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Abstract

Background: Automatic facial landmark localization is an essential component in many computer vision applications, including

video-based detection of neurological diseases. Machine learning models for facial landmarks localization are typically trained on

faces of healthy individuals, and we found that model performance is inferior when applied to faces of people with neurological

diseases. Fine-tuning pre-trained models with representative images improves performance on clinical populations significantly.

However, questions related to the characteristics of the database used to fine-tune the model and the clinical impact of the

improved model remain. Methods: We employed the Toronto NeuroFace dataset – a dataset consisting videos of Healthy

Controls (HC), individuals Post-Stroke, and individuals with Amyotrophic Lateral Sclerosis performing speech and non-speech

tasks with thousands of manually annotated frames - to fine-tune a well-known deep learning-based facial landmark localization

model. The pre-trained and fine-tuned models were used to extract landmark-based facial features from videos, and the facial

features were used to discriminate clinical groups from HC. Results: Fine-tuning a facial landmark localization model with a

diverse database that includes HC and individuals with neurological disorders resulted in significantly improved performance

for all groups. Our results also showed that fine-tuning the model with representative data greatly improved the ability of the

subsequent classifier to classify clinical groups vs. HC from videos. Conclusions: Using a diverse database for model fine-tuning

might result in better model performance for HC and clinical groups. We demonstrated that fine-tuning a model for landmark

localization with representative data results in improved detection of neurological diseases.
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Abstract— Background: Automatic facial landmark local-
ization is an essential component in many computer vision
applications, including video-based detection of neurological
diseases. Machine learning models for facial landmarks localiza-
tion are typically trained on faces of healthy individuals, and we
found that model performance is inferior when applied to faces
of people with neurological diseases. Fine-tuning pre-trained
models with representative images improves performance on
clinical populations significantly. However, questions related
to the characteristics of the database used to fine-tune the
model and the clinical impact of the improved model remain.
Methods: We employed the Toronto NeuroFace dataset – a
dataset consisting videos of Healthy Controls (HC), individuals
Post-Stroke, and individuals with Amyotrophic Lateral Sclero-
sis performing speech and non-speech tasks with thousands of
manually annotated frames - to fine-tune a well-known deep
learning-based facial landmark localization model. The pre-
trained and fine-tuned models were used to extract landmark-
based facial features from videos, and the facial features were
used to discriminate clinical groups from HC. Results: Fine-
tuning a facial landmark localization model with a diverse
database that includes HC and individuals with neurological
disorders resulted in significantly improved performance for all
groups. Our results also showed that fine-tuning the model
with representative data greatly improved the ability of the
subsequent classifier to classify clinical groups vs. HC from
videos. Conclusions: Using a diverse database for model fine-
tuning might result in better model performance for HC and
clinical groups. We demonstrated that fine-tuning a model
for landmark localization with representative data results in
improved detection of neurological diseases.
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I. INTRODUCTION

FACIAL alignment (FA) refers to the use of machine
learning models and algorithms for automatic local-

ization of pre-defined landmarks in facial images [1]. FA
is often an important first step in many computer vision
applications including face recognition [2], [3], emotion
detection [4]–[6], and human-computer interactions [7],
[8]. In these applications, coordinates of detected facial
landmarks are either used to compute a set of features
or fed directly to a machine learning model (e.g. for pain
detection [9]–[11], or detection of neurological diseases and
motor disorders [12]–[29]) or used in pre-processing to
align face images for a subsequent deep learning model
(e.g. for face verification [30]).

Many of these applications rely on pre-trained FA
models for localization of facial landmarks. These models
are typically trained using large databases of manually
or semi-automatically annotated facial images [1]. These
databases often consist of thousands of photographs with
a large variety of poses, expressions, illumination, back-
grounds, and scales. Thus, pre-trained FA models are
designed to provide accurate facial landmark localization
under general conditions [31]–[36].

