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Abstract

Unit commitment (UC) is an important problem solved on a daily basis within a strict time limit. While hourly UC problems

are currently considered, they may not be flexible enough with the fast-changing demand and the increased penetration of

intermittent renewables. Sub-hourly UC is therefore recommended. This, however, will significantly increase problem complexity

even under the deterministic setting, and current methods may not be able to obtain good solutions within the time limit. In

this paper, deterministic sub-hourly UC is considered, with the innovative exploitation of soft constraints – constraints that do

not need to be strictly satisfied, but with predetermined penalty coefficients for their violations. The key idea is the “surrogate

optimization” concept that ensures multiplier convergence within “surrogate” Lagrangian relaxation as long as the “surrogate

optimality condition” is satisfied without the need to optimally solve the “relaxed problem.” Consequently, subproblems can

still be formed and optimized when soft constraints are not relaxed, leading to a drastically reduced number of multipliers and

improved performance. To further enhance the method, a parallel version is developed. Testing results on the Polish system

demonstrate the effectiveness and robustness of both the sequential and parallel versions at finding high-quality solutions within

the time limit.
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Abstract--Unit commitment (UC) is an important problem solved 

on a daily basis with a strict time limit. While hourly UC problems 

are currently used, they may not be flexible enough with the fast-

changing demand and the increasing penetration of intermittent 

renewables. Sub-hourly UC is therefore recommended. This, 

however, will significantly increase problem complexity even 

under the deterministic setting, and current methods may not be 

able to obtain good solutions within the time limit. In this paper, 

deterministic sub-hourly UC is considered with an innovative 

exploitation of “soft constraints” - constraints that do not need to 

be strictly satisfied but their violations are penalized by 

predetermined coefficients. Based on the “surrogate optimization” 

concept, there is no need to optimally solve the “relaxed problem,” 

and the convergence of multipliers is guaranteed as long as the 

“surrogate optimality condition” is satisfied. Consequently, 

subproblems can be formed and efficiently optimized when soft 

constraints are not relaxed. The overall scheme leads to a drastic 

reducetion of the number of multipliers, decreased computational 

requirements, and improved performance. To further enhance the 

method, a parallel version is developed. Testing results based on 

the Polish system demonstrate the effectiveness and robustness of 

both the sequential and parallel versions at finding high-quality 

solutions within the time limit.  
 

Index Terms-- Sub-hourly Unit Commitment, Soft Constraints, 

Surrogate Lagrangian Relaxation (SLR), Surrogate Absolute-

Value Lagrangian Relaxation (SAVLR), Parallel Algorithms  

I.  INTRODUCTION 

nit commitment (UC) problems are solved by Independent 

System Operators (ISOs) on a daily basis to determine 

generators’ commitment statuses and their generation 

levels to minimize the total cost subject to system demand, 

reserve, transmission capacity, and unit-level constraints. The 

problem is generally formulated in a mixed-integer linear 

programming (MILP) form, with a piece-wise linear cost 

function, linear constraints, and both binary and continuous 

decision variables. There are variations in how constraints are 

formulated. When constraints are required to be strictly 

satisfied (e.g., system demand), they are “hard” constraints. 
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Otherwise, they are “soft” constraints (e.g., reserve and 

transmission capacity constraints), where violations incur 

penalties with predetermined coefficients [1]. Such problems 

are solved with a strict time limit (e.g., 15 or 20 minutes).  

In the current practice, hourly intervals are used with a typical 

planning horizon of 24 hours. With the fast-changing demand 

and the increasing penetration of intermittent renewables, high 

sub-hourly variations cannot be adequately accounted for. 

Hourly UC may thus lead to expensive solutions and result in 

renewable curtailment or load shedding [2]. Sub-hourly UC, 

e.g., with 15 minutes as the time interval, is therefore 

recommended for higher flexibility and efficiency.  

Although sub-hourly UC has been studied, e.g., in [3]-[5], its 

major difficulty is the increased number of binary variables as 

compared to that of hourly UC, roughly quadrupling for the 15-

minute case with significantly increased complexity. Also, a 

unit’s ramp rate per interval is much smaller than that of the 

hourly UC, rendering more ramping constraints active for 

intervals with fast changing demand and renewable generation, 

and resulting in increased computational requirements. 

Consequently, sub-hourly UC is difficult to solve even under 

the deterministic setting, and current methods may not be able 

to obtain near-optimal solutions within the required time limit.  

In this paper, deterministic sub-hourly UC with 15-minute 

time intervals is considered, and the goal is to obtain near-

optimal solutions within 20 minutes. After reviewing the 

literature in Section II, the problem formulation is presented in 

Section III, with system demand modeled as “hard” constraints 

and reserve requirements and transmission capacities modeled 

as “soft” constraints.  

In Section IV, soft constraints are innovatively exploited 

within our recent decomposition and coordination framework 

of Surrogate Absolute-Value Lagrangian Relaxation (SAVLR) 

[6]. This method as well as its predecessor - Surrogate 

Lagrangian Relaxation (SLR) [7], overcame all major 

difficulties of traditional Lagrangian relaxation (LR) of long 

subproblem solving times, zigzagging of multipliers, and the 
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need to guesstimate the optimal dual values. When solving the 

sub-hourly UC, however, if all system-wide constraints are 

relaxed, a very large number of multipliers will be generated, 

resulting in slow convergence and poor solution quality. To 

overcome these difficulties, only hard system demand 

constraints are relaxed, but not soft reserve and transmission 

capacity constraints. This is possible since, under the “surrogate 

optimization” concept, the multipliers can be updated and will 

converge to their optimal values as long as the “surrogate 

optimality condition” is satisfied without optimally solving the 

“relaxed problem.” Consequently, subproblems can still be 

formed and optimized by using MILP methods, e.g., branch-

and-cut (B&C), when soft constraints are not relaxed. A 

theorem with the convergence proof of the new method is 

presented. This is a unique feature of SLR/SAVLR and is not 

possible under the traditional LR framework.  

