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Abstract

Microbial corrosion is considered the main reason for multi-billion dollar sewer asset degradation. Sewer pipe surface temperature

is a vital parameter for predicting the micro-biologically induced concrete corrosion. Due to this important measure, a surface

temperature sensor suite was recently developed and tested in an aggressive sewer environment. The sensors can fail and they

may also put offline during the period of scheduled maintenance. In such situations, time series forecasting of sensor data can

be an alternative measure for the operators managing the sewer network. In this regard, this paper focuses on the short-term

forecasting of sensor measurements. The evaluation was carried out by forecasting the sensor measurements for different time

periods and evaluated with different forecasting models. The ETS model leads to high short-term forecasting accuracy and the

ARIMA model leads to high long-term forecasting accuracy. The models were evaluated on real data captured in a Sydney
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Short-term Time Series Forecasting of Concrete Sewer Pipe Surface
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Abstract— Microbial corrosion is considered the main reason
for multi-billion dollar sewer asset degradation. Sewer pipe
surface temperature is a vital parameter for predicting the
micro-biologically induced concrete corrosion. Due to this
important measure, a surface temperature sensor suite was
recently developed and tested in an aggressive sewer envi-
ronment. The sensors can fail and they may also put offline
during the period of scheduled maintenance. In such situations,
time series forecasting of sensor data can be an alternative
measure for the operators managing the sewer network. In
this regard, this paper focuses on the short-term forecasting
of sensor measurements. The evaluation was carried out by
forecasting the sensor measurements for different time periods
and evaluated with different forecasting models. The ETS model
leads to high short-term forecasting accuracy and the ARIMA
model leads to high long-term forecasting accuracy. The models
were evaluated on real data captured in a Sydney sewer.

Keywords — ARIMA model, concrete corrosion, ETS
model, forecasting model, sewer pipe, short-term forecast-
ing, surface temperature sensor, temporal, time series.

I. INTRODUCTION

Sewerage infrastructure services are essential for transport-
ing wastewater discharges from residential properties, com-
mercial buildings, and industrial areas to domestic sewage
treatment plants and systems mainly for treating water-
borne wastes and removing pollutants. In Australia, there
is more than 140,000 km of sewer mains that are currently
in service. It is widely believed that the sewer pipe system
protects the public societies and environments from sewer
airborne diseases and bad odors [1]. To safeguard such assets
from structural failures, Australian water utilities spend more
than AUD 100 million every year in pipe renewals and
rehabilitation [2]. A significant proportion of traversable
concrete sewer pipes are old in Australia and they are un-
dergoing corrosion because of the microbiological activities
that happen on the walls of the pipe surface [3].

Some of the common methods adopted by the water
utilities to perform a condition assessment of concrete sewer
pipes are visual inspections through closed-circuit television
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(CCTV) based monitoring and drill core analysis [4]. How-
ever, the CCTV based assessment can reveal only visual
defects on the surface but does not indicate the sub-surface
deterioration. Similarly, the drill core analysis may not be
an effective method for condition assessment to estimate
corrosion. The corroded layers of the concrete can fall
off while drilling, which can lead to misinterpretation on
the rate of corrosion. Recently, a concept of micro-drilling
based sensing technology [5] was reported for estimating
the thickness of the corroded concrete layer. This sensor
is an invasive type and needs human traversing in sewers
for taking measurements like core sampling. Also, there are
on-going studies that focus on the feasibility of estimating
the depth of acid permeation through electrical resistivity
based sensing technology for predicting the corrosion [6].
This reported work is a preliminary investigation through
simulation analyses.