Challenges remain when applying pre-trained FA mod-
els to photographs from clinical populations [28], [37]. For
instance, we recently demonstrated that pre-trained FA
models perform better in healthy, young individuals as
compared to patients with neurological diseases such as
Alzheimer’s disease, stroke, and ALS, and motor disor-
ders such as facial palsy [23], [28], [29], [37]–[39]. This
phenomenon, known as algorithmic bias, is attributed to
the lack of representative data in the databases used to
train FA models [29], [37], [40]–[42]

One approach to mitigate the bias in a pre-trained
FA model is to fine-tune the model using representative
data applying transfer learning techniques [43], [44]. Re-
cently, we demonstrated that fine-tuning a pre-trained,
deep-neural network-based FA model with a handful of
manually annotated photographs of patients with facial
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Data acquisition and
pre-processing

•Record face-videos of speech
and non-speech tasks
Participants:
– 15 HC
– 16 ALS
– 14 PS
Tasks:
– BBP, PATAKA, KISS, PA,

BLOW, OPEN, BROW
SPREAD, and SMILE

•Manually segment tasks into
repetitions

Fine-tuning facial alignment
model

•Select representative frames
from each video
Number of images:
– 1435 HC
– 1427 ALS
– 1478 PS

•Manually annotate facial
landmarks in each image

•Fine-tune a deep-learning
model for FA

Research Question:
Can an FA model be
improved using data
from multiple clinical

populations?

Disease Detection

•Apply pre-trained and fine-
tuned FA models to videos

•Compute a set of features
from each repetition.
Features captured:
– Movement symmetry,

ROM, velocity, and
mouth geometry

•Train a RF classifier to
differentiate patients vs. HC
based on computed features
Research Question:

Does a fine-tuned FA
model provides better
detection of orofacial

deficits in stroke in ALS?

Fig. 1. Graphical summary of the methods and research questions investigated on this paper. The Fig. depicts three stages described in
this paper, including data acquisition and pre-processing, fine-tuning of Facial Alignment models, and automatic detection of neurological
diseases. HC: Healthy Controls, ALS: people with Amyotrophic Lateral Sclerosis, PS: people Post Stroke, FA: Facial Alignment. See text
for a detailed description of the different tasks

palsy significantly improved the model performance on
individuals with the same clinical condition. Further, we
demonstrated that it is possible to eliminate the pre-
trained FA model bias against individuals with facial palsy
by fine-tuning the model with 320 manually annotated
photographs from patients [29]. Similarly, we observed
a significant improvement in FA model performance in
older adults with dementia after fine-tuning a deep-neural
network-based model with 688 manually annotated repre-
sentative photographs [37]. Improved model performance
of a pre-trained FA model was also observed in individuals
PS and in individuals with ALS after fine-tuning the model
with 1371 and 920 manually annotated photographs,
respectively [39]. Furthermore, we observed that fine-
tuning an FA model with 1015 images of age-matched
healthy controls (HC) improved the model performance
when applied to photographs of individuals with neurolog-
ical diseases significantly. However, the improvement was
lower than when fine-tuning the model with representative
clinical data [39].

Our previous results showed that fine-tuning an FA
model with representative clinical data improved the
model performance on that clinical population. They also
showed that fine-tuning an FA model with data form age-
matched HC improved the model performance on clinical
populations recorded under the same conditions. Thus, the
logical next step is to determine if fine-tuning a model with
images from patients of multiple clinical groups and aged-
matched HC also leads to improved model performance
on the clinical and non-clinical groups. This research
questions might have important clinical implications be-
cause collecting data from age-matched HC is typically
straightforward, whereas collecting patient’s data is often

difficult and time-consuming, specially for rate diseases
such as ALS, and while there are many differences in
the way that each individual is affected by a neurological
disease, there are also many similarities in the way that
these diseases manifest in the orofacial musculature and
function, e.g., muscle weakness, facial asymmetries. Based
on these observations, we hypothesized that fine-tuning an
FA model with data from multiple patient populations and
age-matched HC can improve model performance on all
clinical and non-clinical groups.

Furthermore, despite significant efforts to improve FA
models performance on clinical populations, there is no
quantitative evidence that the improved accuracy in
landmark localization leads to an improved computer-
aided diagnosis of neurological diseases from video based
monitoring. We have shown that by using pre-trained
FA models is possible to differentiate aged-matched HC
from individuals PS with an accuracy of 87% [12], and
age-matched HC from individuals with ALS with an
accuracy close to 89% [14] using videos of speech and
non-speech tasks. Based on these result, and the improved
performance provided by fine-tuned FA models on clinical
populations, we hypothesized that better diagnosis of
neurological diseases from video based monitoring would
be achieved by applying FA models fine-tuned with rep-
resentative data as compared to pre-trained FA models.

