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Abstract

Targeted advertising has transformed the marketing trend for any business by creating new opportunities for advertisers to

reach prospective customers by delivering them personalised ads using an infrastructure of a variety of intermediary entities and

technologies. The advertising and analytics companies collect, aggregate, process and trade a rich amount of user’s personal

data, which has prompted serious privacy concerns among individuals and organisations. This article presents a detailed survey

of privacy risks including the information flow between advertising platform and ad/analytics networks, the profiling process,

the advertising sources and criteria, the measurement analysis of targeted advertising based on user’s interests and profiling

context and ads delivery process in both in-app and in-browser targeted ads. We provide detailed discussion of challenges in

preserving user privacy that includes privacy threats posed by the advertising and analytics companies, how private information

is extracted and exchanged among various advertising entities, privacy threats from third-party tracking, re-identification of

private information and associated privacy risks, in addition to, overview data and tracking sharing technologies. Following,

we present various techniques for preserving user privacy and a comprehensive analysis of various proposals founded on those

techniques and compare them based on the underlying architectures, the privacy mechanisms and the deployment scenarios.

Finally we discuss some potential research challenges and open research issues.
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1 INTRODUCTION

The online advertising ecosystem is one of the most
successful marketing and advertising markets, operated
over with billions of smart devices, including smart-
phones, tablets, and computer tablets using millions
of mobile applications (apps) registered in various app
platforms. The growing need of developing smartphone
apps has replaced traditional use of internet services; the
users are ever more motivated using these apps and it is
projected that there will be more than 250 billion mobile
apps downloads by [1]. These mobile apps contain at least
one ad library (including analytics libraries) [2] that en-
ables targeted (or behavioural) in-app mobile advertising.
The advertising and analytics (A&A) companies use this
framework to enable targeted advertising, which has also
become an increasingly important source of revenue.
These companies are competing to increase their revenue
by providing ad libraries that the apps developers use to
serve ads to a wide range of audiences.

An important factor in the ad delivery process is the
selection of relevant ads to display to relevant users
i.e. targeted advertising. Targeted advertising is based on
big data analytics, where user’s personal information
is collected and processed for the purposes of profil-
ing and targeting. The in-app ad control process targets
mobile users based on various criteria such as device
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attributes (e.g. OS version, browser type/version etc.),
user’s temporal behaviour, demographics, interests, apps’
categories, and location. The assumption in this process
is that the targeted advertising benefits all parties in an
ad ecosystem i.e. the users receiving relevant ads, the
app developers to receive high ad-refresh/click-through
rates, the ad networks to target vast majority of audi-
ences, and the advertisers, whose ads are delivered to
the appropriate audiences.

Subsequently, the user profiling, for effective targeted
advertising, is becoming increasingly important in the
mobile environment, where the above amount of infor-
mation is collected by mobile apps [3] and is sent to
analytics companies e.g. Google Analytics and Flurry. The
analytics companies (besides the advertising networks
collecting user’s personal information) have become an
integral part of advertising industry, enabling user tar-
geting via their profiles. Such widespread information is
collected through the ad library API calls [4], including in-
formation inference based on monitoring ads displayed
during browsing sessions [5], [6]. In the process of data
monetisation, the ads/analytics companies aggressively
look for all the possible ways to gather personal data
from the users, including purchasing users’ personal
data from third parties. This poses serious threats to pri-
vacy of users [7], [8], [9], [10], [11], [12], when apps indi-
cating sensitive information, e.g., a gaming app showing
a gambling problem, are the basis for profiling.

Therefore, protecting users’ personal data with ef-
fective targeting is important to both the advertising
networks and mobile users. The mobile users want to
view interest-based ads provided that their information
is not shown to the outside world including the adver-
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tising companies. This presumption in developing such
advertising networks is to deliver most appropriate ads
to achieve better view/click through rates and to protect
the interactions between mobile users, advertisers and
publishers/ad networks.