The researchers in Australia in collaboration with one
of the largest water utility in Australia has developed a
predictive analytics model for estimating concrete sewer pipe
corrosion [7]. The predictive performance of the model can
be improved in areas where there is low confidence in esti-
mating corrosion by supplying concrete surface temperature
and moisture conditions as data inputs to the model [8]–[13].
Recently, a robust sensing suite for monitoring the temporal
variations of concrete surface temperature conditions was de-
veloped [14]. The data inputs from this sensor are crucial for
accurate sewer pipe corrosion prediction. Any disruptions to
sensor monitoring can have adverse effects on the corrosion
monitoring program. For example, sensor monitoring can be
halted for a week period due to sensor failure or for a day
period due to scheduled sensor suite maintenance. In such
circumstances, machine learning algorithms for forecasting
sensor data can be crucial for sewer operators to foresee the
temperature trends. Moreover, the forecasted sensor data can
be an ideal alternative to real sensor measurements during
the disrupted monitoring period. Another benefit that can be
derived from the forecast data is the detection of anomalies
and early sensor failure prediction by comparing the forecast
data with the streaming sensor measurements [15], [16].
Hence, the forecasted sensor data is important and it can
be fed as surface temperature data input to the predictive
analytics model for estimating corrosion. In this context,
this paper focuses on conducting performance evaluation on
relevant time series models for forecasting the concrete sewer
pipe surface temperature sensor measurements. Each model’s
forecast was statistically evaluated against the sensor data
collected from field tests conducted in Sydney, Australia.



The rest of this paper is organized as follows: Section II
briefly reviews the related work. Section III describes the
methods used in this paper. Section IV presents the evalu-
ation results with analysis and finally, Section V concludes
the paper by summarizing the key outcomes and briefing the
future work.

II. BRIEF REVIEW ON RELATED WORK

There are several studies available in the literature on fore-
casting sensor data. However, limited studies were reported
on the models of forecasting parameters that are related to the
sewer pipe environment. Zhang et al. conducted experiments
to find an efficient approach for forecasting the wastewater
flow in sewer pipes by comparing the performance of the
Autoregressive Integrated Moving Average (ARIMA) model
with the Multilayer Perceptron Neural Network (MLPNN)
model [17]. The outcomes of the study indicated that both
models can be used for forecasting. However, the perfor-
mance of the ARIMA model was better when statistically
evaluated with the benchmark metrics. Another study de-
veloped a forecasting based anomaly detection model for
surface moisture sensor monitoring inside the sewer pipe
[10]. The study evaluated different time series forecasting
models such as the Bagged model, Exponential Smooth-
ing with error, trend and seasonality (ETS) model, and
the seasonal ARIMA model combined with Hyndman and
Khandakar algorithm [18]. The study outcomes demonstrated
that the forecasting performance of the seasonal ARIMA
model was better than the forecasts of other models for
forecasting one week period. Also, daily forecasts were also
made by the seasonal ARIMA model in developing the
anomaly detection model. Since the seasonal ARIMA model
in that study is combined with Hyndman and Khandakar
algorithm, the optimization parameters of the model are
chosen automatically. This makes the forecasting model a
hybrid type because of the reason that the ARIMA model
optimization parameters can control the forecasting model to
be either the ARIMA model or Autoregressive (AR) model
or Moving Average (MA) model [16]. Similar studies were
conducted for the sewer pipe surface temperature sensor,
where the seasonal ARIMA model was used for forecasting
a day period to develop an early sensor failure prediction
model [15]. The temporal forecasting performance of dif-
ferent models such as Facebook’s Prophet method, TBATS
model, ARIMA model, ETS model, and the Bagged model
were evaluated for forecasting sewer air temperature sensor
data. The study outcomes indicated that the performance of
Facebook’s Prophet method was better in terms of accuracy
than other forecasting models for forecasting a week period
and a daily period [19]. In this paper, we use the surface tem-
perature sensor data to evaluate the forecasting performances
of the seasonal ARIMA model combined with Hyndman
and Khandakar algorithm, Facebook Prophet method, ETS
model, and Bagged model.

III. METHODS

A. Field Data Collection

An infrared radiometer is a non-contact type sensing ele-
ment of the concrete sewer pipe surface temperature sensor
suite. The sensor was deployed inside the sewer by installing
the sensing unit near the crown of the pipe. The sensor
measurements were collected and stored in a computing
platform in the monitoring station, which is constructed
outside the pipe. The measurements were collected from the
sewer pipe managed by the Sydney Water Corporation at the
Thornleigh suburb, Sydney, Australia. For more information
on the sensor development and field tests, the readers can
refer to [14]. The surface temperature data will be used to
evaluate the forecasting models.