The specific objectives of this paper are to: i) fine-tune
a deep-neural network-based FA model with a database of
manually annotated photographs of patients from different
clinical populations with neurological diseases affecting
the orofacial function, and age-matched healthy controls;
and ii) assess the influence of the fine-tuned FA model
on the computer-aided diagnosis of neurological diseases
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from video based monitoring. For these goals, we used
facial videos from healthy controls and indivuals from two
clinical populations – stroke survivors and individuals with
ALS – performing a set of speech and non-speech tasks
commonly used during clinical orofacial examinations [45],
[46]. A subset of video frames were manually annotated
and used to fine-tune a well-known pre-trained FA model.
The pre-trained and fine-tuned FA models were used to
estimate landmark-based facial features, and these fea-
tures were used to automatically differentiate the clinical
groups from HC.

Fig. 1 summarises the methods and research questions
investigated on this paper. The diagram presents the three
stages of our pipeline, including data acquisition and pre-
processing, fine-tuning a FA model with representative
data, and automatic detection of neurological disease from
landmark-based facial features and video-based monitor-
ing.

II. MATERIALS AND METHODS

A. Toronto NeuroFace dataset
The Toronto NeuroFace dataset [39] – a novel and

open-access dataset for facial analysis in individuals with
neurological diseases – was used in this study. Here, we
provide a brief description of the database, experimental
setup, and tasks.

Participants: Forty-five participants are included in this
dataset: 16 individuals with amyotrophic lateral sclerosis
(ALS, 8 female), 14 individuals post stroke (PS, 5 female),
and 15 age-matched healthy-controls (HC, 7 females). All
participants were cognitively unimpaired at the time of
recording as demonstrated by a Montreal Cognitive As-
sessment score ≥ 26 [47], and passed a hearing screening.
Table I presents the demographics and clinical summary of
the participants. The study was approved by the Research
Ethics Boards at the Sunnybrook Research Institute and
University Health Network: Toronto Rehabilitation Insti-
tute. All participants signed informed consent according
to the requirements of the Declaration of Helsinki.

1) Experimental Setup: Participants were seated in front
of an Intel RealSense™ depth camera (SR300 or D400)
with a face-to-camera distance between 30 cm and 60
cm. A continuous light source was placed adjacent to
the camera to provide uniform illumination. Participants
were asked to look directly at the camera and were
recorded during the execution of standard speech and non-
speech tasks used during clinical orofacial examinations.
A video comprised of color (RBG) and depth information
was recorded for each task. Both streams were recorded
synchronously at approximately 50 frames per second at
VGA resolution (640×480 pixels). A total of 332 videos
were included in the database: 108 from HC participants,
113 from individuals PS, and 111 from individuals with
ALS.

2) Tasks: Participants were asked to perform a set of
speech and non-speech tasks commonly used during clin-
ical orofacial examinations [45], [46]. The tasks included

TABLE I
DEMOGRAPHICS AND CLINICAL INFORMATION FOR THE THREE

PARTICIPANT GROUPS: HEALTHY CONTROLS (HC), POST-STROKE

(PS), AND AMYOTROPHIC LATERAL SCLEROSIS (ALS). PRESENTED

VALUES A ARE MEAN AND RANGE.

Age Duration∗ ALSFRS - R ALSFRS - R
(years) (days) Total Bulbar

HC 58.3 - - -[19 - 78]
PS 64.0 579.8 - -[21 - 89] [2 - 3262]
ALS 61.8 689.4 35.6 9.4

[45 - 75] [176 - 1640] [26 - 40] [6 - 12]
* Duration indicates days since stroke for PS group, and days since
diagnosis for ALS group.
ALSFRS-R: ALS Functional Rating Scale - Revised

10 repetitions of the sentence ”Buy Bobby a Puppy” at a
comfortable speaking rate and loudness (BBP); repetitions
of the syllable /pa/ as fast as possible on a single breath
(PA); repetitions of the syllables /pataka/ as fast as
possible on a single breath (PATAKA); puckering the lips
5 times (BLOW); pretend to kiss a baby 5 times (KISS);
maximum opening of the mount 5 times (OPEN); pretend-
ing to smile with tight lips 5 times (SPREAD); making a
big smile 5 times (SMILE); raising the eyebrows 5 times
(BROW); and maintaining a neutral facial expression with
eyes open and mouth closed for 20 s (REST). Participant
were encouraged to take breaks between tasks to prevent
fatigue; however, not all participants were able to perform
all tasks.