In this paper, we present a comprehensive survey
of existing literature on privacy risks caused due to
information flow between the A&A companies, temporal
tracking of users for their activities and targeting them
with personalised ads. We describe the profiling process,
data collection and tracking sources for targeting users,
the ads delivery process, the process of ads charac-
terisation for both in-app and in-browser targeted ads.
Following, we detail the privacy threats posed by the
A&A companies as a result of ads targeting; in particular,
(to prove the privacy leakage) we demonstrate (using
experimental evaluation) as how private information
is extracted and exchanged among various entities in
an advertising system and by third-party tracking and
the associated privacy risks by tracking technologies.
Then, we provide various privacy preserving techniques
applicable in online advertising e.g. differential privacy,
anonymisation, proxy-based solutions, k-anonymity i.e. gen-
eralisation and suppression, obfuscation, and crypto-based
techniques such as private information retrieval (PIR).
Subsequently, we present various privacy preserving
advertising systems presented in literature for both in-
app and in-browser using above mentioned techniques
and provide their comparative analysis based on the
underlying architectures, the privacy techniques used
and the deployment scenarios. Finally we discuss some
potential research challenges and open research issues.

This article is organised in the following sections: In
Section 2, we detail the mobile advertising ecosystem,
its operation for ad delivery process, profiling process
and characterisation of in-app and in-browser ads. Sec-
tion 3 presents privacy threats, information leakage in
online advertising systems, and various techniques for
preserving user privacy from such information leakage
are presented in Section 4. Section 5 presents a detailed
comparative analysis of various privacy-preserving ad-
vertising systems. Various open research issues are out-
lined in Section 6. Finally, we conclude in Section 7.

2 THE MOBILE ADVERTISING ECOSYSTEM
The ad network ecosystem involves different entities
which comprise of the advertisers, ad agencies and
brokers, ad networks delivering ads, analytics companies,
publishers and the end customers to whom ads are
delivered [13]. For the case of large publishers, the ads
may be served both by the publishers and the advertisers
[14], consequently, the ad ecosystem includes a number
of interactions between different parties.

2.1 Information flow between mobile apps and ad
network
A typical in-app mobile ad ecosystem and the informa-
tion flow among different parties is presented in Figure

1. A user has a number of apps installed on their mo-
bile device, that are utilised with specific frequency. As
demonstrated in [15], most mobile apps include analytics
Software Development Kit (SDK) and as such both report
their activity and send ad requests to the analytics and ad
network. This network comprises the Aggregation server,
analytics server, Billing server, and the Ads Placement
server. Collected data, that relates to usage of mobile
apps and the success of displayed ads, is used by the
ads analytics server to develop user profiles (associated
with specific mobile devices and corresponding users).
A user profile comprises a number of interests, that
indicates the use of related apps, e.g. sports, business,
etc., constructed by e.g., Google Advertising network for
Mobile (AdMob)1 and Flurry [16] (note that the latter is
only visible to app developers). Targeted ads are served to
mobile users according to their individual profiles. We
note that other i.e., generic ads are also delivered [17].
The Billing server includes the functionality related to
monetising Ad impressions (i.e. ads displayed to the user
in specific apps) and Ad clicks (user action on selected
ads).

Analytics 

Server 

Ad Placement 

Server 

Uploads Ads 

Usage Info 

Mobile App 

Ad Network 

Billing 

Server 
Billing for:  

Ads Presentation & 

Ads Click 

Aggregation  

Server 
Advertiser 

Develops Apps 

User Profile 

Interest 1 
       . 
       . 
       . 
Interest n 

User Profiles 

Profiling Info 

User Device 

App 

Developer 

Fig. 1: The in-app advertising ecosystem, including the
information flow among different parties [17].

2.2 User profiling

Advertising systems rely on user profiling and tracking to
tailor ads to users with specific interests and to increase
their advertising revenue. Following, we present the user
profiling process, in particular, how the user profile is
established, various criteria, and how it evolves over time.

2.2.1 Profile establishment
The advertising companies, e.g., Google, profile users
based on the information they add to their Google
account, data collected from other advertisers that part-
ner with Google, and its estimation of user’s interests
based on mobile apps and websites that agree to show

1. Google AdMob profile is accessible through the Google Set-
tings system app on Android devices, accessible through Google
Settings → Ads → Ads by Google → Ads Settings.
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Google ads. An example profile estimated by Google
with various demographics (e.g. gender, age-ranks) and
profiling interests (e.g. Autos & Vehicles) is shown in
Figure 2. It is assumed that there is a mapping of the
Apps profile (the apps installed on a user mobile device)
to an Interests profile (such an example set of interests is
shown in Figure 2) defined by advertising (e.g. Google)
and analytics companies. This information is used by the
analytics companies to individually characterise user’s
interests across the advertising ecosystem.

