Calculating screen to face distance

Ivan Ludvig Tereshko !

"Moscow Institute of Physics and Technology

October 30, 2023

Abstract

A method of calculating screen to face distance is presented. The method relies on average distance between the user’s eyes
(pupillary distance) and does not require calibration. The algorithm is implemented as an Android application using face

detection technologies provided by Android.

Calculating screen to face distance

IvaN LubpviG TERESHKO

Tereshko.IV@phystech.edu

August 20, 2020

Abstract

In this paper, a method of calculating screen to face distance is presented. The method relies on average
distance between the user’s eyes (pupillary distance) and does not require calibration. The algorithm is
implemented as an Android application using face detection technologies provided by Android.

I. INTRODUCTION

cations in digital technology. The value

can be used in order to implement a more
responsive and user-friendly graphical inter-
face. A more progressive application of screen
to face distance may be in AR/ VR technologies
as it grants the ability to connect virtual and
digital space.

Screen to face distance has various appli-

Another application may lie in the medical
field. For example, the measured value can be
used to inform the user to keep the device at
a more appropriate and comfortable distance.
This is especially vital for people with poor
eyesight, but the application can prevent any
possible harm to any user’s eyesight during
continuous use of electronic devices.

II. STATE OF THE ART

This problem was previously solved by
KAﬁnig, Beau and David (2014). The method
presented uses the distance between a person’s
eyes to calculate screen to face distance. [3] The
method presented in this paper uses the same
principle, but has differences in the algorithm.
Unlike the algorithm of KAfinig et al. (2014),
the following algorithm doesn’t require calibra-
tion. Instead, it relies on the optical parameters
of the camera.

III. SorutiON

i. Physics

The main equation used in this method can be
derived from the lens equation. The following
variables are used:
dist_mm - screen to face distance in mm,
F_mm - focal length in mm,
Sensor_mm - sensor size in mm,
5ensor_px - sensor size in px (image size),
obj_mm - real object size,
obj_on_sensor_mm - object size as it appears on
the sensor in mm,
obj_px - object size in pixels.

Using basic lens optics (similar triangles on
both sides of the lens), the following ratio is
obtained [2]:

sensor_mm
F mm

obj_on_sensor_mm
dist_mm

Considering the following relation (the ratio
between millimeters and pixels) [2]

obj_on_sensor_mm
obj_px

sensor_mm
5ensor_px

the final equaion is obtained

obj_mm x sensor_px

dist_ mm = F_mm % —=
obj_px * sensor_mm

(1)

In the current case pupillary distance repre-
sents the object. Therefore, the object’s dimen-
sions are calculated by subtracting coordinates

mailto:Tereshko.IV@phystech.edu

of one eye from the other. The object and sen-
sor sizes are either their width or height. If the
object’s width is bigger than it’s height, width
represents size in (1) (both object and sensor
width). Otherwise, height is used as size. The
following approach let’s us avoid borderline
cases when, for example, width is much bigger
than height.

ii. Algorithm

Android’s face detection technology is used in
the current method. The face is continuously
detected using the front camera.

Overall, the method can be decomposed into
the following steps:

1. Camera and face detector initialisation.

2. Obtaining camera parameters: sensor di-
mensions, focal distance.

3. Continuous update, which includes:

e Face detection

e Eyes position detection

e Screen to face distance calculation,
using equation

In equation (1) the variable sensor_px repre-
sents image size, which is set during step
1. F_mm, sensor_mm are camera parameters,
which are obtained at step 2. obj_px is pupil-
lary distance in pixels (as it appears on the
image), which is calculated at step 3.

Finally, obj_mm is a constant: it is the mean
pupillary distance, which equals 63 mm. [1]

IV. EXPERIMENT

The algorithm has been implemented as an
Android application, which displays the mea-
sured distance. The application has been tested
on 3 Android devices:

e Huawei P10 Lite
e Huawei U8950
e Samsung |5

All devices have been tested at 4 distances: 100
mm, 150 mm, 200 mm, 400 mm. Each device

was placed at a given distance from a person’s
eyes. Then, the value that was shown on screen
was noted. The result’s are presented on a

graph (Figure [I).

450 T T T T T T T

400 -

350 |

300 -

250 |

200

Measured distance, mm

150 ,/'/ Huawei P10 Lite
£ Huawei U950
100 |- e Samsung |5

- True value |

50 = 1 1 1 1
50 100 150 200 250 300 350 400 450

Actual distance, mm

Figure 1: Testing results

Theoretically, all points should lie on the
linear function (that is, at all points the mea-
sured value should equal the actual value). The
method proved to be fairly accurate: the aver-
age error is 4,5 %.

V. CONCLUSION

A method of measuring screen to face distance
was described in this paper. The algorithm
doesn’t require calibration and works continu-
ously with updates every 40-70 ms (depending
on device). The method proved to be fairly
accurate. The algorithm has errors, as it uses
the mean value of pupillary distance, which
varieties in humans.

The following algorithm is implemented as
an Android application. The full code is avail-
able on GitHub. [4]

ACKNOWLEDGEMENTS

I would like to thank Egor Rusakov for assist-
ing me with testing the application.

REFERENCES

[1] Neil Dodgson. “Variation and extrema
of human interpupillary distance”. In:

2]

3]

[4]

vol. 5291. Jan. 2004, pp. 36—46. I1SBN:
0819451940. por:110.1117/12.529999

Wayne Fulton. Math of Field of View
(FOV) for a Camera and Lens. URL:
https : / / www . scantips . com /
lights/fieldofviewmath.html (visited
on 08/14/2020).

I. Konig, P. Beau, and K. David. “A new
context: Screen to face distance”. In: 2014
8th International Symposium on Medical In-

formation and Communication Technology
(ISMICT). 2014, pp. 1-5.

Ivan Ludvig Tereshko. Screen-to-face-
distance. July 2020. por: 10 . 6084 / m9 |
figshare . 12721595 . v3. URL: |https |
//figshare . com/articles/software/
Screen-to-face-distance/12721595/3,

https://doi.org/10.1117/12.529999
https://www.scantips.com/lights/fieldofviewmath.html
https://www.scantips.com/lights/fieldofviewmath.html
https://doi.org/10.6084/m9.figshare.12721595.v3
https://doi.org/10.6084/m9.figshare.12721595.v3
https://figshare.com/articles/software/Screen-to-face-distance/12721595/3
https://figshare.com/articles/software/Screen-to-face-distance/12721595/3
https://figshare.com/articles/software/Screen-to-face-distance/12721595/3

	Introduction
	State of the art
	Solution
	Physics
	Algorithm

	Experiment
	Conclusion

