In this paper,
we adopt the PS instead of uniform symbols to mitigate the
impact of HWDs and derive the optimal maximum a posterior
detector. Then, we design the symbols’ probabilities to minimize
the error rate performance while accommodating the improper
nature of HWD. Although the design problem is a non-convex
optimization problem, we simplified it using successive convex
programming and propose an iterative algorithm. We further
present a HS design to gain the combined benefits of both PS
and GS. Finally, extensive numerical results and Monte-Carlo
simulations highlight the superiority of the proposed PS over
conventional uniform constellation and GS. Both PS and HS
achieve substantial improvements over the traditional uniform
constellation and GS with up to one order magnitude in error
probability and throughput.

Index Terms—Hardware distortion, asymmetric signaling, er-
ror probability analysis, improper discrete constellations, im-
proper Gaussian noise, non-uniform priors, optimal detector.

I. INTRODUCTION

Exponentially rising demands of high data rates and reli-
able communications given the limited power and bandwidth
resources impose enormous challenges on the next generation
of wireless communication systems [1], [2]. Various research
contributions propose new configurations and novel techniques
to address these challenges [3], [4]. Nonetheless, the perfor-
mance of such systems can be highly degraded by the hard-
ware imperfections in radio frequency (RF) transceivers [5]–
[7]. Such imperfections give rise to additive signal distortions
emerging from the phase noise, mismatched local oscillator,
imperfect high power amplifier/low noise amplifier, non-linear
amplitude-to-amplitude and amplitude-to-phase transfer [8]–
[14]. Various contributions emphasized the distinct improper
behavior of these hardware distortions (HWDs) [15]–[18],
which requires effective compensation techniques to meet the
performance demands.

A. Motivation

The improper Gaussian signaling (IGS) is proven as an
effective scheme to mitigate the deteriorating effects due to
the existence of improper noise or interference in wireless

S. Javed, A. Elzanaty, O. Amin, B.Shihada and M.-S. Alouini are with
CEMSE Division, King Abdullah University of Science and Technology
(KAUST), Thuwal, Makkah Province, Saudi Arabia. E-mail: {sidrah.javed,
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communication systems. More precisely, IGS is a generalized
complex signaling that allows the signal components to be
correlated and/or to have unequal power, as opposed to proper
Gaussian signaling [19]. IGS offers an additional degrees of
freedom (DoF) in signaling design characterized by the circu-
larity coefficient [20]. Several studies highlight the significance
of IGS to improve the system performance under improper
interference [21]–[28]. Recent studies quantified the impact of
IGS in dampening improper noise effects in multi-antenna or
multi-nodal system settings [17], [29]–[33], IGS has emerged
as promising candidate to improve the average achievable rate
performance in multi-antenna systems suffering from HWD
[30], [31]. Moreover, IGS benefits can also be reaped in vari-
ous full-duplex/half-duplex relay settings by effectively com-
pensating the residual self-interference, inter-relay interference
and/or HWD [17], [32], [33]. Additionally, the ergodic rate
maximization and outage probability minimization based on a
generalized error model for hardware impairments in single-
input multiple-output (SIMO) and multiple-input multiple-
output (MIMO) systems is studied in [30], [31].

B. Background

Despite the overwhelming benefits of IGS, it is practically
infeasible owing to the high detection complexity and un-
bounded peak-to-average power ratio [2], [34]. This motivated
the researchers to design some equivalent finite and discrete
asymmetric signaling (AS) schemes for practical implementa-
tion. Improper discrete constellation, or AS, entails redesign-
ing the symmetric discrete signal constellation to convert it
into an asymmetric signal [2]. Several studies focused on
geometric shaping (GS) as a possible designing scheme to
improve system performance. GS transforms equally spaced
symbols to unequally spaced symbols (due to correlated and/or
unequal power distribution between quadrature components
of the symbols) in a distinct geometric envelop such as
ellipse [35], parallelogram [34], [36] or some irregular envelop
[37]. A family of improper discrete constellations generated
by widely linear processing of a square M -ary quadrature
amplitude modulation (QAM) depict parallelogram envelop
[34]. Similarly, GS based on optimal translation and rotation
also yields parallelogram envelop [36]. However, conditioned
on high signal-to-noise ratio (SNR) and higher order QAM, the
optimal constellation is the intersection of the hexagonal lat-
tice/packing with an ellipse where the eccentricity determines
the circularity coefficient [35]. GS has emerged as a competent
player to reduce shaping loss and improve reception at lower
signal-to-noise ratios in terrestrial broadcast systems [38],
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[39]. GS parameters can be designed for diverse objectives
such as capacity maximization [34], bit error rate (BER) re-
duction [36], and symbol error probability minimization [35].
Although the asymmetric discrete family of constellations is
practical, they exhibit two types of loss, i.e., shaping loss and
packing loss in approaching IGS theoretical limits [34].

C. Related Work

Most of the efforts to close the gap between AS and
ideal IGS are concentrated around GS with a limited focus
on probabilistic shaping (PS) as another way to implement
AS for HWD. Given a fixed number of symbols and the
symbol locations, an asymmetric constellation can be obtained
by adjusting the symbol probabilities [40]. PS maps equally
distributed input bits into constellation symbols with non-
uniform prior probabilities [41]. This can be achieved us-
ing distribution matching (DM) for rate adaptation such as
constant composition DM [42], adaptive arithmetic DM [43],
syndrome DM [44], [45] DM-based compressed sensing [46],
[47].

PS-based schemes have been employed to enhance the
system performance in optical fiber communications (OFC)
and free-space optics (FSO). In OFC, multiple transformations
are presented to approach Gaussian channel capacity using
PS including prefix codes [48], [49], many-to-one mappings
combined with a turbo code [50], distribution matching [51]
and cut-and-paste method [52]. Furthermore, multidimensional
coded modulation format with hybrid probabilistic and geo-
metric constellation shaping can effectively compensate non-
linearity and approach Shannon limits in OFC [53]. Coded
modulation scheme with PS aims to solve the shaping gap
and coarse mode granularity problems [54]. Interested reader
can read the classic work [55] for the design guidelines of AS
in the coherent Gaussian channel with equal signal energies
and unequal a priori probabilities. Probabilistic amplitude
shaping is another concept that can only be used for symmetric
constellation with coherent modulation, which greatly limits its
application [56]. For FSO, a practical and capacity achieving
PS scheme with adaptive coding modulation is proposed with
intensity modulation/direct detection [57].

The concept of PS is widely employed in the OFC and
FSO systems. However, it is quite not well investigated
in wireless communication systems and only a few studies
have contributed in this domain [58], [59]. For example,
enumerative amplitude shaping is proposed as a constellation
shaping scheme for IEEE 802.11 which renders Gaussian
distribution on the constituent constellation [58]. Moreover,
PS has been proposed to maximize the mutual information
between transmit and receive signals for non-linear distortion
effects in additive white Gaussian noise (AWGN) channels
[59]. To the best of authors’ knowledge, PS has not been used
to enhance the error performance or to realize the IGS for
wireless communication systems with HWD.

D. Contributions

In this paper, we propose PS as a method to realize improper
signaling, which is beneficial in mitigating the impact of HWD

on the BER performance. Motivated by IGS’s theoretical
results in various scenarios [2] and the issues associated with
GS, such as high shaping gap and coarse granularity, we adopt
PS to realize the IGS scheme and combat HWD to assure
reliable communications. In the following, we summarize the
main contributions as:
• We derive the optimal maximum a posterior (MAP)

detector for a discrete AS and carry out BER analysis
for the adopted HWD communication system.