This mapping includes the conversion of the apps cate-
gories Φj (where j = 1, ..., τ and τ is the number of dif-
ferent categories in a marketplace) to interest categories
Ψl (l = 1, ..., ε. ε is the number of interest categories
defined by the analytics company). This mapping converts
an app ai,j ∈ Sa to interests set Si,jg after a specific level of
activity test. The test is the establishment threshold i.e. time
an app should be used in order to establish profile’s inter-
ests. The result of this mapping is a set of interests, called
Interests profile Ig . Google profile interests2 are grouped,
hierarchically, under vaiours interests categories, with
specific interests.

Fig. 2: An (anonymous) example user profile estimated
by Google as a results of Web & App activity.

In addition, the ads targeting is based on demographics
so as to reach a specific set of potential customers that
are likely to be within a specific age range, gender etc.,
Google3 presents a detailed set of various demographic
targeting options for ads display, search campaigns etc.
The demographics D are usually grouped into different
categories, with specific options such as age-ranges, e.g.
‘18-24’, ‘25-34’, ‘35-44’, ‘45-54’, ‘55-64’, ‘65 or more’, and
gender e.g., ‘Male’, ‘Female’, ‘Rather not say’, and other
options e.g. household income, parental status, location
etc. The profiling is a result of interactions of user de-
vice with the AdMob SDK [8] that communicates with

2. Google profile interests are listed in https://adssettings.google.
com/authenticated?hl=en, displayed under the ’How your ads are
personalized’. Note that Google services can also be verified on Google
Dashboard https://myaccount.google.com/dashboard?hl=en.

3. Demographic Targeting https://support.google.com/google-ads/
answer/2580383?hl=en

Google analytics for deriving user profiles. A complete
set of ‘Web & App activities’ can be found under ‘My
Google Activity’4, which helps Google make services
more useful, such as, helping rediscover the things al-
ready searched for, read, and watched.

Figure 3 shows, a specific example of Google, various
sources/platforms that Google use to collect data and
target users with personalised ads. These include a wide
range of different sources enabled with various tools,
e.g., the ‘Web & Apps activities’ are extracted with the
help of Andoird/iOS SDKs, their interactions with ana-
lytics servers within Google network, cookies, conversion
tracking5, web searches, user’s interactions with received
ads etc. Google Takeout6 can be used to export a copy
of contents (up to several GBs of data) in user’s Google
Account for backup or use it with a service outside of
Google. Furthermore, this includes the data from a range
Google products personalised for specific users that a
user use, such as, email conversations (including Spam
and Trash mails), contacts, calendar, browsing & location
history, and photos.

2.2.2 Profile evolution
The profile is updated, and hence the ads targeting, each
time variations in the users’ behaviour are observed;
such as for a mobile user using apps that would map
to interests other than the existing set of interests. Let
a user uses a new set of apps S′

a, which has no overlap
with the existing set of apps Sa that has created Ig i.e.,
S′
a ⊂ A \ Sa, A is the set of apps in an app market.

The newly added set of apps S′
a is converted to interests

with tevo as evolution threshold i.e. the time required to
evolve profile’s interests. Hence, the final Interests profile,
Ifg , after the profile evolution process, is the combination
of older interests derived during the profile establishment
Ig and during when the profile evolves I ′g .

2.2.3 Profile development process
In order for the Apps profile to establish an Interests profile,
a minimum level of activity of the installed apps is
required. Furthermore, in order to generate one or more
interests, an app needs to have the AdMob SDK. We
verified this by testing a total of 1200 apps selected from a
subset of 12 categories, for a duration of 8 days, among
which 1143 apps resulted the Interest profiles on all test
phones indicating “Unknown” interests. We also note
that the Apps profile deterministically derives an Interests
profile i.e., a specific app constantly derives identical set
of interests after certain level of activity. We further note
that the level of activity of installed apps be within a
minimum of 24hours period (using our extensive exper-
imentations; we note that this much time is required by
Google analytics in order to determine ones’ interests),
with a minimum of, from our experimentations, 24/n