B. Fine-tuning an FA model with representative data
We fine-tuned a well-known, deep-learning-based model

for FA using manually annotated representative clini-
cal data [28], [29], [37], [39]. Next, we briefly describe
the model, the manual annotation procedure, and the
approach used to fine-tune the model and evaluate its
performance.

1) Pre-trained FA model: The pre-trained FA model
corresponds to the Facial Alignment Network (FAN),
a deep-learning-based model trained with more than
230,000 photographs [35]. The FAN model consist
of an initial face detection stage that returns a
256×256pixelsimagecenteredaroundtheface.Theface −
centeredimageisthendown −
sampledintoasetof256featuremapsofdimensions64×64,
and passed into four stacked hourglass networks,
an architecture commonly used for facial landmark
localization [48]–[50], that transforms the feature maps
into a set of 68 heat-maps. Each heat-map provides the
estimated position of a facial landmarks. The pre-trained
FAN model and Python API are freely available online
(https://github.com/1adrianb/face-alignment).

2) Manual annotations: A set of 4340 video frames
(1435 for HC, 1478 for PS, and 1427 for ALS) were
extracted from the videos. Extracted frames were intended
to capture a wide range of facial gestures during task
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execution. Additional details regarding frame selection can
be found in [39].

The locations of 68 facial landmarks described by
the Multi-PIE 2D configuration [51], and defining the
eyebrows, eyes, nose, mouth, and jawline, were manually
localized by a trained annotator in each extracted frame.
Manually annotated facial landmarks were considered as
the ground truth positions.

3) Fine-tuning the FAN model with representative data:
The parameters of the first four stages of the pre-trained
FAN model were frozen and not modified furing the fine-
tuning process. The parameters of last hourglass network
were updated using the Toronto NeuroFace dataset. Opti-
mization algorithm and hyper-parameters were the same
to those used by Bulat and Tzimiropoulos to train the FAN
model [35]. Our training algorithm used a recently intro-
duced loss function, adaptive wing-loss, which improves
model performance by penalizing small errors more than
the traditional squared-loss [36], [52], [53]

Twelve participants from each group were randomly
selected and used to train the model. Data from the
remaining participants were used to test the model perfor-
mance by computing the accuracy in landmark localiza-
tion. Accuracy was computed in terms of the Root-Mean-
Squared Error (RMSE) between manually annotated and
model predicted landmark positions normalized by the
intercanthal distance (NRMSE) [33].

4) Statistical analysis: Statistical differences between re-
sults yielded by the pre-trained and fine-tuned models and
ground truth landmark position were evaluated using the
t-test (statistical significance was considered at p < 0.01)
and the standardized mean difference (SMD), computed
as

SMD =
|µ1 − µ2|√

(n1 − 1)s21 + (n2 − 1)s22
n1 + n2 − 2

were µ1, µ2, s1, s2, n1, and n2 are the mean, standard
deviation, and number of elements of the difference
between pre-trained FAN model predictions and ground
truth landmark positions; and µ2, s2, and n2 are the
mean, standard deviation, and number of elements of the
difference between the fine-tuned FAN model predictions
and ground truth landmark positions. For 0 < SMD <
0.5, the difference between groups is considered to be
small; for 0.5 ≤ SMD < 0.8, the difference between
groups is considered to be medium; and for SMD ≥ 0.8,
the difference between groups is considered to be large [54],
[55].

C. Video-based diagnosis of neurological diseases
Diagnosis of neurological diseases was achieved by 1)

manually segmenting the tasks by repetition, 2) applying
an FA models to localize the 68 facial landmarks in
each video frame, 3) reconstructing the 3D, real world
coordinates of the 68 facial landmark in each video frame,

4) extracting landmarks-based facial features from each
repetition, and 5) using a classification algorithm to detect
the presence or absence of the disease based on the
extracted features. Next, we describe these steps in detail
and provide a brief description of the landmarks-based
features used in this study.