• We design the probabilistic shaped AS under power and
rate constraints for hardware distorted system and pro-
pose adaptive algorithm that tune the symbol probabilities
for PS to minimize the BER performance.

• We further suggest a hybrid shaped AS scheme that reaps
benefits of both PS and GS and present an adaptive
algorithm that tune both signal probability and shaping
parameters.

• Finally, we present numerical Monte-Carlo simulations to
validate the performance of the proposed techniques and
compare the BER and throughput performance of PS, GS,
and hybrid shaping (HS) in AWGN and Rayleigh fading
channels.

E. Paper Organization and Notation

The rest of the paper is organized as: Section II describes
statistical signal characteristics, HWD model, and optimal
receiver for the adopted HWD system. In section III, we
present the error probability analysis using the union bound
on pairwise error probability and derive instantaneous BER for
generalized M -ary modulation scheme. Next, we propose PS
design using successive convex programming (SCP) algorithm
and some toy examples for comprehensive illustration in
section IV. Later, HS parameterization and design along with
the respective MAP and error probability analysis is carried
out in section V, followed by the numerical results in Section
VI and the conclusion in Section VII.

Notations: In this paper, |a| and a∗ represent the absolute
and complex conjugate of a scalar complex number a. The
probability of an event A is defined as Pr(A). The notations
fz(z) and fz|y(z|y) denote the probability density function
(PDF) and conditional PDF of a random variable (r.v.) z given
y. The operator E[.] denotes the expected value. Considering
a r.v. Λ, the real/in-phase and imaginary/quadrature-phase
components of Λ are denoted as ΛI and ΛQ, respectively.
Moreover, f ′(x) denotes the first order derivative of f(x) with
respect to x. Additionally, Z+ represents a set of positive
integers. v = [vI vQ]T is the real-composite vector repre-
sentation of the complex number v = vI + i vQ. Furthermore,
x(k) and p(k) represent the instance values of the variable x
and vector p, respectively, in the kth iteration of an algorithm.

II. SYSTEM DESCRIPTION

Impropriety incorporation is crucial for the systems dealing
with improper signals, noise, or interference. Such character-
ization helps in meticulous system modeling, accurate per-
formance analysis, and optimum signaling design. We begin
by presenting the statistical signal model to introduce some
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preliminaries of the impropriety characterization. This will
help to comprehend the impropriety concepts in the adopted
system model with HWD. Then, the transceiver HWD model
is described, and the optimal receiver is derived.

A. Statistical Signal Model

The impropriety characterization of a random variable (r.v.)
x involves the identification and extent of improperness de-
scribed by the pseudo-variance and circularity coefficient,
respectively.

Definition 1. The pseudo-variance of x is defined as σ̃2
x =

E[x2] as opposed to the conventional variance σ2
x = E[|x|2]

[19]. A null σ̃2
x signifies a proper complex r.v. whereas a non-

zero σ̃2
x identifies an improper complex r.v.

Definition 2. The degree of improperness is given by the
circularity coefficient Cx ,

∣∣σ̃2
x

∣∣/σ2
x, where 0 ≤ Cx ≤ 1 [20].

Cx = 0 indicates proper or symmetric signal and Cx = 1
indicates maximally improper or maximally asymmetric signal.

Evidently, the pseudo-variance is bounded, i.e.,
0 ≤

∣∣σ̃2
x

∣∣ ≤ σ2
x. Interestingly, a complex Gaussian

random variable v = a + ib can be fully described as,
v ∼ CN (mv, σ

2
v , σ̃

2
v), where mv is the statistical mean of v

[2]. The PDF of v with augmented representation v = [v v∗]T

is given as [60]

p (v)=
1√

π2
∣∣Rvv

∣∣ exp

{
−1

2

(
v−µv

)H
R−1
vv

(
v−µv

)}
, (1)

where µv and Rvv are the mean and augmented covariance
matrix of v, respectively [61], i.e.,

µv =

[
E[a] + iE[b]
E[a]− iE[b]

]
, Rvv =

[
σ2
v σ̃2

v

σ̃2∗
v σ2

v

]
. (2)

B. Transceiver Hardware Distortion Model

Consider a single-link wireless communication system suf-
fering from various hardware impairments. The non-linear
transfer functions of various transmitter RF stages, such as
digital-to-analog converter, band-pass filter and high power
amplifier result in accumulative additive distortion noise ηt ∼
CN (0, κt, κ̃t), where |κ̃t| ≤ κt [6], [9]. These distortions raise
the noise floor of the transmitted signal xtx = xm+ηt, where
xm is the single-carrier band-pass modulated signal taken from
M -ary QAM, M -ary phase shift keying (PSK), or M -ary pulse
amplitude modulation (PAM) constellation with a probability
mass function pm , pX(xm) rendering the transmission
probability of symbol xm, and p , [p1, p2, · · · , pM ]. Let us
define the set that includes all possible symbol distributions
as

S =

{
p : p = [p1, p2, · · · , pM ],

M∑
j=1

pj = 1, pj ≥ 0, ∀j ∈ {1, 2, · · · ,M}

}
. (3)

The transmitted signal further undergoes a slowly varying
flat Rayleigh fading channel g∼CN (0, λ, 0). Moreover, the

receiver further induces an additive distortion ηr, resulting
from the non-linear transfer function of low noise amplifier,
band-pass filters, image rejection low pass filter, analog-to-
digital converter. It is important to highlight that the receiver
distortions are in addition to the conventional thermal noise at
the receiver.

y =
√
α g (xm + ηt) + ηr + w; m ∈ {1, 2, · · · ,M}, (4)

where α is the transmitted power. The AWGN w and re-
ceiver HWD ηr are distributed as w ∼ CN (0, σ2

w, 0) and
ηr ∼ CN (0, α|g|2κr, αg

2κ̃r). The additive Gaussian distortion
model for the aggregate residual RF distortions is backed
by various theoretical investigations and measurement results
(see, e.g., [8], [9], [11]–[14], [62]–[65] and references therein).
This can also be motivated analytically by the central limit
theorem. Furthermore, the improper nature of these distor-
tions is motivated by the imbalance between in-phase and
quadrature-phase branches in the up-conversion and down-
conversion phases [29].

Lemma 1 (Aggregate effect of transceiver distortions [6],
[30]). For the following generalized received signal model

y =
√
αgxm + z; m ∈ {1, 2, . . . ,M}, (5)

where z ,
√
αgη + w is the r.v. representing the aggregate

effect of transceiver distortions, η ∼ CN (0, κ, κ̃), κ = κt + κr

and κ̃ = κ̃t + κ̃r, the aggregate interference can be modeled
as improper noise, i.e., z ∼ CN

(
0, α|g|2κ+ σ2

w, αg
2κ̃
)

.
Moreover, the variance of zI and zQ are given in (6) and
(7), respectively, as

σ2
I =

α|g|2κ+ σ2
w + α<

(
g2κ̃
)

2
, (6)

σ2
Q =

α|g|2κ+ σ2
w − α<

(
g2κ̃
)

2
. (7)

Furthermore, the non-zero pseudo-variance σ̃2
z motivates us

to evaluate the correlation between zI and zQ using the
correlation coefficient ρz as

ρz =
α=
(
g2κ̃
)√(

α|g|2κ+ σ2
w

)2

− (α< (g2κ̃))
2

. (8)

Proof of (6)-(8) is presented in Appendix A.