4. https://myactivity.google.com/myactivity?otzr=1
5. https://support.google.com/google-ads/answer/6308
6. https://takeout.google.com/
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  E). Web & Apps activities:

      1. Current search query

      2. Previous search activity/history

      3. Activity while a user is signed in to Google

      4. Previous interactions with ads

      5. Types of websites visited

      6. Types of mobile app activity on user device

      7. User activity on another device

  A). Advertising and analytics platforms:

      1. Doubleclick Campaign manager

      2. Google Ads

      3. Google Analytics

      4. Youtube

  F). Google account:

      1. Location

      2. Demographics, age-ranks, gender

      3. Time of day

      4. Info that user give to an advertiser, e.g., 

sddssdsigned up for a newsletter with email address

  B). Social media

  C). Wearable devices  

  D). Google services

         e.g. Google Search
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Fig. 3: Google’s data collection and tracking sources for targeting users with personalised ads.

hours of activity of n apps. For a sophisticated profiling,
a user might want to install and use a good number
of apps that would represent one’s interests. After the
24hours period, the profile becomes stable and further
activity of the same apps does not result in any further
changes. The mapping of Apps profile to Interests profile
during the establishment and during the evolution process
along with their corresponding stable states are shown
in Figure 4.

Similarly, during the profile evolution process, the Inter-
ests profile starts changing by adding new interests; once
apps other than the existing set of apps Sa are utilised.
However, instead of 24hours of period of evolving a pro-
file, we observe that the evolution process adds additional
interests in the following 72hours of period, after which
the aggregated profile i.e. Ifg becomes Stable. In order
to verify the stability of the aggregated profile, we run
these apps on 4th day; henceforth we observe no further
changes. The mapping of Apps profile to Interests profile
during the establishment and during the evolution process
along with their corresponding Stable states are shown
in Figure 4.

Fig. 4: Profile establishment & evolution processes. I∅ is the
empty profile before apps utilisation. During the stable
states, the Interest profiles Ig or Ifg remains the same and
further activities of the same apps have no effect over the
user profiles.

2.3 Ad delivery process

We identify the workflow of a mobile app requesting
a Google AdMob ad and the triggered actions result-
ing from e.g. a user click (we note that other ad-
vertising networks, such as Flurry, use different ap-
proaches/messages to request ads and to report ad
clicks). Figure 5 describes some of the domains used
by AdMob (Google ad servers and AdMob are shown
separately for clarity, although both are acquired by
Google). As shown, an ad is downloaded after the POST
method is sent by mobile phone (Step 2) containing
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phone version, model, app running on phone etc. The
ad contains the landing page (web address of an ad-
URL) and JavaScript code that is executed where
some of the static objects are downloaded (such as a PNG,
(Step 3)). Two actions are performed after clicking an
ad: a Conversion cookie7 is set inside phone (Step 4) and
the web server associated with the ad is contacted. The
landing page may contain other list of servers (mainly
residing in Content Delivery Networks) where some of
the static objects are downloaded and a complete HTML
page is shown to the user (Step 5). The mobile apps
developers agree on integrating ads in mobile apps and
the ads are served according to various rules set by the
ad networks, such as to fill up their advertising space,
and/or obtaining profiling information for targeting. Ad-
ditionally, the ads refreshment intervals, mechanisms
used to deliver ads (push/pull techniques), the strategy
adopted after ad is being clicked, and click-through rates
etc. are also defined by the ad networks.

Fig. 5: AdMob Ad Presentation Workflow [17].

In consequence, the ad networks are complex sys-
tems being highly diverse with several participants and
adopting various mechanisms to deliver ads. Thus, in
order to correctly identify and categorise ads and to
server appropriate ads, it needs to investigate various ad
delivery mechanisms and also cope with such diversity.
This evaluation process needs identifying and collecting
various ads delivery mechanisms through inspecting
collected traffic traces captured from several apps exe-
cutions, as shown in Figure 5. In addition, it needs to
emphasis on ads distribution mechanisms used by ad
networks from the apps’ perspective or users’ interests
to devise the behaviour of ads pool served from ad
networks and how they map to individual user’s interest
profiles. Since the advertising system is a closed system,
this process needs to indirectly evaluate the influence
of different factors on ad delivery mechanisms, which

7. Conversion tracking is specifically used by Google that is an action
a customer takes on website that has value to the business, such as a
purchase, a sign-up, or a view of a key page [18].

is even more complicated in Real Time Bidding (RTB)
scenarios and associated privacy risks.