B. Time Series Forecasting Models

Let TM(t) be the temperature sensor data at t instantaneous
time. The past hour sensor measurement is represented as
TM(t−1).

1) ARIMA Model: The ARIMA model is the most popular
and widely used method for forecasting time series data
[20]. This model has three components namely autoregres-
sive (AR) component. moving average (MA) and integrated
component the The forecast value of the seasonal ARIMA
model is given by (1).

(
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p∑
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x

)(
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θyβ
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Θyβ
TMp
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εt

(1)
where the AR component order is p, MA component order
is q, differencing level is d, φ is the AR component weight
parameter, θ is the MA component weight parameter, β is
the backshift operator, TMp is the seasonal period, seasonal
AR component order is P , seasonal MA component order is
Q, differencing parameter is ∆, seasonal differencing level is
D, Φ is the seasonal AR component weight parameter and
Θ is the seasonal MA component weight parameter. The
value p, d, q, P,D and Q are chosen automatically through
the optimization algorithm [18]. The white noise is εt and
the mean deviation is T̃M(t).

2) ETS Model: The point forecast of the ETS model [21]
is given by Yt, where the Yt = Yt+1 +Yt+2 + ....+Yt+n and
n is the finite number. The previous value Yt+1 and Yt+2

are given in (2) and (3) respectively.

Yt+1 = (Lt +Bt)(1 + εt+1) (2)

where Lt is the series level at t instantaneous time, Bt is the
slope level at t and ε denotes the error.

Yt+2 = (Lt+1 +Bt+1)(1 + εt+1) (3)



(Lt+1 +Bt+1)(1 + εt+1) = [(Lt +Bt)(1 + αεt+1) +Bt

+β(Lt +Bt)εt+1)](1 + εt+1)
(4)

where α and β are the smoothing parameters.
3) Prophet Model: The Prophet model is a forecasting

method developed by the researchers in Facebook [22]. The
Prophet model forecast value P (t) at time t is given by (5):

P(t) = G(t) + S(t) +H(t) + εt (5)

where εt is the model error. The term H(t) denotes the
holiday effect, where in the application reported in this paper
H(t) = 0, G(t) is the model’s growth trend expressed as in
(6) and S(t) is the model’s seasonality expressed as in (7).

G(t) =
C

1 + exp(−K(t−M))
(6)

where C is the carrying capacity, K is the logistic growth
rate and the offset parameter is M .

S(t) =

n=N∑
n=1

(
Ancos

(
2πnt

P

)
+Bnsin

(
2πnt

P

))
(7)

where P is the forecasting period, where P = 0.5 when
the model forecasts for 12 hours, P = 1 when the model
forecasts for one day and P = 7 when the model forecasts
for one week. An and Bn are the seasonal parameters, n is
the seasonal value and the instantaneous time is t.

4) Bagged Model: The Bagged model forecasting is de-
scribed in [23]. We have used the Forecast package in R
Studio for implementing this model.

C. Performance Indicators
The error metrics such as Mean Absolute Error (MAE),

Root Mean Square Error (RMSE) and Mean Absolute Per-
centage Deviation (MAPD) were used as the performance
indicators to evaluate the forecasting models. The MAE
expressed in (8) represents the modulus of the average
magnitude difference between the model forecast values and
sensor measurements whereas the RMSE expression in (9)
indicates the standard deviation of the forecast errors. The
MAPD defined in (10) gives the percentage of the absolute
average deviation between the forecast and measured data.

MAE =
1

SD

t=SD∑
t=1

|MF (t) − TM(t)| (8)

RMSE =

√√√√ 1

SD

t=SD∑
t=1

(MF (t) − TM(t))2 (9)

MAPD =
100%

SD

t=SD∑
t=1

∣∣∣∣MF (t) − TM(t)

TM(t)

∣∣∣∣ (10)

where the terms MF (t) and TM(t) denotes the data of the
forecasting model and the temperature sensor data respec-
tively at the instantaneous time t. The SD is the size of the
forecast and sensor data.