1) Participants and tasks: Nine participants declined for
their data to be shared publicly, so their recordings were
not used for further analysis. Thus, data from 36 partici-
pants were used for video-based diagnosis of neurological
diseases, 11 individuals with ALS (7 female), 14 individu-
als PS (4 female), and 11 HC (4 female). Furthermore, only
tasks common to all 36 participants were used for video-
based diagnosis, analyzed tasks include: BBP, OPEN,
SPREAD, and REST. Finally, video recordings were the
participant did not look directly at the camera during
task execution were removed from the analysis. A total of
138 videos were included for the video-based diagnosis of
neurological diseases: 40 from HC participants, 54 from
individuals PS, and 44 from individuals with ALS.

2) Tasks segmentation: All tasks, except REST, were
manually segmented into individual repetitions by a
trained observer; the observer identified the beginning and
end of each repetition using the audio or video recordings.

3) Face alignment: Pre-trained and fine-tuned FAN mod-
els were used to automatically estimate the position of the
68 facial landmarks in each video frame. The time-series
containing the [x2d, y2d] coordinates for each landmarks
were smoothed using a 5-points median filter.

4) Reconstruction of 3D coordinates: Color and depth
streams were aligned using the camera extrinsic parame-
ters. Afterwards, the real world coordinates (in mm) for
each landmark were computed using a pinhole camera
model with the depth information provided by the depth
sensor (z3d), the 2d coordinates ([x2d, y2d]), and the intrin-
sic parameters provided by the camera manufacturer. This
procedure resulted in a set of [x3d, y3d, z3d] coordinates for
each landmark. The origin of the 3D coordinate system
was the center of the IR camera, and the x, y, and z
axes were along the lateral, vertical, and frontal directions,
respectively.

5) Feature extraction: For each repetition of each task,
a set of features were extracted using the 3D coordinates
of selected landmarks. Different features were extracted
to separate individuals PS from healthy controls, and
individuals with ALS from healthy controls. Features to
identify individuals PS measured mouth range of motion
and velocity, and facial symmetry (13 features). These
features have been previously described and validated [12].
Features to identify individuals with ALS measured mouth
range of motion and velocity, overall movement of the
lower lip, mouth symmetry, and the overall roundness of
lips during movement (11 features). These features have
been previously described and validated [14].

6) Classification: Disease detection was performed on a
task by task basis using a random forest (RF) classification
algorithm. Twelve classification tests were conducted, by
combining data from: Two diseases (HC vs. PS, and HC
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TABLE II
SUMMARY OF THE TWELVE RF CLASSIFIERS TRAINED TO

DIFFERENTIATE BETWEEN HEALTHY CONTROLS (HC) AND

AMYOTROPHIC LATERAL SCLEROSIS (ALS) PATIENTS, AND HEALTHY

CONTROLS (HC) AND POST-STROKE (PS) PATIENTS, FROM VIDEOS OF

PARTICIPANTS PERFORMING ON SPEECH TASK (BBP), AND TWO

NON-SPEECH TASKS (OPEN AND SPREAD).

Classification Task FA model
HC vs. ALS BBP Pre-trained
HC vs. ALS BBP Fine-tuned
HC vs. ALS OPEN Pre-trained
HC vs. ALS OPEN Fine-tuned
HC vs. ALS SPREAD Pre-trained
HC vs. ALS SPREAD Fine-tuned
HC vs. PS BBP Pre-trained
HC vs. PS BBP Fine-tuned
HC vs. PS OPEN Pre-trained
HC vs. PS OPEN Fine-tuned
HC vs. PS SPREAD Pre-trained
HC vs. PS SPREAD Fine-tuned

vs. ALS), three tasks (BBP, OPEN, and SPREAD), and
two FA models (pre-trained and fine-tuned). Table II
summarises the different RF classifiers trained in this
study. The output of the RF model was a probability (a
value between 0 and 1) that each repetition was performed
by an individual suffering from a neurological disease. The
probability that a task was performed by an individual
suffering from a neurological disease was considered as
the average probability from all repetitions of the same
task.

Classification performance was evaluated using leave-
one-subject-out cross-validation (LOSO-CV). For each
fold of the LOSO-CV, all the repetitions belonging to
a single participant were used as the test set, and the
RF classifier was trained with the repetitions from the
other participants. Performance was evaluated using the
receiver operating characteristic (ROC) curve and the
corresponding area under the ROC curve (AU-ROC).