2.4 Understanding ad network’s operation
The advertising networks provide an SDK for integrat-
ing ads inside the mobile apps while securing the low
level implementation details. The ad networks provide
regulation for embedding ads into the mobile apps, the
ad delivery mechanism, the amount of times an ad is
displayed on the user screen and how often an ad is
presented to the user. The common type of ad is the
flyer, which is shown to the user either at the top or at
the bottom of device’s screen, or sometimes the entire
screen is captured for the whole duration of the ad
presentation. These flyers are composed of text, images
and the JavaScript codes.

The ad presentation workflow of Google AdMob is
shown in Figure 1 that shows the flow of information
for an ad request by an app to AdMob along with the
action triggered after the user clicks that particular ad.
This figure shows the HTTP requests and the servers (i.e.
Content Delivery Network (CDN) or ad servers) used
by AdMob. Furthermore, several entities/services and a
number of HTTP requests to interact with the ad servers
and user agent can be observed in this figure.

2.5 Ads selection algorithms
The accurate measurement of the targeted advertising is
systematically related to the ad selection algorithm and
is highly sensitive since it combines several fields of
mathematics, statistics, analytics, and optimisation etc.
Some of the ad selection algorithms show ad selection
based on the user data pattern [19] and the program
event analysis [20], however, the contextual and targeted
advertising is treated in different way as they are related
to the psyche of the users. Consequently, it has been
observed that the activity of users and their demo-
graphics highly influences the ad selection along with the
user clicks around an ad [21], [22]. As an example, a
young female that is frequently browsing websites or
using mobile apps related to the category of entertainment,
would be more interested in receiving ads related to
entertainment such as movies, musical instruments etc.,
consequently, it increases the click-through rates. Another
work [23] builds a game-theoretic model for ad systems
competing through targeted advertising and shows how
it effects the consumers’ search behavior and purchasing
decisions when there are multiple firms in the market.
We note that the researchers utilise different ad selection
and targeting algorithms based on machine learning and
data mining techniques.

2.6 Ad traffic analysis
2.6.1 Extracting ad traffic
Recall that the mobile ad network involves different
entities to interact during the ad presentation and after
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an ad is being clicked to download the actual contents of
the ad, as observed in Figures 1 and 5. Specifically, these
entities are the products, the ad agencies attempting ad
campaigns for the products, ad networks delivering ads,
the publishers developing and publishing mobile apps,
and the end customer to whom ads are delivered [13].
It is likely, when it comes to large publishers, that both
the publishers and advertisers may have their own ad
servers, in which case, some publishers may configure
to put certain ads pool on the advertisers’ side and,
at the same time, maintain their own ad servers [14].
The publishers, this way, can increase their revenue by
means of providing redundant ad sources as if one ad
network fails to deliver ads then they can try another ad
network to continue providing services. In similar way,
an end user may experience to be passed over several
ad networks from publishers to the advertisers to access
ads.

2.6.2 Ads traffic identification
The advertising system itself and its functionality are
very diverse and complex to understand its operation
[7], hence in order to categorise the ad traffic, it needs
to be able to incorporate such diversity. This can be per-
formed by first capturing the traces from the apps that ex-
ecute and download the ad traffic and then investigating
the traffic characteristics. Characterising and inspecting
the ad traffic can give information about the approaches
used by multiple publishers, the various mechanisms
used to deliver ads by the publishers, the use of different
ad servers, and the ad networks themselves [24]. Simi-
larly, it helps identify any analytics traffic used by the
ad networks to target with relevant ads. Analysis of the
traffic traces enables to parse and classify them as traffic
related to i) ad networks, ii) the actual web traffic related
to ad, iii) traffic related to CDN, iv) analytics traffic, v)
tracking traffic, vi) ad auctions in RTB, and viii statistical
information about apps usage or developer’s statistics,
and ix) traffic exchange during and after an ad click.
As a consequence, a major challenge is to be able to
derive comprehensive set of mechanisms to study the
behaviours of ad delivery, classify the connection flows
related to different ad networks, detecting any other
possible traffic, and to classify them in various categories
of ads.