IV. EVALUATION RESULTS

This section presents the evaluation results of the forecast-
ing models. The surface temperature sensor data collected
inside the sewer pipe were used for evaluating the forecasting
models. The sensor measurements were taken in a periodic
interval of one hour. The first sensor measurement of the day
was taken at time 00:00 hours and the last measurement was
taken at time 23:00 hours. In total, there are 24 measured
values per day. The forecasting models such as the ARIMA
model, the ETS model, the Prophet model, and the Bagged
model were trained by using one-week sensor data. The
one-week period is between 4th November 2016 and 10th

November 2016. All-together, 168 sensor data samples were
used for training the forecast model. The trends of the sensor
data used for training is shown in Fig. 1.

Fig. 1: Training data inputs for the forecasting models.

By training the forecasting models, we forecast the con-
crete sewer pipe surface temperature sensor measurements
for one-week. The forecast week period is between 11th

November 2016 and 17th November 2016. Figure 2 shows the
forecasted sensor measurement values by each forecasting
model along with the actual sensor data collected from the
sewer pipe.

Fig. 2: Temporal forecasts for one week period.

It can be observed from Fig. 2 that the forecasts of
the Prophet model and the ARIMA model are having an



increasing trend, which is similar to the training data trend.
However, there is a difference in the increasing trend between
the two models. Also, the difference in forecast values be-
tween the Prophet model and the ARIMA model is increasing
each day. An identical trend can be observed in Fig. 2 for the
forecasts of the ETS model and the Bagged model. However,
there are slight differences in the forecast values of those two
models.

The performance indicators were determined for the fore-
casts of each forecasting model. Table I tabulates the com-
puted results, where it can be observed that the ARIMA
model forecasts have the lowest MAE, RMSE, and MAPD
values compared to the Prophet model, the ETS model and,
the Bagged model. The Prophet model has the second-lowest
values on the performance indicators and the ETS model has
the third-lowest values. The Bagged model has the highest
values on all the performance indicators, which makes it the
least performing model.

TABLE I: Forecasting Evaluation For One Week Period

Forecasting Models Performance Indicators
MAE (◦C) RMSE (◦C) MAPD (%)

ARIMA Model 0.2648 0.3382 1.2994

ETS Model 0.4583 0.5006 2.2528

Prophet Model 0.4147 0.4669 2.0490

Bagged Model 0.4995 0.5372 2.4541

From Table I, it can be noticed that the difference in
MAE and RMSE between the forecasts of the ARIMA
model and the Prophet model is approximately 0.15◦C and
0.13◦C respectively whereas the MAE and RMSE difference
between the ARIMA model and ETS model forecast is
0.19◦C and 0.16◦C respectively, and 0.23◦C and 0.20◦C is
the MAE and RMSE difference between the Bagged model
and the ARIMA model forecast. The maximum difference
in MAPD between the forecasts of the ARIMA model and
other models is less than 1.16%. This analysis shows that
the forecasting performance of the ARIMA model is better
than the other models. Therefore, it can be concluded that the
ARIMA model is suitable for forecasting one-week concrete
sewer pipe surface temperature sensor measurements.

In the previous forecasting evaluation, we forecasted for
one week. In the next analysis, we forecast the sensor
measurements only for 24 hour period. The first-day forecast
was made by training each forecasting model using the
sensor data as shown in Fig. 1. Then, the second-day sensor
measurements were forecasted by updating the training data
with the previous day’s actual sensor measurements. Simi-
larly, upcoming days were forecasted by updating the sensor
measurements of the previous day. This process goes on till
the seventh day. Figure 3 shows the 24 hours forecasts of
each model along with the actual sensor data collected from
the sewer pipe for one week.