III. RESULTS

A. FA model fine-tuning
Fig. 2 presents the cumulative distribution of the

NRMSE between the ground truth landmarks position
and the results yielded by the pre-trained FAN model with
blue lines, and fine-tuned FAN model orange lines. Fig. 2
A) present the results obtained for HC, B) for individuals
PS, C) for and individuals with ALS.

Table III summarized the results of Fig. 2 and demon-
strates that fine-tuning the FAN model with a database
composed of manually annotated images from HC partici-
pants, individuals with ALS, and individuals PS improved
the model performance for all groups significantly. In
particular, for the HC participants, there was a large,
significant improvement in the NRMSE. Fine-tuning the
FA model reduced the NRMSE from 7.4 ± 1.4 % to
4.7 ± 0.7% (t = 32.6 − p ≪ 0.01, SMD = 2.0).
Similarly, for individuals PS, there was a large, significant
improvement in the NRMSE. Fine-tuning the FA model

2.5 5.0 7.5 10.0
NRMSE (%)

0.0

0.2

0.4
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0.8

1.0
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n 

of
 Im
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2.5 5.0 7.5 10.0
NRMSE (%)

B)
PS

2.5 5.0 7.5 10.0
NRMSE (%)

C)
ALS

Pre-trained
Fine-tuned

Fig. 2. Cumulative distribution of the NRMSE between the ground
truth landmark positions and the results yielded by the Pre-trained
and Fine-tuned FAN models for A) Healtly Controls (HC), B)
patients Post-Stroke (PS), and C) patients with amyotrophic lateral
sclerosis (ALS). Landmarks defining the jaw were not considered for
the results presented here.

TABLE III
MEAN ± STANDARD DEVIATION OF THE NRMSE, AND THE RESULTING

STATISTICAL ANALYSIS OF THE DIFFERENCE BETWEEN THE GROUND

TRUTH LANDMARK POSITIONS AND THE POSITIONS YIELDED BY THE

PRE-TRAINED AND FINE-TUNED FAN MODELS FOR HEALTLY

CONTROLS (HC), INDIVIDUALS POST-STROKE (PS), AND INDIVIDUALS

WITH AMYOTROPHIC LATERAL SCLEROSIS (ALS). LANDMARKS

DEFINING THE JAW WERE NOT CONSIDERED FOR THESE RESULTS.

HC PS ALS
Pre-trained Model 7.4± 1.4 7.7± 1.6 7.9± 2.5
Fine-tuned Model 4.7± 0.7 6.2± 1.7 5.7± 1.1

t-test t = 32.6 t = 14.1 t = 20.1
p ≪ 0.01 p ≪ 0.01 p ≪ 0.01

SMD 2.0 0.9 1.0

reduced the NRMSE from 7.7± 1.6 % to 6.2± 1.7% (t =
14.1 − p ≪ 0.01, SMD = 0.9). Finally, for individuals
with ALS, there was a large, significant improvement
in the NRMSE. Fine-tuning the FA model reduced the
NRMSE from 7.9± 2.5 % to 5.7± 1.1% (t = 20.1 − p ≪
0.01, SMD = 1.0).

Furthermore, as table III demonstrates the pre-trained
FAN model yielded lower NRMSE for HC than for
patients. In particular, there was a small, but significant
difference in the NRMSE yielded for HC participants vs.
individuals PS (t = −4.5 − p ≪ 0.01, SMD = 0.2);
and a small, but significant difference in the NRMSE
yielded for HC participants vs. individuals with ALS
(t = −7.3 − p ≪ 0.01 , SMD = 0.3). Finally, as table III
shows, fine-tuning the FAN model with representative
data increased the difference in the NRMSE yielded for HC
and patients. In particular, there was a large, significant
difference in the NRMSE yielded for HC participants vs.
individuals PS (t = −14.1 − p ≪ 0.01, SMD = 1.1); and a
large, significant difference in the NRMSE yielded for HC
participants vs. individuals with ALS (t = −14.5 − p ≪
0.01, SMD = 1.0).