It is important to note that (5) reduces to the conventional
signal model y =

√
αgxm +w in case of ideal hardware, i.e.,

κ = 0, which is induced by imposing κt = κr = 0 and also
κ̃ = 0, which is deduced from Definition 2.

HWD can leave drastic effects on the system performance
as they raise the noise floor. Although, the entropy loss of
improper noise is less than the proper noise but it is difficult
to tackle. It requires some meticulously designed improper
signaling like IGS for effective mitigation. However, IGS is
difficult to implement because of the unbounded peak-to-
average power ratio and high detection complexity [2], [34].
Therefore, researchers resort to the finite discrete AS schemes
obtained by GS.
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We propose PS as another way to realize AS in order to
effectively dampen the deteriorating effects of improper HWD.
PS aims to design non-uniform symbol probabilities for a
higher order QAM to minimize BER offering more degrees
of freedom and adaptive rates. In the following section, we
carry out the error probability analysis of the adopted system
which lays foundation for the proposed PS design.

C. Optimal Receiver

Conventional systems with Gaussian interference employ
least-complex receivers with either minimum Euclidean or
maximum likelihood detectors. However, such receivers can-
not accommodate the unequal symbol probabilities and im-
proper noise. Therefore, the optimal detection in the presented
scenario can only be achieved by the MAP detector at the
expense of increased receiver complexity. Considering the
improper Gaussian HWD and the non-uniform priors of the
constellation symbols, the optimal MAP detection is given by

m̂PS = arg max
1≤m≤M

pX(xm)fYI,YQ|X,g (yI, yQ|xm, g) , (9)

where fYI,YQ|X,g (yI, yQ|xm, g) is the conditional Gaussian
PDF of y representing maximum likelihood (ML) function
given xm and g, as expressed in (10) at the top of next page.

III. ERROR PROBABILITY ANALYSIS

Considering the non-uniform priors and improper noise, the
error probability analysis is carried out based on the optimal
MAP detector presented in Section II. Symbol error probability
Ps is the accumulated error probability of all symbols with
respect to their prior probabilities and is given as

Ps =

M∑
m=1

pm Pr (e|xm), (11)

where Pr (e|xm) is the probability of an error event given
symbol xm was transmitted. In order to yield a tractable
and simplified analysis especially for higher order modulation
schemes, Ps can be upper bounded as

Ps ≤
M∑
m=1

M∑
n=1
n 6=m

pmPmn, (12)

where, Pmn is the pairwise error probability (PEP), which
represents the probability of deciding xn given xm was
transmitted, ignoring all the other symbols in the constellation
[66]. The PEP can be evaluated using the MAP rule in (9) as

Pmn = Pr
{
pm fYI,YQ|X,g (yI, yQ|xm, g) ≤ pn

×fYI,YQ|X,g (yI, yQ|xn, g)
}
. (13)

By substituting the conditional probability from (10) in (13)
and after some mathematical simplifications, the PEP can be
written as in (14), shown in the next page. Now, we find the in-
phase and quadrature-phase components of the received signal
y for a given transmitted symbol xm as follows

yI =
√
α< (gxm) + zI , (15)

and

yQ =
√
α= (gxm) + zQ, (16)

respectively. Then, we substitute yI and yQ in (14), which can
be further simplified obtaining,

Pmn = Pr

{
ψ ≥ 2

(
1− ρ2

z

)
ln

(
pm
pn

)
+ αγmn

}
, (17)

where

γmn ,
ξmn

2
I

σ2
I

+
ξmn

2
Q

σ2
Q

−
2ρzξmnIξmnQ

σIσQ
, (18)

with ξmn = g dmn = g (xm − xn) representing the distance
between mth and nth symbol with channel coefficient g, and
ψ is obtained by the superposition of zI and zQ as

ψ=2
√
αρz

[(
ξmnQ
σIσQ

−ξmnI
ρzσ2

I

)
zI+

(
ξmnI
σIσQ

−
ξmnQ
ρzσ2

Q

)
zQ

]
.

(19)
Clearly, ψ is another zero mean Gaussian random variable
with variance σ2

ψ expressed as

σ2
ψ = 4

(
1− ρ2

z

)
αγmn. (20)

Conclusively, Pmn is the complementary cumulative distribu-
tion function of ψ and is given as

Pmn = Q

2
(
1− ρ2

z

)
ln
(
pm
pn

)
+ αγmn

2
√

(1− ρ2
z)αγmn

 . (21)

Substituting the PEP derived in (21) to (12) along with the
gray mapping assumption yields the following bound on BER

Pb≤PUB
b ,

1

log2 (M)

M∑
m=1

M∑
n=1
n 6=m

pmQ
(
βmnln

(
pm
pn

)
+

1

2βmn

)
,

(22)
where βmn ,

√
1− ρ2

z/
√
αγmn. The BER expression de-

pends on the size of the constellation, prior probabilities of
all the symbols, power budget, mutual distances between the
transmitted and received erroneous symbols under Rayleigh
fading, and HWD statistical characteristics.

In contrast to the monotonically decreasing BER for the
ideal systems, the BER saturates after a specific SNR in the
hardware-distorted transceivers. In this regard, we carry out
the asymptotic analysis of the bit error probability to quantify
the error floor as high SNR. Let us set

Υ , 1−
(
=
(
g2κ̃
))2(

|g|4κ2
)
− (< (g2κ̃))

2
, (23)

the error floor can be upper bounded from (22) as in (24). We
can see that the error floor depends on the adopted M -ary con-
stellation, channel coefficient, HWD statistical characteristics,
and symbol probabilities.
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fYI,YQ|X,g (yI, yQ|xm, g) =
1

2πσIσQ

√
1− ρ2

z

exp

− 1

2 (1− ρ2
z)

 (yI−
√
α<(gxm))

2

σ2
I

+
(yQ−

√
α=(gxm))

2

σ2
Q

+

− 2ρz(yI−
√
α<(gxm))(yQ−

√
α=(gxm))

σIσQ

 . (10)

Pmn = Pr

2
(
1− ρ2

z

)
ln

(
pm
pn

)
≤

 (yI−
√
α<(gxm))

2−(yI−
√
α<(gxn))

2

σ2
I

+
(yQ−

√
α=(gxm))

2−(yQ−
√
α=(gxn))

2

σ2
Q

+

+
2ρz(yI−

√
α<(gxn))(yQ−

√
α=(gxn))−2ρz(yI−

√
α<(gxm))(yQ−

√
α=(gxm))

σIσQ

 . (14)

lim
α→∞

Pb ≤
1

log2 (M)

M∑
m=1

M∑
n=1
n 6=m

pmQ


2Υ ln

(
pm
pn

)
+

(
2<(gdmn)2

|g|2κ+<(g2κ̃)
+ 2=(gdmn)2

|g|2κ−<(g2κ̃)
− 2

<(gdmn)=(gdmn)=(g2κ̃)
(|g|2κ)

2−(<(g2κ̃))2

)
√

4Υ

(
2<(gdmn)2

|g|2κ+<(g2κ̃)
+ 2=(gdmn)2

|g|2κ−<(g2κ̃)
− 2<(gdmn)=(gdmn)=(g2κ̃)

(|g|2κ)
2−(<(g2κ̃))2

)
. (24)

IV. PROPOSED PROBABILISTIC SIGNALING DESIGN

We aim to design the non-uniform symbol probabilities,
which minimize the BER of the adopted system suffering from
HWD. The optimization is carried out given power and rate
constraints. The rate of the conventional QAM with uniform
symbol probabilities and modulation order Mu is fixed, i.e.,
R = log2(Mu). However, we seek the maximum benefits of
PS by allowing a higher-order modulation with Mnu > Mu,
where Mnu is the modulation order of the constellation with
non-uniform probabilities p. Thus, the rate of this scheme can
be designed such that R , H(p) ≥ log2(Mu), rendering
more design flexibility and hence is capable of reducing
the BER. PS is capable of changing the transmission rate
by changing the symbol distribution for a fixed modulation
order, unlike uniform signaling, which needs to change the
modulation scheme’s order to change the rate for uncoded
communications.