The innovative exploitation of “soft” constraints is then 

extended to problems formulated with hard reserve and 

transmission capacity constraints. This is done by converting 

these hard constraints to soft in the iterative solution process, 

while enforcing the original hard constraints at the stage of 

finding feasible solutions toward the end. This method thus 

opens up a new way to solve difficult problems with hard 

constraints. To further improve performance, a parallel version 

is developed, which utilizes multiple cores of processors to 

construct and solve subproblems in parallel.  

In Section V, three numerical examples are presented. The 

first is an hourly UC problem for a 6-bus system, and is used to 

demonstrate the effects of our exploitation of soft constraints 

within the SAVLR framework. The second example is a 15-

minute UC problem based on the 2383-bus Polish system, and 

is used to demonstrate the ability of our methods to solve large 

practical problems. In the third example, Monte Carlo testing 

based on six load profiles is performed for the same Polish 

system. Testing results demonstrate the effectiveness and 

robustness of both the sequential and parallel versions at finding 

high-quality solutions within the time limit. Our methods are 

generic and can be used to solve other complex MILP problems 

in power systems and beyond.  

II.  LITERATURE REVIEW 

In subsection II-A, the use of soft constraints within the UC 

context is examined. In subsection II-B, the literature on sub-

hourly UC is reviewed. In subsection II-C, Surrogate 

Lagrangian Relaxation (SLR) and its extension with accelerated 

convergence, Surrogate Absolute-Value Lagrangian Relaxation 

(SAVLR), are presented. Branch-and-cut (B&C), which is used 

to solve subproblems, is reviewed in subsection II-D. 

A.  Use of soft constraints in unit commitment 

In [1], the use of soft constraints by ISOs in the United States 

is reviewed. For UC problems, constraints are modeled as soft 

when they do not need to be strictly satisfied. For example, ISO-

New England models reserve requirements as soft, with 

different predetermined penalty coefficients for different types 

of reserves. These coefficients are typically high so that 

requirements are significantly violated only when satisfying 

them as hard is difficult or impossible. Constraint violations 

may also be penalized by step-wise “demand curves” [1]. 

Procedures for selecting the values of penalty coefficients for 

reserve and transmission capacity constraints are different for 

individual ISOs, and detailed information may not be available. 

Certain ISOs also model the demand constraints as soft. The 

predetermined penalty coefficient for soft demand constraints 

serves as a cap on the energy market price. Reference [1] also 

provides an analysis of the market implications of using soft 

constraints. While soft constraints are often used in power 

systems and other fields, their use within the LR framework for 

MILP problems has not been explored.  

B.  Sub-hourly unit commitment 

With the fast-changing demand and the increasing 

penetration of intermittent renewables, high sub-hourly 

variations cannot be adequately accounted for in hourly UC. 

Sub-hourly UC has, therefore, been recommended to address 

the difficulties in [2 - 5].  

In [2], the deterministic and stochastic UC based on the IEEE 

118-bus system with sub-hourly intervals (15 or 20 minutes) are 

compared with the hourly UC. Results obtained by using a 

modified Benders decomposition method show that costs can 

be significantly reduced if sub-hourly UC is considered for both 

deterministic and stochastic problems.  

 In [3], deterministic UC based on the Irish system (72 units 

and 1 pumped-storage plant) with sub-hourly time intervals (5, 

15, 30 min) is compared with the hourly UC. System demand 

and reserve constraints are considered, but not transmission 

capacity constraints. By using FICO Xpress-MP, the study 

shows that the increased temporal resolution captures more 

variability in system load and renewable generation, leading to 

more realistic estimations of total generation costs. It also 

shows increased cycling and ramping of units. Thus, if the 

intermittent nature of wind and solar is explicitly modeled, the 

sub-hourly UC should obtain more economic solutions than the 

hourly UC.  

In addition to the above, the impact of stochastic sub-hourly 

UC on power system dynamics was discussed in [4] based on 

the IEEE 39-bus system with the UC problem solved by using 

GUROBI. The study shows that with smaller time intervals, 

long-term sytem frequency deviation caused by the volatility of 

wind power is reduced, leading to improved system reliablility. 

In [5], the impact of sub-hourly UC on spinning reserve in the 

presence of intermittent renewables was investigated for an 

isolated island (with ten diesel generators, three wind turbines, 

and one photovoltaic power plant) and the IEEE 118-bus 

system using dynamic programming plus priority listing. The 

study shows that reserve costs are lowered by considering sub-

hourly intervals as compared with those of hourly intervals .  

C.  Surrogate Lagrangian relaxation and Surrogate Absolute-

Value Lagrangian Relaxation 

For a system consisting of multiple interconnected areas, an 

optimization problem is referred to as “separable” if its 

objective function and the constraints coupling the areas are 

additive in terms of area variables. LR has been a price-based 

decomposition and coordination approach to exploit such 

separable structures, especially for problems with discrete 

variables. Within the approach, constraints that couple areas are 

relaxed by using Lagrangian multipliers to form the “relaxed 

problem,” with its objective function called the “Lagrangian.” 