B. Automatic detection of neurological diseases
1) Detection of stroke from video-based monitoring: Fig. 3

presents the ROC curve of RF classifiers trained to detect
individuals PS and described in Table II. Results obtained
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Fig. 3. ROC curves demonstrating the ability of the RF classifiers to
distinguish between HC participants and PS patients. Classifiers were
trained with features obtained with landmarks yielded by the pre-
trained and fine-tuned FAN models applied to videos of participants
performing A) BBP, B) OPEN and C) SPREAD tasks.

from facial landmarks-based features yielded by the pre-
trained FA model are presented in blue lines, and those
yielded by the fine-tuned FA model are presented with
orange lines. Fig. 3 A) present the results for BBP task,
B) for OPEN task, and C) for SPREAD task.

As Fig. 3 shows, fine-tuning the FA model with rep-
resentative data improved the ability of the RF classifier
to distinguish between HC participants and individuals
PS for all tasks and measured by the AUC of the ROC.
In particular, for the BBP task, the AUC of the ROC
curve improved from 0.60 to 0.85 by fine-tuning the FA
model. For the OPEN task, the AUC of the ROC curve
improved from 0.60 to 0.77 by fine-tuning the FA model.
And finally, for the SPREAD task, the AUC of the ROC
curve improved from 0.83 to 0.92 by fine-tuning the FA
model.

2) Detection of ALS from video-based monitoring: Fig. 4
presents the ROC curve of RF classifiers trained to detect
individuals with ALS and described in Table II. Results
obtained from facial landmarks-based features yielded by
the pre-trained FA model are presented in blue lines, and
those yielded by the fine-tuned FA model are presented
with orange lines. Fig. 4 A) present the results for BBP
task, B) for OPEN task, and C) for SPREAD task.

As Fig. 4 shows, fine-tuning the FA model with repre-
sentative data improved the ability of the RF classifier to
distinguish between HC participants and individuals with
ALS for all tasks and measured by the AUC of the ROC.
In particular, for the BBP task, the AUC of the ROC
curve improved from 0.87 to 0.87 by fine-tuning the FA
model. For the OPEN task, the AUC of the ROC curve
improved from 0.83 to 0.95 by fine-tuning the FA model.
And finally, for the SPREAD task, the AUC of the ROC
curve improved from 0.80 to 0.97 by fine-tuning the FA
model.

IV. DISCUSSION

Video-based, automatic detection of neurological dis-
eases can revolutionize the diagnosis and monitoring of
neurological conditions such as stroke and ALS, as it
facilitates objective assessment of disease status poten-
tially across various residential and clinical settings. In our
previous work, we demonstrated the feasibility of applying
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Fig. 4. ROC curves demonstrating the ability of the RF classifiers
to distinguish between HC participants and ALS patients. Classifiers
were trained with features obtained with landmarks yielded by
the pre-trained and fine-tuned FAN models applied to videos of
participants performing A) BBP, B) OPEN and C) SPREAD tasks.

FA technology for disease detection in individuals PS [12],
individuals with ALS [14], and individuals suffering from
Parkinson’s disease [22]. Furthermore, we showed that
fine-tuning FA models with representative, clinical data
can improve the model performance in older adults with
dementia [37], individuals with facial palsy [29], PS, and
ALS [39]. Based on these results, we hypothesized that
is possible to fine-tune an FA model with data from
multiple clinical groups to obtain a FA model that yields
improved results across multiple clinical populations, and
that the improved FA model would lead to an improved
ability to detect the disease from video-based monitoring.
The results presented here support these hypotheses, and
represent an important step towards the translation of
FA technology for diagnosis of neurological diseases from
laboratory-based methods to clinically useful tools.

A. Fine-tuning FA model with diverse dataset
After fine-tuning the deep-learning based FA model with

a database of manually annotated video frames from HC
participants, individuals with ALS, and individuals PS we
observed a significant improvement in model performance
for all three groups. However, the FA model performance
improvement was greater for HC participants than for
the clinical groups; the mean NRMSE improved by 36.5%
for HC participants, 27.2% for ALS participants, and
19.5% for the PS group. Furthermore, we observed that
fine-tuning the FA model with the Toronto NeuroFace
dataset magnified the FA model’s bias against clinical
populations as measured by the standard mean difference.
The pre-trained FA model showed a small (but statistically
significant) difference in the NRMSE obtained for HC and
patients whereas the FA model showed a large difference
in the NRMSE obtained for HC and patients.