After designing the symbol probabilities, we can implement
PS by using distribution matching at the transmitter to map
uniformly distributed input bits to Mnu-QAM/PSK symbols
[42], [43], [46]. Moreover, they can be detected using the
proposed MAP detector (9) at the receiver that incorporates
the prior symbol distribution. In the following, we formulate
the PS design problem and propose an algorithm to obtain
the non-uniform symbol probabilities followed by some toy
examples.

A. Problem Formulation

The probability vector p , [p1, p2, . . . , pMnu ], containing
probabilities of the symmetric Mnu−QAM/PSK modulated
symbols with Mnu > Mu

1, is designed to minimize the upper
bound on the BER derived in (22). In particular, we formulate
the problem as

1For Mnu = Mu, the distribution should be uniform to satisfy the rate
constraint because uniform signaling has the largest entropy.

P1 : minimize
p∈S

PUB
b (p) (25a)

subject to
Mnu∑
m=1

|xm|2pm ≤ 1, (25b)

H(p) ≥ log2 (Mu) , (25c)

where (25b) and (25c) represent the average power and rate
constraints, respectively, and H(p) is the source entropy, which
represents the transmitted rate in terms of bits per symbol per
channel use and is defined as

H(p) ,
Mnu∑
m=1

−pm log2 (pm) . (26)

The concave nature of information entropy in (25c) renders
a convex constraint in p and the rate fairness is justified
based on the trade off between BER minimization and rate
maximization, while satisfying a minimum rate. Therefore, the
idea is to employ a higher order non-uniformly distributed
Mnu−QAM/PSK as compared to a lower order uniformly
distributed Mu−QAM/PSK with same energy and at least the
same rate to minimize BER.

B. Optimization Framework

The optimization problem P1 (25) is a non-convex optimiza-
tion problem owing to the non-convex objective function even
though all the constraints are convex. Therefore, we propose
successive convex approximation approach to tackle it. We
begin by approximating PUB

b (p) with its first order Taylor
series approximation.

First order Taylor series approximation of a function f (x)
around a point x(k) is given as

f̃
(
x, x(k)

)
≈ f

(
x(k)

)
+∇xf

(
x(k)

)(
x− x(k)

)
. (27)
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Algorithm 1 Successive Convex Programming

1: Initialize i← 0, ε←∞ and Set tolerance δ
2: Choose feasible starting point p(i)

3: while ε ≥ δ do
4: Evaluate P̃UB

b

(
p,p(i)

)
5: Solve P1a and obtain p using p(i)

6: p(i+1) ← p
7: Update ε←

∥∥p(i+1) − p(i)
∥∥

8: i← i+ 1
9: end while

10: p∗ ← pi+1

11: P∗b ≤ PUB
b (P∗)

Thus, we need to compute ∇pPUB
b and evaluate it at p(k) to

compute P̃UB
b

(
p,p(k)

)
.

∇pPUB
b =

[
∂PUB

b

∂p1

∂PUB
b

∂p2
. . .

∂PUB
b

∂pMnu

]
. (28)

In order to compute ∂PUB
b /∂pt, we rewrite (22) as

PUB
b =

1

log2 (Mnu)

Mnu∑
m=1

Mnu∑
n=1
n6=m

pm

∞∫
Ωmn

e−
u2

2

√
2π

du, (29)

where

Ωmn = βmn ln

(
pm
pn

)
+

1

2βmn
. (30)

From (29) and by applying the Leibniz integral rule, we get

∂PUB
b

∂pt
≤ 1

log2 (Mnu)

Mnu∑
n=1,
n6=t,
m=t

(
Q (Ωmn)− βmn√

2π
e−

Ω2
mn
2

)

+
1

log2 (Mnu)

Mnu∑
m=1,
m6=t,
n=t

βmnpm√
2πpn

e−
Ω2
mn
2 . (31)

Now, PUB
b can be approximated from (27), (28), and (31) using

first order Taylor series expansion around an initial probability
vector p(k) as

P̃UB
b

(
p,p(k)

)
,PUB

b

(
p(k)

)
+∇pPUB

b

(
p(k)

)(
p−p(k)

)
. (32)

Successive convex programming minimizes P1 by iteratively
solving its convex approximation P1a as presented in Algo-
rithm 1.

P1a : minimize
p∈S

P̃UB
b

(
p,p(k)

)
(33a)

subject to
Mnu∑
m=1

|xm|2pm ≤ 1, (33b)

H(p) ≥ log2 (Mu) , (33c)

It begins with the initiation of counter i, stopping criteria ε and
the stopping threshold δ. Secondly, we choose some feasible
PMF set p(i) ∈ S which satisfies the constraints (25b) and
(25c). The while loop starts by evaluating the approximation
P̃UB

b

(
p,p(i)

)
around p(i).

s8 s1 s6 s3 s5 s2 s4 s7

QAM Symbols

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

S
y
m

b
o

l 
T

ra
n
s
m

is
s
io

n
 P

ro
b
a

b
ili

ty

Fig. 1: 8-QAM probability distribution for three SNR levels
at η = 0.99 and Rate = 2 bits/symbol.

The convex problem P1a is solved using the Karush Kuhn
Tucker (KKT) conditions derived in Appendix C to obtain the
optimal probabilities for P1a [67]. The solution obtained in
this iteration is updated as p(i+1) and is used to evaluate the
stopping criteria ε←

∥∥p(i+1) − p(i)
∥∥ as shown in Algorithm

1. The loop ends when the change in two subsequent solution
parameters in terms of the `2 norm is less than a predefined
threshold δ. Once the stopping criteria is attained, the solution
parameters p(∗) are guaranteed to render a BER P∗b which
will be lower than the bound PUB

b (P∗).

C. Toy Examples

A comprehensive illustration of probabilistically shaped
Mnu = 8-QAM with a 2 bits/symbol rate constraint, corre-
sponding to Mu = 4, is presented in Fig. 1 and Fig. 2. The
relation between prior probabilities and different SNR values
is presented in Fig. 1. Clearly, the probability distribution is
quite random for lower SNR level such as α = 0 dB. However,
it starts adopting uniform distribution of 0.25 for four of it’s
symbols, i.e., s1, s3, s6, and s8 while zero probabilities for
the rest four symbols. This technique provides lower BER
while maintaining 2 bits/symbol rate for a fair comparison
with traditional 4-QAM. Interestingly, it achieves a lower
BER by transmitting half of the symbols which are not the
nearest neighbors. It is important to highlight that the proposed
approach achieves this performance with the same power
budget and transmission rate.