The relaxed problem is decomposed into subproblems, one for 
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each area. Each subproblem is of much-reduced complexity as 

compared to that of the original problem because of its reduced 

size. For a given set of multipliers, all subproblems are 

optimized. The resulting levels of constraint violation form a 

subgradient, which is used to update the multipliers, and the 

process iterates. At the convergence of the multiplier updating 

process, heuristics are used to obtain a feasible solution 

satisfying all constraints.  

Traditional LR methods, however, suffer from major 

difficulties of long subproblem solving times, zigzagging of 

multipliers, and the need to guesstimate the optimal dual values. 

One of the root causes for these difficulties is that the relaxed 

problem is required to be fully optimized (or all subproblems 

are required to be optimized) to obtain a subgradient to update 

multipliers. This renders long subproblem solving times. Also, 

the resulting subgradient directions may change drastically 

from one iteration to the next because of the geometry of the 

dual functions of MILP problems, causing multipliers to zigzag. 

A key question is therefore whether the relaxed problem (or all 

subproblems) should be fully optimized in order to update 

multipliers. In our recent “Surrogate Lagrangian Relaxation” 

(SLR) method [7], it was proved that the relaxed problem does 

not need to be fully optimized. Rather, only partial optimization 

subject to a simple inequality constraint – the “surrogate 

optimality condition” (see equation (10) in subsection IV-A) – 

is sufficient. The resulting “surrogate subgradients” (as 

opposed to “subgradients” since the relaxed problem is not fully 

optimized) can be used to update multipliers. In terms of 

subproblems, only a subset of them needs to be optimized 

subject to the same condition to update multipliers. Such an 

iterative process requires much-reduced computational effort, 

yields much less changing of surrogate subgradient directions 

from one iteration to the next, and results in much-reduced 

multiplier zigzagging as compared to that of the traditional LR. 

A stepsizing rule based on contraction mapping not requiring to 

guesstimate the optimal dual value is also provided in [7]. 

Consequently, all major difficulties of the traditional LR have 

been overcome by SLR. 

If the original problem is not separable, subproblems can still 

be formed within the SLR framework. The objective function 

of a subproblem is obtained by collecting from the Lagrangian 

all the terms related to the area under consideration, and is 

minimized with respect to the decision variables belonging to 

that area while keeping other decision variables at their latest 

available values, subject to all non-relaxed constraints of 

relevance to that area. In this way, the LR approach is extended 

to non-separable problems. Also, not all subproblems need to 

be solved to obtain a surrogate subgradient to update 

multipliers. Rather, only one subproblem needs to be solved, 

and even that subproblem does not need to be optimally solved 

– only subject to the surrogate optimality condition. The 

resulting surrogate subgradients are used to update multipliers 

without requiring the optimal dual value, leading to much 

reduced computational effort and zigzagging of multipliers.  

Subproblem solutions of LR or SLR, when put together, are 

generally not feasible with respect to the original problem since 

coupling constraints have been relaxed during the iterative 

solution process. Heuristics, e.g., those in [8] and [9], are 

needed to satisfy feasibility toward the end.  

Recently, the convergence of SLR has been accelerated by 

adding absolute-value penalties on constraint violations in 

Surrogate Absolute-Value Lagrangian Relaxation (SAVLR) in 

[6]. Absolute-value functions are used instead of quadratic 

functions as in Augmented Lagrangian Relaxation [10] since 

they can be exactly linearized to be solved by using MILP 

solvers. Furthermore, since constraint violations are penalized, 

subproblem solutions naturally approach feasibility, and 

advanced heuristics may not be needed to satisfy feasibility.  

For the sub-hourly UC problem under consideration, SAVLR 

may still have troubles in obtaining near-optimal solutions 

within the time limit for practical cases because of the inherent 

difficulties introduced in Section I. In particular, when all 

coupling constraints are relaxed, a large number of multipliers 

will be introduced, leading to slow convergence and poor 

solution quality.  

D.  Branch-and-cut  

Branch-and-cut is a widely used method for solving MILP 

problems [11]. In the process, integrality constraints are relaxed 

and the resulting problem is solved by using linear 

programming (LP) methods. Then, valid cuts are added trying 

to obtain the convex hull. If the convex hull is obtained, then 

the optimal LP solution is optimal to the original problem. 

Types of cuts include flow cover cuts, Gomory fractional cuts, 

implied bound cuts, and others. If the convex hull is difficult to 

obtain, then the method relies on time-consuming branch-and-

bound operations to obtain an optimal or near-optimal solution. 

LP solutions also serve as lower bounds to the objective 

function. For practical sub-hourly UC problems, the method 

may suffer from difficulties. Nevertheless, B&C is effective for 

solving subproblems within SAVLR because of the much-

reduced problem sizes. 