The results fit well with our understanding on how deep
neural networks for FA learn from new data. After fine-
tuning an FA model with representative images, the model
gains additional information about 1) subjects’ pose and
expressions, 2) images illumination and background, 3) the
differences in manual annotations between our database
and the original database used for training and pre-trained
the model, and 4) facial abnormalities induced by the
disease [29]. In this case, all the videos were recorded under
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similar conditions and landmarks were manually localized
by the same annotator. Thus, the model learns about the
first three aspects from all the training images; in contrast,
the FA model gains information about disease specific
facial abnormalities from a small subset of the images
in the database, likely justifying the sharp differences in
performance between HC and patients observed with the
fine-tuned model.

Results presented here agreed with our original hypoth-
esis that is possible to obtain a more general FA model for
clinical populations by fine-tuning the model with images
from people with multiple neurological diseases. They also
showed that including a large number of images from
healthy controls in the database might help to teach the
model about aspects such as illumination, background,
and manual annotations. This is an important observation
as there is typically abundant data from age-matching
healthy controls available, but collecting patients’ data can
be challenging. Our results suggest that including images
of healthy controls and patients recorded under similar
conditions in the databases used to fine-tuning FA model
might be beneficial.

B. Detection of neurological diseases
An important contribution of this study was to demon-

strate that fine-tuning FA models with representative data
can lead to improved detection of neurological diseases
from video-based monitoring. Our classification results
showed that landmarks-based facial features yielded by
a fine-tuned FA model provided better detection of indi-
viduals PS and individuals with ALS for all the orofacial
tasks analyzed in this study.

The tasks SPREAD, BBP, and OPEN provided the
best, middle, and worst classification results, respectively,
for detection of individuals PS using landmarks-based
facial features. These results agree with our understanding
of the typical sequelae associated with cerebrovascular
accidents. First, stroke survivors typically develop uni-
lateral facial paralysis [56], which is characterized by
decreased facial symmetry during movement, and affects
the patients’ ability to smile [57]. Second, speech move-
ments are commonly affected in stroke [58]. And finally,
the facial paralysis observed in stroke survivors does not
typically affect the jaw muscles used to open and close
the mouth [59].

The tasks SPREAD, OPEN, and BBP provided the
best, middle, and worst classification results, respectively,
for detection of individuals with ALS using landmarks-
based facial features. However, SPREAD and OPEN
provided similar classification results (AUC of the ROC
equal to 0.95 and 0.97 respectively). These results might
be related to the fact that the speech task (BBP) involves
more complex facial movements that the non-speech tasks
(OPEN and SPREAD) so that the simple feature set used
for disease detection might not be able to successfully
capture the differences between patients and HC during
the execution of the speech task.

Comparing the results of both classification tasks di-
rectly is not possible because they used different feature
sets. Nevertheless, we observed better classification per-
formance in the detection of individuals with ALS than
in the detection of individuals PS for all tasks.

C. limitations
This study has two main limitations. Firstly, data from

HC, individuals PS, and with ALS were recorded under
tightly controlled pose, background, and illumination con-
ditions. These laboratory conditions might be difficult to
reproduce in more natural setting such as home recordings.
Thus, it is likely that the FA model fine-tuned with the
Toronto NeuroFace dataset will yield higher landmark
localization error when applied to photographs and videos
recorded under different conditions.

Second, participants were asked to look straight at the
camera during task execution. We observed that main-
taining this posture was difficult for some participants
(both HC and patients) and they continuously turned
their bodies or heads and looked away from the camera.
Videos where the participant did not directly face the
camera were not used in classification analysis as it was
difficult to compare the differences in left and right facial
movements. To alleviate this experimental limitation, we
are developing a custom software application to provide
real-time feedback on the participants pose. We believe
that such visual feedback will help participants to main-
tain the correct head pose during task execution.

V. CONCLUSIONS

We demonstrated that fine-tuning a deep learning-
based FA model with a diverse database composed of
manually annotated facial images from healthy controls
and individuals with multiple neurological disorders that
affect orofacial movements, produces a FA model with
significantly improved performance for all clinical and
non-clinical groups. We also demonstrated that using the
fine-tuned FA model results in better disease detection
from video-based monitoring as compared to the results
provided by a pre-trained FA model. These results provide
some important guidelines for fine-tuning FA models to
improve their performance in clinical populations, and
validate the clinical importance of fine-tuning FA models
with representative data when applying this technology
for automatic monitoring and assessment of neurological
diseases.
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