Another example illustrates the trend of probabilitic shaping
for 8-QAM constellation at lower SNR level (keeping in mind
that it assigns the uniform probabilities to four symbols at
high SNR levels). The trend for lower HWD level such as
η = 0.11 is quite random. However, it follows a decreasing
probability trend for middle to higher HWD levels. Intuitively,
it assigns higher probabilities to the symbols with least power
and lower probabilities to the symbols with higher powers.
This trend decreases the BER while maintaining the average
power constraint.
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Fig. 2: 8-QAM probability distribution for three HWD levels
at α = 0 dB and Rate = 2 bits/symbol.

V. HYBRID SHAPING WHERE CONVENTIONAL MEETS
STATE-OF -THE-ART

In this section, we increase the AS design flexibility by
allowing joint GS and PS, which we call it here HS, to improve
the underlying communication system performance further.
Throughout the design procedure, HS transforms the equally
spaced uniformly distributed QAM/PSK symbols to unequally
spaced symbols in a geometric envelope with non-uniform
prior distribution. Thus, HS aims to optimize the symbol
probabilities (i.e., PS) and some spatial shaping parameters
for the constellation (i.e., GS).

A. Hybrid Shaping Parameterization

Apart from the non-uniform priors, consider the asymmetric
transmit symbol vm = [vmI vmQ]

T resulting from the GS
on the conventional baseband symmetric M -QAM/M -PSK
symbol xm = [xmI xmQ]

T as vm = ARxm, where

A (ζ) =

[ √
1 + ζ 0
0

√
1− ζ

]
, (34)

with translation parameter ζ ∈ (0, 1). Furthermore, the rotation
is given by

R (θ) =

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

]
, (35)

with rotation angle θ ∈ (0, µ π/2) for some constant µ.
Uniformly distributed symmetric M -QAM constellation has
a rotation symmetry of nπ/2, n ∈ Z+ rendering µ = n to be
good choice for GS. However, non-uniformly distributed M -
QAM constellation can only be rotationally symmetric after
2nπ, thus µ = 4n is suitable for HS. This technique renders
non-uniformly spaced symbols in a parallelogram envelop. It
is important to highlight that this transformation preserves the
power requirement. Power invariance of the rotation is a well
known fact in the literature [66]. However, the wisdom behind
the structure of A (ζ) is unfolded in the following theorem.

Remark 1. GS parameterization using translation matrix
A (ζ) preserves the power invariance of a complex random
variable and inculcates asymmetry/improperness with the cir-
cularity coefficient ζ.

Proof. The proof is presented in Appendix B. Furthermore, the
generalization of the same concept to the symmetric discrete
constellations such as M -QAM and M -PSK is also described
in Appendix B.

B. Optimal Receiver

The optimal receiver for hybrid shaped AS is also a MAP
detector as derived in (9), but with a modified reference
constellation vm in place of xm for all m ∈ {1, 2, · · · ,Mnu}.
More precisely, the detected symbol, m̂HS, is the one that
maximizes the posterior distribution, i.e.,

m̂HS = arg max
1≤m≤Mnu

pV (vm)fYI,YQ|V,g (yI, yQ|vm, g) , (36)

where, fYI,YQ|V,g (yI, yQ|vm, g) is similar to (10) by replacing
all appearances if xm with vm for all m ∈ {1, 2, · · · ,Mnu}.
It is worth noting that non-uniform prior probabilities are
inculcated in the detection process using MAP detector in
place of ML detector. Moreover, the geometrically shaped
symbols are taken from a modified symbol constellation.
Hence, this requires updating the reference constellation for
appropriate detection.

C. Error Probability

HS follows the same BER bound as derived in (22) but
with modified γmn. It can now be written using the following
quadratic formulation as a function of ζ and θ.

γmn (ζ, θ) = xT
mnR (θ)

T
A (ζ)

T
GA (ζ)R (θ)xmn, (37)

where xmn is the real composite vector form of ξmn = gdmn
given by

xmn =
[
ξmnI ξmnQ

]T
, (38)

and G contains the statistical characteristics of the aggre-
gate noise including in-phase noise variance, quadrature-phase
noise variance, and the correlation between these components.

G =

[
1
σ2
I

−ρz
σIσQ

−ρz
σIσQ

1
σ2
Q

]
. (39)

Thus, the BER of HS can be upper bounded as

PUB
b,HS (p, ζ, θ) =

1

log2 (Mnu)

Mnu∑
m=1

Mnu∑
n=1
n6=m

pm

×Q

( √
1− ρ2

z√
αγmn (ζ, θ)

ln

(
pm
pn

)
+

√
αγmn (ζ, θ)

2
√

1− ρ2
z

)
. (40)
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D. Problem Formulation

HS targets the joint design of PS PMF p and GS parameters
involving translation ζ and rotation θ parameter to minimize
the BER bound given in (40).

P2 : minimize
p∈S,0≤ζ≤1,

0≤θ≤2π

PUB
b,HS (p, ζ, θ) (41a)

subject to
Mnu∑
m=1

|vm|2pm ≤ 1, (41b)

H(p) ≥ log2 (Mu) , (41c)

where the average power constraint (25b) is updated as (41b)
to account for the possible change in the power of the
symbols by geometrically shaping the constellation. However,
the proposed rate constraint (41c) remains intact. Additionally,
there are some boundary constraints on ζ and θ, respectively.

Intuitively, it is quite difficult to tackle this non-convex mul-
timodal joint optimization problem. Therefore, we resort to the
alternate optimization of PS parameters (p) and GS parameters
(ζ, θ) using sub-problems P2a and P2b, respectively. Problem
P2a designs the PS parameters for some given ζ and θ. It is
quite similar to the problem P1 and thus, can be solved using
Algorithm 1.

P2a : minimize
p∈S

PUB
b,HS (p, ζ, θ) (42)

subject to (41b), (41c).

On the other hand, the GS optimization problem designs ζ and
θ for fixed symbol probabilities p, given as

P2b : minimize
0≤ζ≤1,
0≤θ≤2π

PUB
b,HS (p, ζ, θ) . (43)

The optimization problem P2b is a multimodal non-convex
problem which is hard to tackled even by the SCP approach
as employed in Section IV. The difficulty arises due to the
absence of any constraints which restrict the feasibility region.
The feasibility space enclosed by the boundary constraints
is highly insufficient to serve our purpose. Therefore, we
can approximate the solution using any of the following two
methods
• Trust region reflective method: This method defines a

trust region around a specific initial point and then
approximate the function within that region. The convex
approximation is the first order Taylor series approxima-
tion using the gradient. It begins by minimizing convex
approximation of the function to obtain a solution. This
solution is the perturbation in the initial point rendering
a new point which should minimize the original function.
Otherwise, we need to shrunk the trust region and repeat
the process. Reflections are used to increase the step
size while satisfying box constraints. After each iteration,
we receive a new point which renders a lower objective
function than the initial point. This iterative approach
leads us to a local minimum and stops when some
specified stopping criterion are met [68], [69].

• Gradient descent: This method is a relatively faster ap-
proach to tackle the problem at hand. It is owing to
the fact that it does not involve any approximation and

Algorithm 2 Alternate Optimization

1: Initialize j ← 0, ε←∞ and Set tolerance δ
2: Choose feasible starting points p(j), ζ(j), and θ(j).
3: Evaluate P

UB(j)
b,HS

(
p(j), ζ(j), θ(j)

)
.