III.  PROBLEM FORMULATION 

Consider a power system consisting of J units which are 

distributed among A areas. The 15-minute UC is formulated as 

an MILP problem, the same as that of the hourly UC (e.g., [12]), 

with ramp rates and other parameters appropriately scaled. The 

objective is to minimize the sum of generation, startup, no-load, 

and reserve costs as well as soft-constraint penalties on reserve 

and transmission capacity over T time intervals, subject to unit-

level, area-level, and system-level constraints. To penalize the 

violations of soft constraints, for simplicity, a single penalty 

coefficient is used. In practice, different predetermined penalty 

coefficients or functions can be used. The objective function is 

formulated as:  

( ) ( )

( ) ( ) ( )

( ) ( )( )
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, , , ,
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 (1) 

In the above, unit j, j {1, 2, .., J}, has the following decision 

variables: {𝑝𝑏,𝑗(𝑡)} are continuous generation-levels of block 

𝑏 ∈ 𝐵𝑗  at time 𝑡; {𝑥𝑗(𝑡)} are binary unit commitment variables; 

{𝑢𝑗(𝑡)}  are binary startup variables; {𝑟𝑗,𝑚(𝑡)}  are continuous 
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variables for reserve level of type 𝑚 from a unit’s perspective, 

including the following of decreasing quality: regulation, 10-

minute spinning, ten-minute non-spinning, thirty-minute 

spinning, and thirty-minute non-spinning. Area a, a {1, 2, .., 

A}, has the following decision variables: {𝜐𝑎,𝑛
R (𝑡)}  are 

continuous variables for soft reserve violation of type 𝑛 from 

area a’s perspective, including regulation, 10-minute spinning, 

10-minute total, and 30-minute total, each can be satisfied by 

unit contributions of equal or higher quality. Line l, l {1, 2, .., 

L}, where L is the total number of transmission lines, has the 

following decision variables: nonnegative continuous variables 

{𝜐𝑙
𝑇𝐶,+(𝑡)}  and {𝜐𝑙

𝑇𝐶,−(𝑡)}  for soft transmission capacity 

violations on the positive and negative directions, respectively. 

Costs and penalties within (1) include generation costs 

{𝐶𝑏,𝑗𝑝𝑏,𝑗(𝑡)} , startup costs {𝐶𝑗
𝑆𝑈𝑢𝑗(𝑡)} , no-load costs 

{𝐶𝑗
𝑁𝐿𝑥𝑗(𝑡)}, reserve costs {𝐶𝑗,𝑚

𝑅 𝑟𝑗,𝑚(𝑡)}, soft reserve penalties 

{𝐶𝑎,𝑛
P,R𝜐𝑎,𝑛

R (𝑡)} , and soft transmission capacity penalties 

{𝐶𝑙
P,TC (𝜐𝑙

𝑇𝐶,+(𝑡) + 𝜐𝑙
𝑇𝐶,−(𝑡))}.  

The problem is subject to the following unit-level constraints: 

generation capacity, ramp rates, startup, min up/down-time, and 

reserve capacity given in (1), (4-5), (11-13), (14), and (15-18) 

of [12], respectively.  

Area-wise soft regulation constraints (type n = 1) for 

individual areas are formulated as: 

( )( ) ( ) ( )1, , ,1 ,1 pa RR , , ,j j a a a

j

r t t t a t +    (2) 

where pa
𝑗,𝑎

 is the binary area participation indicator of unit 𝑗 in 

area 𝑎, which is 1 if the unit is in area 𝑎 and 0 otherwise, and 

RR𝑎,1  is the regulation requirement for area 𝑎 . Reserve 

constraints for other types are formulated similarly.  

The system-level demand constraints are given as 

( ) ( )D ,j i

j i

p t P t t=    (3) 

where 𝑝𝑗(𝑡) is the total generation level of unit j at time t, and 

is the sum of outputs of all the blocks of unit j at time t, and 

𝑃𝑖
D(𝑡) is the demand at node 𝑖  and time t. Soft transmission 

capacity constraints are formulated as: 

( ) ( ) ( )
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(4) 

where 𝑓𝑙
max is the capacity of transmission line 𝑙; 𝐽𝑖 is the set of 

generators at node i; and {𝛼𝑖,𝑙}  are generation shift factors, 

specifying the relationship between power injection at node 𝑖 
and power flow through line 𝑙. 

IV.  SOLUTION METHODOLOGY 

In subsection IV-A, soft constraints are exploited within the 

SAVLR framework to solve the problem with step-by-step 

derivations. In IV-B, initialization, parameter tuning, and 

extending the method to solve problems with hard reserve and 

transmission capacity constraints are presented. To speed up 

computation, a parallel version of IV-A is developed in IV-C. 

A.  Exploiting soft constraints within the SAVLR framework  

When solving a large sub-hourly UC problem, relaxing all 

coupling constraints will lead to an excessive number of 

multipliers, slow convergence, and poor solution quality – the 

more constraints relaxed, generally the poorer solution quality. 

To significantly reduce the number of multipliers, only system 

demand constraints are relaxed but not soft reserve and 

transmission capacity constraints. With soft constraints not 

relaxed, subproblems can still be formed and optimized, subject 

to the surrogate optimality condition. Furthermore, the ability 

of subproblem solutions to satisfy the surrogate optimality 

condition is high in view of the flexibility of subproblem 

solutions with soft constraints. Consequently, convergence can 

be established with a much-reduced number of multipliers, a 

feature not possible under the traditional LR framework. 
 

Relaxing system demand constraints 

With system demand constraints (3) relaxed by using 

multipliers {𝜆(𝑡)} and constraint violations penalized by using 

the penalty coefficient c, the relaxed problem is:  
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(5) 

subject to individual unit-level constraints, and soft reserve and 

transmission capacity constraints which are not relaxed. In the 

above, 𝐿𝑐 is the Lagrangian.  

 

Linearizing absolute value penalties 

The Lagrangian (5) is nonlinear due to the absolute-value 

penalty terms, which are linearized in a standard way [13] (Pg. 