2.6.3 In-app mobile vs. in-browser web ads traffic anal-
ysis
We note that there are several differences in separately
collecting and analysing the in-app and in-browser user’s
advertising ad/data traffic for the ad delivery mecha-
nism in order to target users. Analysing the in-app ad
traffic requires to be able to derive comprehensive set of
rules to study the ad delivery behaviours (since several
ad networks adopt their own formats for serving ads, as
mentioned above), catalogue connection flows, and to
classify ads categorisation. Furthermore, the ad delivery
mechanisms are not publicly available, hence, analysing

in-app ads would be dealing with an inadequate infor-
mation problem. Although in-browser ad delivery mech-
anism can be customised8 to receive ads which are
tailored to a specific profiling interests [25], [26].

For the in-app ads delivery [7], [8], [27], [28], [29],
an ad network may use different information to infer
users’ interests, in particular, the installed applications
together with the device identifier to profile users and
to personalise ads pool to be delivered. Similarly, for
in-browser ads, user profiling is performed by analytics
companies [30] through different information such as
browsing history, web searches etc., that is carried out
using configured cookies and consequently target users
with personalised ads. However, in in-app ads context,
this information might be missing, or altogether not
permitted by the OS, as the notion of user permissions
may easily prevent the access to data out of the apps
environment.

2.6.4 Targeted advertising

The in-app targeted advertising is a crucial factor in
increasing revenue (a prediction shows the mobile ad
market to grow to $408.58 billion in 2026 [31]) in a
mobile app ecosystem that provides free services to the
smartphone users. This is mainly due to users spend
significantly more time on mobile apps than on the
traditional web. Hence, it is important (note that targeted
advertising is not only unique to the in-app but has also
been used for in-browser to deliver ads based on user’s
interests. The characterisation of targeted advertising, on
the user’s side, is the in-depth analysis of the ad-delivery
process so as to determine what information the mobile
apps send to the ad network and how effectively they
utilise this information for ads targeting. Furthermore,
the characterisation of in-app mobile ads would expose
the ad-delivery process and the ad networks can use the
resultant analysis to enhance/redesign the ad delivery
process, which helps in better view/click through rates.

It is crucial for the targeted advertising to understand
as what information do apps (both free and paid mobile
apps of various categories) send to the ad networks,
in particular, how effectively this information is used
to target users with interest-based ads? whether the ad
networks differentiate among different types of users
using apps from the same or different apps categories
(i.e. according to Apps profile)? how much the ad net-
works differentiate mobile users with different profiles
(i.e. according to Interests profile)? the effect over user
profiling with the passage of time and with the use of
apps from diverse apps categories (i.e. during profile
evolution process)? the distribution of ads among users
with different profiles? and the frequency of unique ads
along with their ads serving distributions?

8. E.g. by modifying Google ads preferences: https://adssettings.
google.com/authenticated?hl=en
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2.7 Characterisation of in-app advertisements

There is a limited research available on characterising the
in-app ads. Prior research works have demonstrated the
large extent to which apps are collecting user’s personal
information [13], the potential implications of receiving
ads to user’s privacy [6] and the increased utilisation of
mobile device resources [14], [32]. In our previous study
[17] (and in [33]), we observe that various information
sent to the ad networks and the level of ads targeting are
based on communicated information, similarly, we [9] in-
vestigate the installed apps for leaking targeted user data.
To combat these issues, a number of privacy preserving
[25], [26], [34] and resource efficient mobile advertising
systems [14], [32] have been proposed. Works on the
characterisation of mobile ads have primarily focused
on measuring the efficiency of targeted advertising [21],
to examine whether the targeted advertising based on
the users’ behaviour leads to improvements in the click-
through rates. However, thus far there have been limited
insights about the extent to which targeting is effective
in mobile advertising that will ultimately determine the
magnitude of various issues such as bandwidth usage,
including the loss of privacy.