4: while ε ≥ δ do
5: Solve P2a using Algorithm 1 with starting point p(j)

and given ζ(j), θ(j) to obtain p(j∗)

6: Solve P2b with starting points ζ(j),θ(j) and given
p(j∗) to obtain ζ(j∗), θ(j∗)

7: p(j+1) ← p(j∗), ζ(j+1) ← ζ(j∗), and θ(j+1) ← θ(j∗)

8: Evaluate P
UB(j+1)
b,HS

(
p(j+1), ζ(j+1), θ(j+1)

)
.

9: Update ε←
∥∥∥P

UB(j+1)
b,HS − P

UB(j)
b,HS

∥∥∥
10: j ← j + 1
11: end while
12: Solution parameters: p∗ ← pj+1, ζ∗ ← ζj+1, θ∗ ← θj+1

13: Objective function: PUB∗
b,HS ← P

UB(j+1)
b,HS

14: Consequence: P∗b,HS ≤ PUB∗
b,HS

underlying optimization. It begins with an initial point
and keeps updating the point in the descent direction
using the gradients and a step size until it reaches a local
solution or satisfies some stopping criterion [67].

Interestingly, both of these methods require the gradients of
PUB

b,HS (p, ζ, θ) with respect to ζ and θ. Gradients are used
either to approximate the function with it’s first order Taylor
series approximation within a trust region or to find the next
point in the descent direction. The gradients are evaluated and
presented in Appendix D.

E. Proposed Algorithm

The joint optimization problem P2 can be tackled using
the alternate optimization algorithm as presented in Algo-
rithm 2. It solves the sub problems P2a and P2b alternately
and iteratively. It begins with some starting feasible points
p(j), ζ(j), and θ(j) and evaluates P

UB(j)
b,HS

(
p(j), ζ(j), θ(j)

)
as

a benchmark. The alternate optimization begins by solving
P2a to minimize PUB

b,HS with respect to p given a pair of
ζ and θ. It is achieved by replacing all entries of xm with
vm = ARxm ∀m. p(j∗) is obtained using the framework
provided in Algorithm 1 which solves P1a iteratively. Then,
the optimum p(j∗) is used as a given PMF to obtain the pair
ζ(j∗) and θ(j∗) by solving P2b. These optimum parameter
values are updated to attain next initial points. Moreover,
P

UB(j+1)
b,HS

(
p(j+1), ζ(j+1), θ(j+1)

)
is also evaluated to compare

the decrease in objective function. The norm of this difference
is stored in ε and the process is repeated until this value drops
below a preset threshold δ. Eventually, the solution parameters
are updated in (p∗, ζ∗, θ∗) which yield the minimized BER
upper bound PUB∗

b,HS using HS. Therefore, these HS parameters
are capable of rendering a BER P∗b,HS lower than the bound
PUB∗

b,HS.
Numerical evaluations reveal that the stopping criteria is

mostly met in just one iteration. Interestingly, Step 5 and 6
in Algorithm 2 are interchangeable and need to be chosen
carefully. For instance, PS demonstrates better performance
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Fig. 3: Different Asymmetric Signaling Designs

at higher HWD levels so it is intuitive to design the HS by
first PS and then GS in order to attain further gain over PS.
Whereas, GS depicts lower BER at lower HWD levels so it is
recommended to design HS by first GS and then PS in order
to achieve better performance than GS using the added DoF
offered by PS.

HS can be implemented by choosing the transmit symbols
for the translated and rotated signal constellation, i.e., vm =
A (ζ∗)R (θ∗)xm. Furthermore, the symbols are transmitted
according to the optimized p∗ where ζ∗, θ∗ and p∗ are
designed using Algorithm 2. Upon reception, they are detected
using the MAP detector as presented in (36).

F. Illustrative Example

We present a comprehensive example to highlight the design
of various distinct shapes for a fixed rate of 4bits/symbol. The
black color is used for the reference constellation. The blue
color depicts the possible transmission symbols whereas red
symbols highlight the improbable transmission symbols. Fig.
3a presents uniformly distributed 16-QAM constellation with
no-shaping. Fig. 3b illustrates geometrically shaped 16-QAM
with parameters ζ = 0.5 and θ = π/2. The parallelogram
envelop encloses equally prior QAM symbols. Next, we em-
ploy 32-QAM and design non-uniform probabilities as detailed

in section IV. The red symbols highlight the symbols with
negligible transmission probabilities whereas blue symbols
have some notable transmission probabilities as depicted in
Fig. 3c. The proposed algorithm tends to discard symbols
with minimal transmission power to reduce the BER. One
possible reason is that these symbols are mostly affected by
the improper HWD owing to their comparable power/variance.
Furthermore, this probabilistic shaped constellation undergoes
GS to demonstrate hybrid shaped QAM constellation as shown
in Fig. 3d.

VI. NUMERICAL RESULTS

Numerical evaluations of the adopted HWD system are
carried out to study the drastic effects of hardware imper-
fections and the effectiveness of the mitigation strategies. The
performance of the proposed PS and HS as a realization of
asymmetric transmission is quantified with varying energy
per bit per noise ratio (EbNo) and HWD levels. EbNo is
obtained by normalizing SNR with the transmission rate.
The derived error probability bounds and performance of the
asymmetric transmission schemes are also validated using
Monte-Carlo simulations. We compare the performance of
conventional GS with the proposed PS. GS can be imple-
mented by transmitting symbols from a reshaped constellation
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Fig. 4: BER performance for a range of EbNo with κ = 0.13
in AWGN channel.

vm = A (ζ∗)R (θ∗)xm, where ζ∗ and θ∗ can be obtained by
solving P2a given uniform prior distribution. Upon reception,
they are detected using the ML detector which is the simplified
form of optimal MAP detector (36) given uniform prior proba-
bilities. This ML detector considers the reshaped constellation
symbols vm as the reference to detect the received symbols.

For most of the numerical evaluations we assume grey
coded square QAM constellations of order Mu = 8, i.e.,
R = log2(Mu), for no-shaping (NS) and GS as benchmarks.
For PS and HS we employ Mnu = 32-QAM with rate at least
as high as that of GS, i.e., R ≥ log2(Mu). Moreover, we
consider practical HWD values for the transmitter κt = 0.01
and receiver κr = 0.12. The pseudo-variances are derived
from the κ̃tI = κt/4, κ̃rI = κr/4, and correlation coefficient
ρη = 0.9. Intuitively, AWGN channel assumes g = 1 and
circularly symmetric Rayleigh fading channel is generated
using λ = 1. Furthermore, the transmission EbNo is taken as
30 dB. The aforementioned values of the parameters are used
throughout the numerical results, unless specified otherwise.

First, we evaluate the performance of various AS schemes
for a range of EbNo from 0 dB to 50 dB in an AWGN channel
as shown in Fig. 4. We employ Mu-QAM for NS and GS
whereas Mnu-QAM for PS and HS. The BER performance
improves with increasing EbNo till 30 dB and then undergoes
saturation owing to the presence of HWD. Further increase
in bit energy also results in an increase in the distortion
variance, as the system experiences an error floor which can be
deduced from (24). Evidently, the proper/symmetric QAM is
suboptimal and the BER performance is significantly improved
using AS. Conventional GS is not beneficial at lower EbNo
values, but it significantly improves the performance for higher
EbNo values pertaining to the increased symbol space [36]. On
the other hand, the proposed PS is capable of minimizing the
BER for the entire range of EbNo. Substantial gains can be
achieved by taking another step forward and employing HS.
Therefore, we can safely conclude that the best performance
can be achieved using PS for EbNo ≤ 15 dB and HS for EbNo
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Fig. 5: Throughput performance for a range of EbNo with
κ = 0.13 in AWGN channel.