63) The linearized relaxed problem is:  
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subject to individual unit-level constraints and soft reserve and 

transmission capacity constraints. In the above, 𝑧+(𝑡)  and 
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𝑧−(𝑡)  are nonnegative continuous linearization variables 

satisfying the following newly introduced constraints: 

( ) ( ) ( ) ( )D , .j i

j i

z t z t p t P t t+ −− = −    (7) 

Formulating and solving area subproblems  

The objective function of subproblem a is formed by 

collecting all the terms from Lagrangian 𝐿𝑐
′  in (6) related to area 

a. It is minimized with respect to the decision variables 

belonging to that area while keeping all other decision variables 

at their latest available values following the procedures of 

SAVLR as reviewed in subsection II-C. The subproblem  𝑎 

solved at iteration 𝑘 is:  
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(8) 

where 𝐺𝑎  is the set of units belonging to area 𝑎. For brevity, 

constant terms are omitted in (8). This subproblem is subject to 

unit-level constraints for units belonging to the area, soft 

reserve and transmission capacity constraints (not relaxed), and 

the following linearization constraints (not relaxed):  

( ) ( ) ( ) ( )

( )

, , 1

: :

,

a a

k k k k

j j

j j G j j G

D

i

i

z t z t p t p t

P t

+ − −

 

 
− = +  

 

−

 



 (9) 

where 𝑝𝑗
𝑘−1(𝑡)  denote the most recent decision variable 

obtained at iteration k - 1.  

Subproblems are solved by using B&C subject to the 

satisfaction of the surrogate optimality condition [6] (Eq. (14)) 
1

, ,
,k k k k

k k

c c
L L

 

−  (10) 

where 𝐿̃
𝑐𝑘,𝜆𝑘
𝑘  is the “surrogate dual value,” which is the 

Lagrangian (6) evaluated using decision variables of area a at 

iteration k, decision variables of other areas at iteration k - 1, 

multipliers 𝜆𝑘 , and the penalty coefficient 𝑐𝑘; and 𝐿̃
𝑐𝑘 ,𝜆𝑘
𝑘−1  is (6) 

evaluated using all decision variables at iteration k - 1, 

multipliers 𝜆𝑘 , and the penalty coefficient 𝑐𝑘.  
 

Updating multipliers and the penalty coefficient  

If the surrogate optimality condition (10) is satisfied, then the 

“surrogate subgradients” are obtained as:  

( ) ( ) ( ) ( )1 D , ,
a a

k k k

j j i

j G j G i

g t p t p t P t t−

 

 
= + −   

 
    

 

(11) 

and the multipliers 𝜆(𝑡) are updated following (14) from [6] as: 

( ) ( ) ( )1 , .k k k kt t s g t t + = +    (12) 

In (12), the step size 𝑠𝑘  is updated as: 

1 1

2

2

, 0 1,

k k

k

k kk

s g
s

g
 

− −

=     

 

(13) 

where  

1 1
1 , 1 , 1, 0 1.k r

M r
Mk k

 = − = −     
 

(14) 

The penalty coefficient 𝑐 is updated as:  

( )1 ubmin , , 1,k kc c c + =    (15) 

where 𝑐ub is an upper bound on 𝑐, preventing 𝑐 from getting 

too large to impede coordination.  

If the surrogate optimality condition is not satisfied, the 

multipliers 𝜆(𝑡) and the penalty coefficient 𝑐 are not updated, 

and the next subproblem is solved. If the surrogate optimality 

condition cannot be satisfied after 𝐴 consecutive subproblems, 

𝑐 is deemed too large, and is reduced follows [6] (Eq. (21)) 

1 , 1.
k

k c
c 



+ =   
 

(16) 

Eq. (16) is also used if subproblem solutions, when put together, 

are feasible with respect to the original problem to reduce the 

emphasis of the feasibility. After updating the multipliers, 

stepsize, and penalty coefficient, the next subproblem is solved, 

and the process is repeated until a time limit is reached or the 

multipliers converge based on appropriate criteria (e.g., if the 

distance between multipliers after solving 𝐴  subproblems is 

within a predetermined tolerance). The following theorem 

establishes the convergence of SAVLR when not all coupling 

constraints are relaxed. 

Theorem 1. Convergence of SAVLR in which not all coupling 

constraints are relaxed. Consider the relaxed problem (5) in 

which not all coupling constraints are relaxed. If the surrogate 

optimality condition (10) is satisfied for at least one subproblem 

after solving A subproblems, and multipliers are updated as in 

(12) using stepsize update rule (13), then multipliers converge 

to their optimal values 𝜆∗. 

Proof: The proof follows directly Theorem 1 of [6].                      □ 
 

Finding feasible solutions and evaluating solution quality  

Since system demand constraints are relaxed, subproblem 

solutions, when put together, might not constitute a solution 

feasible to the original problem. To construct a feasible solution 

when the time limit is reached or appropriate stopping criteria 

are satisfied, all binary decision variables are fixed at their 

subproblem solution values, and the resulting LP problem is 

solved. If a feasible solution cannot be obtained in this way, 

then more complicated heuristics will be needed, e.g., by fixing 

a subset of binary decisions and solving the rest of the decision 

variables. This, however, was not encountered in our testing to 

be reported in Section V.  

To measure the quality of a feasible solution, the following 

optimality gap is used: 

( )best best

best
Gap (%) 100 ,

f lb

f

−
=   

 

(17) 
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where 𝑓best  is the best feasible cost and 𝑙𝑏best  is the best 

known lower bound, which is obtained by using pure B&C in 

our numerical testing to be presented in Section V.  
 