Table II tabulates the computed performance indicators for
24 hour period forecasting, where it can be observed that

Fig. 3: Temporal forecasts for 24 hour period.

the forecasts of the ETS model have the lowest values on
all the performance indicators than the ARIMA model, the
Prophet model, and the Bagged model. The Bagged model
has the second-lowest values on the performance indicators
and the ARIMA model has the third-lowest values. The
Prophet model has the highest values on all the performance
indicators, which makes it the least performing model for
forecasting 24 hour period.

TABLE II: Forecasting Evaluation For 24 Hour Period

Forecasting Models Performance Indicators
MAE (◦C) RMSE (◦C) MAPD (%)

ARIMA Model 0.2388 0.3021 1.1812

ETS Model 0.1967 0.2641 0.9729

Prophet Model 0.2897 0.4155 1.4253

Bagged Model 0.2125 0.2723 1.0575

From Table II, it can be noticed that the difference in MAE
between the ETS model and other models is less than 0.10◦C.
Similarly, the difference in RMSE between the models is
less than 0.15◦C. Also, the difference in MAPD between
the forecasts of the ETS model and other models is small.
Although the difference in performance indicators between
the models is very small, the ETS model has performed better
forecasting for 24 hour period. Also, it is to be noted that the
MAE and RMSE of the ETS model forecast have reduced
almost by 50% from the performance indicator values of
one-week forecasts.

In the previous forecasting evaluation, we forecasted for
one day period. In our third analysis, we forecast the sen-
sor measurements only for 12 hour period. By using the
training data shown in Fig. 1, we forecast for 12 hours.
Then, the training model is updated with the actual sensor
measurements for forecasting the next 12 hour period. This
forecasting process is continued for one week, where Fig.
4 shows the temporal forecasts for each model for 12
hours. It can be observed from Fig. 4 that the forecasts of
all the models follow a similar trend as the actual sensor



measurements.

Fig. 4: Temporal forecasts for 12 hour period.

Table III tabulates the computed performance indicators
for 12 hour period forecasting, where it can be observed
that the ETS model’s forecasts have the lowest values on
the MAE, RMSE, and MAPD than all other models. Also,
it is to be noted that the difference between performance
indicators values of each model is minimal. Similar to 24
hour forecasting, the ETS model has high forecasting accu-
racy followed by the Bagged model, the ARIMA model, and
the Prophet model. The MAE and RMSE of the ETS model
forecast of 12 hour period have lower values compared to
the performance indicator values of 24 hour period forecast.
Therefore, the ETS model is also suited for forecasting 12
hour period.

TABLE III: Forecasting Evaluation For 12 Hour Period

Forecasting Models Performance Indicators
MAE (◦C) RMSE (◦C) MAPD (%)

ARIMA Model 0.1848 0.2343 0.9137

ETS Model 0.1457 0.1912 0.7295

Prophet Model 0.1853 0.2607 0.9162

Bagged Model 0.1800 0.2230 0.8811

V. CONCLUSIONS AND FUTURE WORK

This paper focuses on forecasting short-term temporal
dynamics of concrete sewer pipe surface temperature sensor
measurements. The forecasting performances of the ARIMA
model, the Prophet model, the ETS model, and the Bagged
model were evaluated by forecasting surface temperature
sensor measurements for the periods of one week, 24 hours,
and 12 hours. The error metrics such as MAE, RMSE, and
MAPD were used as performance indicators of forecasting
models. The ARIMA model forecast values for one week
have the lowest values on performance indicators compared
to other models. This indicates the ARIMA model’s bet-
ter performance and its suitability for forecasting sensor
measurements one-week ahead. However, the ETS model

has the lowest values on performance indicators for the
forecasting period of 24 hours and 12 hours. This shows
that the ETS model’s performance is better for forecasting
24 hours and 12 hours. Also, the forecasting errors of the
ETS model for 12 hours has decreased from one week and
24 hour period forecasting. This demonstrates the improved
forecasting performance of the ETS model. Therefore, the
ETS model is recommended for forecasting one day and
12 hour period surface temperature sensor measurements.
In the future, the proposed ETS forecasting approach will
be extended to develop an anomaly detection and early
sensor failure estimation algorithm for the concrete sewer
pipe surface temperature sensor suite.
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