≥ 15 dB as validated by the Monte Carlo simulation. At 20 dB,
the BER reductions for GS, PS, and HS schemes with respect
to unshaped constellation are approximately 52.22%, 66.67%,
80%, respectively.

For the same simulation settings, we analyze system
throughput (correct bits/symbol) for a range of EbNo values
where the lower bound on system throughput can be obtained
as

T LB (p) =
[
1− PUB

b (p)
]

H(p) (44)

Fig. 5 depicts negligible throughput gain of GS over NS
but noticeable throughput improvement using PS or HS. For
instance, 1.5%, 6% and 7% percentage increase in throughput
can be observed using GS, PS, and HS at EbNo = 5 dB. The
throughput gain is quite substantial for lower EbNo values
but undergoes saturation when EbNo ≥ 20 dB. Interestingly,
PS/HS saturates at 3 bits/symbol following rate fairness con-
straint with negligible BER whereas other schemes saturate
below 3 bits/symbol depicting significant BER even though the
entropy of 8-QAM with uniform distribution is log2(8) = 3.

Next we analyze the behavior of various AS schemes with
increasing distortion levels as depicted in Fig. 6. We assume
8-QAM for benchmark NS and traditional GS whereas 16-
QAM for PS and HS. Derived bounds are in close accordance
with the MC simulation especially for lower HWD levels.
Obviously, the BER increases with increasing HWD levels and
AS based systems achieve lower BER by efficiently mitigating
the drastic HWD effects. Undoubtedly, the NS scheme suffers
the most, but GS helps to decrease the BER to some extent.
Further compensation can be achieved using the proposed
PS and HS. Surprisingly, GS outperforms PS and HS at the
lowest HWD values, e.g., κ = 0.11, in Fig. 6 but PS/HS
maintain their superiority for κ ≥ 0.17. Interestingly, PS/HS
are still capable of outperforming GS even for the lowest
HWD levels pertaining to their rate adaptation capability and
added DoF using 32-QAM as highlighted in Fig. 7. We can
observe enhanced mitigation offered by the 32-QAM PS/HS
as compared to the 16-QAM PS/HS due to the added DoF.
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For instance, we observe BER compensation of 66% and
77.5% using 32-QAM PS and HS, respectively, whereas BER
compensation of 55% and 65% using 16-QAM PS and HS,
respectively, at κ = 0.22 HWD level.

A similar analysis is undertaken to study the impact of
increasing HWD on the system throughput. Fig. 8 compares
the throughput performance of Mu-QAM NS and GS with
Mnu1 = 16-QAM PS and HS as well as with Mnu2 = 32-
QAM PS and HS. System throughput decreases almost linearly
with increasing HWD for all forms of signaling but with differ-
ent slopes. NS demonstrates the steepest slope with increasing
HWD and all the other AS schemes render gradual slopes.
Quantitative analysis shows the slopes of −0.55, −0.41,
−0.28, and −0.24 using NS, GS, 16-QAM PS/HS, and 32-
QAM PS/HS, respectively, with increasing HWD. Therefore,
PS and HS present the most favorable results as compared to
the GS. Their performance can be even improved by increasing
the modulation order. Another important observation is the
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Fig. 8: System throughput for a range of HWD levels at
EbNo = 30 dB in an AWGN channel.

overlapping response of PS and HS especially for higher
ordered QAM, which suffices PS and revokes the need of HS
to perform even better.

Another simulation example depicts the performance of the
discussed AS schemes with over a range of EbNo for two
distinct scenarios of perfect receiver and perfect transmitter
as presented in Fig. 9. Perfect receiver system as the name
specifies includes ideal zero-distortion receiver but imperfect
transmitter with κt = 0.07 whereas perfect transmitter system
involves ideal zero-distortion transmitter but imperfect receiver
with κr = 0.15. Note that the lower value of κt relative to κr is
due to the fact that transmitters employ sensitive equipment to
exhibit low distortions because the transmitter distortions are
far more drastic than the receiver distortions. Interestingly, GS
outperforms PS at EbNo > 15 dB for the perfect receiver case
as opposed to EbNo < 15 dB where PS is still a better choice.
HS outperforms both of them irrespective of the EbNo range
classification. At such low HWD level, the BER percentage
reduction of 81.82%, 90.91%, 94.55% is observed using PS,
GS, and HS at 30 dB EbNo. Regarding the perfect transmitter
scenario, GS and PS reverse the trend for higher EbNo level.
Now the PS clearly outperforms GS for the entire range of
EbNo and the HS marks its superiority over both of these
schemes. At 0.15 HWD level, the EbNo gain of 8 dB, 12 dB,
and 13 dB are estimated using GS, PS, and HS to attain the
BER of 10−2.

Finally, the average (ergodic) BER performance of the
adopted system with κ = 0.22 HWD level is evaluated over
a Rayleigh fading channel for a range of EbNo values as
given in Fig. 10. Evidently, the AS schemes preserve their
BER trends and order. Clearly, average BER decreases with
increasing EbNo and then undergoes saturation yielding an
error floor. The derived BER bounds are also validated using
MC simulations rendering a tighter bound for higher EbNo
values. GS improves the average BER as compared to the NS
scenario but PS and HS maintain their superior performance.
Signaling schemes of GS, PS, and HS offer a percentage
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Fig. 9: BER performance for two different HWD scenarios
(Perfect Receiver: κt = 0.07 and Perfect Transmitter: κr =
0.15) in an AWGN channel.

reduction of 54.55%, 63.64%, and 70.45%, respectively, in
the average BER performance at 40 dB EbNo.

In a nutshell, we can conclude that the GS offers significant
BER reduction at higher SNR values as opposed to the PS
which offers universal gains. Moreover, the perks of HS are
also prominent for higher SNR and higher M -ary modulation
but depicts PS comparable performance at lower SNR values.
Therefore, we recommend to employ HS given high SNR
but resort to PS for lower SNR values to save additional
computational expense. Additionally, GS is a better choice
for slightly distorted systems whereas PS/HS are the optimal
choice for moderate to severely distorted systems. Further-
more, we can achieve improved performance by employing
higher-order QAM constellations for PS/HS given adequate
resources. On the other hand, the throughput gains are eminent
at considerably lower SNR values and higher distortion values.

VII. CONCLUSION

This work proposes probabilistic and hybrid shaping to re-
alize asymmetric signaling in digital wireless communication
systems suffering from improper HWD. Instinctively, all forms
of asymmetric shaping are capable of decreasing the BER,
and this performance gain improves with increasing SNR
and/or increasing HWD levels with respect to NS. However,
PS outperforms GS and performs equally well as HS. We
can achieve more than 50% BER reduction with PS/HS over
traditional GS. The perks of PS come at the cost of increased
complexity in the design and decoding process. The HS
scheme is capable of improving the system performance in
terms of the BER as well as throughput. However, for less
HWD levels and low EbNo, the benefits of HS over PS
are limited while requiring additional complications in opti-
mization, modulation, and detection procedures. Therefore, PS
emerges as the best choice in the trade-off between enhanced
performance and added complexity.
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Fig. 10: Average BER performance with HWD κ = 0.22 in a
Rayleigh fading channel.