B.  Initialization, Parameter Tuning and Solving Problems 

with Hard Constraints  

In this subsection, initialization of subproblem solutions, 

tuning stepsizing parameters, and extending our method to 

solve problems with hard reserve and transmission capacity 

constraints are presented.  
 

Initializing subproblem solutions 

Initial subproblem solutions are needed to start the iterative 

process (see the flowchart in Fig. 1). To do this, startup and 

generation level variables are chosen for each time interval such 

that generation capacity (1), ramp rate (4-5), startup (11-13), 

and minimum up/down-time (14) constraints are satisfied, 

while other constraints are ignored.  
 

Tuning stepsizing parameters  

There are three parameters in our method: (M, r, and s0), and 

they could be different for different classes of problems, e.g., a 

6-bus system and the 2383-bus Polish system in the next 

section. To systematically select them for each class of 

problems, a tuning process is developed through testing a 

discrete subset of the parameter space. To avoid searching in 

three dimensions, the process is divided into two stages. In the 

first stage, r is fixed at a typical value determined from testing 

experience, and a search over values of M and s0 is performed 

to obtain a good range for M and s0. Then in the second stage, 

s0 is fixed at the value within the range identified in the first 

stage, and a search is performed over values r and a finer grid 

of M selected from the first stage. Once obtained, a parameter 

set is used for all instances of that class of problems. 
 

Solving problems with hard constraints 

Motivated by the effectiveness of our method, one idea to 

solve UC problems formulated with hard reserve and 

transmission capacity constraints is to convert these constraints 

to soft, and then follow the procedure developed above. Only in 

the last step, feasible solutions satisfying all the original 

constraints are obtained by using heuristics. Note that if hard 

constraints are not converted to soft, they should always be 

satisfied when solving subproblems, significantly increasing 

the difficulties of satisfying the surrogate optimality condition.  

The key consideration here is the selection of soft constraint 

penalty coefficients. To facilitate the satisfaction of the 

surrogate optimality condition when solving subproblems, 

these penalty coefficients should not be too large to impede 

coordination. However, they should be larger than the values of 

multipliers. If these coefficients are of the same order of 

magnitude as multipliers, there might be an excessive violation 

of the original hard constraints during the iterative solution 

process, making it difficult to obtain feasible solutions at the 

end. Since values of multipliers are not known, these 

coefficients are set an order of magnitude higher than the 

estimated upper bounds on the multipliers, which are calculated 

in the pre-processing stage by, e.g., priority list commitment 

and dispatch ([8]). Our approach thus opens up a new way to 

solve difficult MILP problems with hard constraints. A 

flowchart for SAVLR is given in Fig. 1. 

C.  Synchronous parallel Surrogate Absolute-Value 

Lagrangian Relaxation  

The method presented above can be further improved by 

taking advantages of multiple cores available in modern 

processors. The formulation of the relaxed problem and the 

decomposition process are identical to those for the sequential 

version. Subproblems are grouped in batches, and subproblems 

in a batch are assigned to individual cores. The subproblems in 

a batch are solved in parallel after all the subproblems in the 

previous batch are finished and multipliers and the penalty 

coefficient 𝑐  updated, resulting in a synchronous parallel 

version. Subproblems in a batch are thus independent of each 

other, and there is no communication needed among cores when 

subproblems are solved.  

After a batch of subproblems is solved, their solutions are 

combined. Although individual solutions may satisfy the 

surrogate optimality condition, the combined solution may not. 

If the combined solution satisfies the surrogate optimality 

condition, then the multipliers {𝜆(𝑡)}  and the penalty 

coefficient 𝑐 are updated as for sequential SAVLR, and the next 

batch of subproblems is solved. If the combined solution does 

not satisfy the surrogate optimality condition, then 

combinations of subsets of solutions are checked, with priority 

given to the largest combinations. Once a combination 

satisfying the surrogate optimality condition is obtained, 

multipliers and the penalty coefficient 𝑐 are updated, and the 

next batch is solved. 

In contrary to traditional wisdom, not all subproblems should 

be solved in parallel. This is because in this case, the method is 

similar to traditional LR, and suffers from drastic zigzagging of 

multipliers and slow convergence. Based on our testing results, 

10% to 40% of subproblems may be solved in parallel subject 

to the number of available cores for effective convergence. 

Figure 2: SAVLR flowchart 

Figure 1: SAVLR flowchart 
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V.  NUMERICAL TESTING AND ANALYSIS 

Three UC problems are solved to demonstrate the 

performance of our method. The first is a simple 6-bus hourly 

UC over 24 hours to demonstrate the impacts of the exploitation 

of soft constraints within the SAVLR framework. The second 

is a 15-minute UC based on the 2383-bus Polish system, with 

hard demand, reserve, and transmission capacity constraints. 

After hard reserve and transmission capacity constraints are 

converted to soft, the ability of the sequential SAVLR to solve 

such large problems is presented. In the third example, to 

demonstrate the robustness and performance of both sequential 

and parallel methods, Monte Carlo testing for the same 15-

minute Polish system but with soft reserve and transmission 

capacity constraints is performed based on six load profiles.  