APPENDIX A
STATISTICAL CHARACTERIZATION OF AGGREGATE NOISE

The superposed Gaussian distributions render the accumu-
lative noise z ∼ CN (0, v, ṽ), where v = α|g|2κ + σ2

w and
ṽ = αg2κ̃. Exploiting the relation between the v, ṽ and the
variances of σ2

I = E{z2
I}, σ2

Q = E{z2
Q} and their mutual

correlation rzIzQ = E {zIzQ}, we get

v = E
{
|z|2
}

= σ2
I + σ2

Q. (45)

ṽ = E
{
z2
}

= σ2
I − σ2

Q + i2rzIzQ . (46)

Their inter relation enables us to evaluate σ2
I , σ2

Q, and rzIzQ
from v and ṽ as

σ2
I =

v + ṽI
2

=
α|g|2κ+ σ2

w + α<
(
g2κ̃
)

2
, (47)

σ2
Q =

v − ṽI
2

=
α|g|2κ+ σ2

w − α<
(
g2κ̃
)

2
, (48)

rzIzQ =
ṽQ
2

=
α=
(
g2κ̃
)

2
. (49)

Finally, (47)-(49) allow us to find the correlation coefficient
between zI and zQ as

ρz =
rzIzQ
σIσQ

=
α=
(
g2κ̃
)√(

α|g|2κ+ σ2
w

)2

− (α< (g2κ̃))
2

. (50)

APPENDIX B
TRANSLATION WITHIN POWER BUDGET

In this appendix we present the proof of Remark 1.
It is straightforward to prove that the translation v =
Aw does not change the variance/power but only intro-
duce asymmetry/improperness. Considering the transformation
caused by the translation v =

√
1 + ζwI + i

√
1− ζwQ, the

power/variance is given by

σ2
v = (1 + ζ)σ2

wI + (1− ζ)σ2
wQ . (51)
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TABLE I: First Order Necessary KKT Conditions

Index KKT Conditions Satisfied with Reason

1 :Mnu ∇pL (p∗, λ∗) = 0, ∀1 ≤ m ≤Mnu ∇pL
(
p∗, λ∗1, λ

∗
2, λ

∗
3

)
= 0 Saddle point of the dual problem

Mnu+1 λ∗1

(
Mnu∑
m=1

|xm|2p∗m − 1

)
= 0

Mnu∑
m=1

|xm|2p∗m = 1, λ∗1 ≥ 0 Maximum power transmission

Mnu+2 λ∗2

(
Mnu∑
m=1

p∗m − 1

)
= 0

Mnu∑
m=1

p∗m = 1, λ∗2 ≥ 0 Equality constraint

Mnu+3 λ∗3 (log2 (Mu)−H(p∗)) = 0 H(p∗) = log2 (Mu), λ∗3 ≥ 0 BER -Rate tradeoff

Using the symmetric nature of r.v. w i.e., σ2
wI = σ2

wQ , it is
clear that σ2

v = σ2
w. On the other hand, the pseudo-variance

can be calculated as

σ̃2
v = (1 + ζ)σ2

wI − (1− ζ)σ2
wQ + i2

√
1− ζ2E {wIwQ}.

(52)
Again, the symmetry implies E {wIwQ} = 0. Thus, the cir-
cularity coefficient can be derived from (52) i.e., |σ̃2

v |/σ2
v = ζ.

The same concept can be extended to the symmetric discrete
constellations with uniform prior probabilities. Considering the
transformation caused by the translation vm =

√
1 + ζxmI +

i
√

1− ζxmQ, the power of the transformed constellation is
given by

P =
1

M

(
(1 + ζ)

M∑
m=1

x2
mI + (1− ζ)

M∑
m=1

x2
mQ

)
. (53)

Using the symmetric property of the original discrete con-

stellation
M∑
m=1

x2
mI =

M∑
m=1

x2
mQ, it is clear that the power

is preserved as P = 2
M

M∑
m=1

x2
mI . Moreover, the non-zero

pseudo-variance is given by

P̃ = ζP +
2i

M

√
1− ζ2

M∑
m=1

xmI xmQ. (54)

Again, the symmetry implies
M∑
m=1

xmIxmQ = 0. Thus, the cir-

cularity coefficient can be derived from (54), i.e., |P̃ |/P = ζ.

APPENDIX C
KKT CONDITIONS

The convex non-linear constraint problem P1a can be effi-
ciently solved using the first order necessary KKT conditions.
We begin by writing the Lagrangian function L as

L (p, λ1, λ2, λ3) =P̃UB
b

(
p,p(k)

)
+λ1

(
M∑
m=1

|xm|2pm−1

)

+λ2

(
M∑
m=1

pm−1

)
+λ3(log2 (Mu)−H(p)) , (55)

where the Lagrange multipliers are λ1, λ2, λ3 ≥ 0. Next.
we evaluate the gradient of the (55) with respect to the
optimization variables in p

∇pL =

[
∂L
∂p1

∂L
∂p2

. . .
∂L

∂pMnu

]
, (56)

where the partial derivative of L with respect to pm is given
by

∂L
∂pm

=
∂PUB

b

(
p(k)

)
∂pm

+ λ1|xm|2 + λ2

+ λ3

(
1

ln(2)
+log2 (pm)

)
, ∀ 1 ≤ m ≤Mnu (57)

Suppose that there is a local solution p∗ of P1a and the
objective function P̃UB

b

(
p,p(k)

)
along with the constraints

(25b) and (25c) are continuously differentiable. Then, there
exists a Lagrange multiplier vector λ∗, with components λi,
where i ∈ (1, 2, 3), such that the necessary first order KKT
conditions (as presented in Table I) are satisfied at (p∗, λ∗).
Interestingly, the KKT conditions are satisfied with

∇pL (p∗, λ∗1, λ
∗
2, λ
∗
3) = 0, (58)

M∑
m=1

|xm|2p∗m = 1, (59)

M∑
m=1

p∗m = 1, (60)

H(p∗) = log2 (Mu) . (61)

owing to the maximum transmission power preference, equal-
ity constraint and BER -Rate trade-off , respectively. Thus, the
Mnu+3 solution parameters

(
p∗1, p

∗
2, . . . , p

∗
Mnu

, λ∗1, λ
∗
2, λ
∗
3

)
can

be efficiently obtained by solving equations (58)-(61) using
Levenberg-Marquardt algorithm [70].

APPENDIX D
GRADIENT FOR OPTIMIZATION

The gradient of the upper bound on BER w.r.t GS parame-
ters is given as

∇GPUB
b =

[
∂PUB

b

∂ζ

∂PUB
b

∂θ

]
,

=
1

log2 (M)

M∑
m=1

M∑
n=1
n6=m

∆mn

[
∂γmn
∂ζ

∂γmn
∂θ

]
,

(62)

where ∆mn is the common part in both partial derivatives.

∆mn =
pmγ

−3/2
mn

2
√

2π

√
1− ρ2

z

α
e−

Ω2
mn
2

(
ln

(
pm
pn

)
− 1

2β2
mn

)
.

(63)
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Moreover, the partial derivative of γmn with respect to the
translation parameter ζ is given as

∂γmn
∂ζ

=
ξ̄2
mnI

σ2
I

+
2ρz ξ̄mnI ξ̄mnQ

σIσQ

ζ√
1− ζ2

−
ξ̄2
mnQ

σ2
Q

, (64)

where, ξ̄mnI = ξmnI cos(θ) − ξmnQ sin(θ) and ξ̄mnQ =
ξmnI sin(θ)+ξmnQ cos(θ). Furthermore, the partial derivative
of γmn with respect to the rotation parameter is evaluated as
in (65) in the top of next page.
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