 The implementation overhead is reported, and the 

parameter tuning procedure is demonstrated. For all the 

examples, our results are benchmarked against those obtained 

by using B&C (as available in CPLEX) with mixed-integer 

rounding, flow, implied bound, and other cuts applied. All 

testing is performed on an Intel Xeon CPU 3.1 GHz, 4 Cores, 

32 GB laptop, with MATLAB R2018a and CPLEX 12.8. 
 

Example 1: 6-bus system 

An hourly UC over a 24-hour time horizon for a 6-bus system 

with 9 units and 11 transmission lines as shown in Fig. 2 is 

considered. The problem is subject to the standard unit-level 

constraints, hard system demand constraints, and soft 

transmission capacity constraints. For simplicity, reserves are 

not considered. A soft constraint penalty coefficient of 

$1000/MW is set for not meeting the transmission capacity 

requirements.  
 

 

The problem is solved by using B&C, and sequential and 

parallel SAVLR. For SAVLR, the problem is decomposed into 

5 subproblems, which are solved by using B&C. For parallel 

SAVLR, these subproblems are grouped into 3 batches, with 2 

batches containing 2 subproblems, and 1 batch consisting of a 

single subproblem (40% of subproblems solved in parallel). For 

comparison purposes, the problem is also solved by using 

sequential SAVLR with the soft constraints relaxed. The 

feasible costs obtained by each method, and performance 

metrics (algorithm run time, optimality gap, and the number of 

iterations performed) are provided in Table I. Because of the 

low complexity of this example, B&C finds a solution with a 

.01% gap in a fraction of a second. Both sequential and parallel 

SAVLR, when only hard demand constraints are relaxed, find 

the same solution in 25 seconds. They take longer because 

multipliers and subproblem solutions are set to update for 25 

seconds before finding feasible solutions, which takes less than  

TABLE I 
 RESULTS FOR EXAMPLE I  

 

a second. The sequential SAVLR solved 286 subproblems, of 

which 219 satisfied the surrogate optimality condition. The 

parallel SAVLR solved 219 batches, of which 11 did not satisfy 

the surrogate optimality condition after combining their 

subproblem solutions. As a result, 390 subproblems (36% more 

than the sequential version) are solved. When soft transmission 

capacity constraints are relaxed, convergence is slow because 

528 additional multipliers are introduced, and the feasible cost 

is also higher, demonstrating the effectiveness of not relaxing 

these soft constraints. 
 

Example 2: The 2386-bus Polish system with hard demand, 

reserve and transmission capacity constraints 

In this example, the effectiveness of our sequential method 

for sub-hourly UC with hard constraints is demonstrated. A 15-

minute UC problem over a 24-hour planning horizon is 

considered based on the 2383-bus Polish system power flow 

test case with 327 units and 2895 transmission lines and hard 

system demand, reserve, and transmission capacity constraints 

[14]. The hard reserve and transmission capacity constraints are 

first converted to soft. To select soft constraint penalty 

coefficients, the initial multipliers are first calculated based on 

priority list commitment, and the largest of which is $25/MW. 

Since multipliers are expected to be in the same order of 

magnitude as their initial values, to estimate an upper bound, 

the largest initial multiplier is doubled ($50/MW), and soft 

constraint penalty coefficients are set to be an order of 

magnitude higher at $500/MW for all soft constraints. To 

increase problem complexity, all unit ramp rates are reduced to 

60% of their nominal values. The problem is decomposed into 

28 subproblems, each consisting of 9 to 12 units.  

Both B&C and sequential SAVLR are run for 2 hours. For 

sequential SAVLR, a feasible solution is searched every 10 

minutes to compare the solution quality over time, with each 

search taking approximately 30 seconds. The feasible costs and 

gaps obtained over time by each method are plotted in Fig. 3. 

SAVLR obtains a feasible solution with a cost of $32.78 million 

and a gap of 1.52% in 20 minutes. B&C cannot find a feasible 

solution with a cost under $36 million until after 115 minutes, 

and at that point, it finds a solution with a cost of $32.3 million 

with a gap of .04%.  

To demonstrate the effects of selecting the soft constraint 

penalty coefficient, the problem is also solved with its value set 

at $200/MW and $50,000/MW. Performance metrics 

Method 
Feasible 

Cost  
Gap Time Iterations 

B&C $623,956 0.01% < .1s - 

Sequential SAVLR 

– not relaxing soft 

constraints 

$623,956 0.01% 25s 40 

Parallel SAVLR – 
not relaxing soft 

constraints 

$623,956 0.01% 25s 66 

Sequential SAVLR 

– relaxing soft 
constraints 

$666,280 6.05% 43s 68 

Figure 2: The 6-bus system considered in Example 1 
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including ‖𝑔̃‖2 (the 𝐿2 norm of the relaxed demand constraints, 

see equation (11) in subsection IV-A) at the end, ‖𝜐‖1, the 𝐿1 

norm of the soft reserve and transmission capacity constraints 

(see equation (1) in subsection III) at the end, feasible cost, and 

optimality gap for the 3 cases are presented in Table II.  
 

TABLE II  

PERFORMANCE WITH DIFFERENT PENALTY COEFFICIENTS FOR EXAMPLE 2 

 

Over the course of the iterative multiplier updating process, 

multiplier values fall within the range of -$3.75 and $74.43. 

With the soft constraint penalty coefficient set at $200/MW, the 

norm of reserve and transmission capacity constraint violations, 
‖𝜐‖1, is 18.1 MW. This value of $200/MW is too close to the 

range of multipliers. Consequently, subproblem solutions suffer 

from high levels of constraint violation, and a feasible solution 

to the original problem is not found. With the soft constraint 

penalty coefficient set at $50,000/MW, the amount by which 

the original reserve and transmission capacity constraints are 

violated by subproblem solutions is negligible. However, with 

such a high penalty coefficient, the soft constraints behave like 

hard constraints, impeding the subproblem coordination 

process. The norm of system demand constraint violations, 

‖𝑔̃‖2, remains large (2.81 × 103 MW) even after 20 minutes, 

and a feasible solution to the original problem is not found. 

With a penalty coefficient of $500/MW, which is about an order 

of magnitude higher than the largest multiplier, ‖𝜐‖1  is only 

1.73 MW; ‖𝑔̃‖2 is 13.4 MW; and a feasible solution with a gap 

of 1.52% is obtained.  
 

Example 3: Monte Carlo simulations for the Polish system, with 

soft reserve and transmission capacity constraints 

In this example, the robustness and performance of both the 

sequential and the parallel methods are examined by 

performing Monte Carlo testing of the 15-minute UC problem 

over a 24-hour planning horizon for the Polish system with soft 

reserve and transmission capacity constraints. The soft 

constraint penalty coefficient is $1000/MW for both 

constraints. For the parallel SAVLR, 8 batches with 3 

subproblems each and 1 batch with 4 subproblems are formed 

(10%-14% of subproblems solved in parallel). Six cases are 

considered based on seasonal and weekday/weekend variations 

following Table 4 of [15]. For each case, three scenarios are 

created by varying the load at each node by up to 3%. All 

methods are run for 20 minutes, including 30 seconds for 

finding feasible solutions. The average results of the three 

scenarios for each case are shown in Table III. The average 

initial subproblem model construction time (building constraint 

Sequential SAVLR with different soft constraint penalty coefficients 

Soft constraint 

penalty coefficient 

‖𝑔̃‖2 

(MW) 

‖𝜐‖1 

(MW) 

Feasible 

cost 
Gap 

$500/MW 13.04 1.73 
$3.278 ×

107 
1.52 % 

$200/MW 64.17 18.1 
No feasible 

sol. 
- 

$50,000/MW 
2.81
× 103 

~0 
No feasible 

sol. 
- 

Figure 3: a) Feasible costs. b) Feasible costs obtained by SAVLR decrease over time. c) Optimality gaps. d) Optimality gaps zoomed in. 
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matrices) is 7.6 seconds, and the overhead at each iteration 

(defining costs and constraint requirements) is 0.3 seconds. The 

main cuts used are mixed-integer rounding, flow, and implied 

bound cuts.  
 

TABLE III  
RESULTS FOR EXAMPLE 3 

 

For 5 out of the 6 cases, sequential and parallel SAVLR find 

lower average costs than those of B&C. B&C finds the best 

average cost for the “Summer - weekday” case. However, only 

2 out of 3 scenarios were solved, and no solution was found for 

the 3rd instance (the average cost and gap were calculated using 

the 2 scenarios for which solutions were found). Both versions  

of SAVLR give feasible solutions for all scenarios of all cases.  

SAVLR consistently finds solutions with less than a 4% gap 

in 20 minutes, while B&C struggles for most scenarios due to 

the high problem complexity.  

Sequential SAVLR finds solutions that cost less than those 

found by the parallel version for 5 out of 6 cases. This is because 

the parallel version still suffers from the convergence 

difficulties mentioned in subsection IV-C, although it solves 

more subproblems than those solved by the sequential version. 
 

Tuning stepsizing parameters 

The results from stages 1 and 2 of the parameter tuning 

procedure described in subsection IV-B are given in Tables IV 

and V, respectively. In both stages, a search for a feasible 

solution is performed after 20 minutes for each parameter set. 

In stage 1, based on testing experience, 𝑟 is fixed at .1, and a 

search over values of M ∈ {1, 10, 20, 30} and 𝑠0 ∈ {5 × 10−3,
5 × 10−2, 5 × 10−1 } is performed. Runtime for stage 1 is 4 

hours. Based on Table IV, 𝑠0 ∈ {5 × 10−3, 5 × 10−2}  and 

𝑀 ∈ {1, 10} give comparable feasible costs, and are suitable 

ranges for these parameters. Therefore in stage 2, 𝑠0 is fixed at 

5 × 10−3  and a search over 𝑀 ∈ {5, 10, 15}  and 𝑟 ∈
{. 06, .08, .10, .12, .14} is performed. Runtime for stage 2 is 5 

hours.  

Based on Table V, 𝑟 ∈ {. 06, .08, .10, .12, .14}  and 𝑀 ∈
{5, 10}  give comparable feasibible costs. Consequently, the 

parameter set {𝑀 = 10, 𝑟 = .1, 𝑠0 = 5 × 10−3}  is used in 

sequential SAVLR for all cases and scenarios. The same 

procedure is also used for tuning parallel SAVLR. 
 

TABLE IV 

TUNING FOR EXAMPLE 3: STAGE 1 

 

TABLE V 
TUNING FOR EXAMPLE 3: STAGE 2 

 

VI.  CONCLUSION  

The soft reserve and transmission capacity constraints are 

innovatively exploited within the SAVLR framework for 

complicated sub-hourly UC problems. The approach leads to a 

drastic reduction of the number of multipliers, decreased 

computational requirements, and improved performance. Both 

the sequential and the parallel versions consistently provide 

near-optimal solutions in a computationally efficient manner 

for the 15-minute UC problems tested. These methods are 

generic and have major implications for solving other complex 

MILP problems in power systems and beyond.  
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