We note that existing approaches on characterising
targeted advertisements for in-browser [6], [21], [25], [26],
[35], [36], [37], [38], [39], [40] cannot be directly applied
to the evaluation of in-app ads due to the following
reasons: First, the in-app targeting may be based on a
number of factors that go beyond what is used for
in-browser ads, including mobile apps installed on the
device, the way they are utilised (e.g. heavy gamers
may receive specific ads). Second, the classification of
ads requires unifying of mobile market place(s) and
traditional online environments, as the ads may relate
both to merchant websites and to other apps that may
be purchased and downloaded to the mobile devices.
Third, the methodology for collecting information about
in-app ads is different than for the in-browser ads, since
the ad delivery process for in-app ads changes with every
other ad network. Finally, apps come with pre-defined
apps permission to use certain resources, hence, allowing
apps to filter part of the information to be provided to
the ad network.

Figure 6 shows the lifecycle of characterising the ads
traffic within the advertising system, both for in-app and
in-browser targeted ads; various data scrapping elements
and statistical measures are also shown on the right side
of this figure.

Following we discuss few works on the characterisa-
tion of in-app and in-browser targeted ads.

2.7.1 In-app mobile ads

Few studies characterise various features of in-app ad
traffic with the focus on targeted advertising. The MAd-
Scope [33] and [17] collects data from a number of apps,
probes the ad network to characterise its targeting mech-
anism and reports the targeted advertising using profiles

of specific interests and preferences. The authors in [32]
analyse the ads harvested from 100+ nodes deployed
at different geographic locations and 20 Android-based
phones and calculated the feasibility of caching and pre-
fetching of ads. The authors in [14] characterise the
mobile ad traffic from numerous dimensions, such as,
the overall traffic, the traffic frequency, and the traffic
implications in terms of, using well-known techniques of
pre-fetching and caching, energy and network signalling
overhead caused by the system. This analysis is based on
the data collected from a major European mobile carrier
with more than three million subscribers. The [41] shows
similar results based on the traces collected from more
than 1,700 iPhone and Windows Phone users.

The authors in [42] show that apps from the same
category share similar data patterns, such as geographic
coverage, access time, set of users etc., and follow unique
temporal patterns e.g. entertainment apps are used more
frequently during the night time. The [43] performs a
comparative study of the data traffic generated by smart-
phones and traditional internet in a campus network.
Another work [44], studies the cost overhead in terms
of the traffic generated by smartphones that is classified
into two types of overheads i.e. the portion of the traffic
related to the advertisements and the analytics traffic
i.e. traffic transmitted to the third-party servers for the
purpose of collecting data that can be used to analyse
users’ behaviour etc. Several other works, [45], [46], [47],
study profiling the energy consumed by smartphone apps.

2.7.2 In-browser web ads

There are a number of works on characterising in-
browser ads with the focus on issues associated with
the user privacy [37], [39]. In [6], the authors present
classifications of different trackers such as cross-site, in-
site, cookie sharing, social media trackers, and demon-
strate the dominance of tracking for leaking user’s pri-
vacy, by reverse engineering user’s profiles. They fur-
ther propose a browser extension that helps to protect
user’s privacy. Prior research works show the extent
to which consumers are effectively tracked by third
parties and across multiple apps [48], mobile devices
leaking Personally Identifiable Information (PII) [49], [50]
and apps accessing user’s private and sensitive infor-
mation through well defined APIs [51]. Another study
[52] reveals by using differential correlation technique in
order to identify various tracking information used for
targeted ads. Similarly, [53] investigates the ad fraud that
generates spurious revenue affecting the ad agencies. In
addition, other studies, such as [54] describes challenges
in measuring online ad systems and [40] provides a
general understanding of characteristics and changing
aspects of advertising and targeting mechanisms used by
various entities in an ad ecosystem.
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Fig. 6: The process of ads characterisation for both in-app and in-browser targeted ads.

3 PRIVACY IN MOBILE ADVERTISING: CHAL-
LENGES

As mentioned in earlier sections that the profiling and tar-
geted advertising expose potentially sensitive and dam-
aging information about users, also demonstrated in [55],
[56], [57]. There is a growing user awareness of privacy
and a number of privacy initiatives, e.g., Apple’s en-
abling of ad blockers in iOS99 is representative of a move
towards giving users greater control over the display of
ads, although applicable only to browser based rather
than to in-app mobile ads, however, this would greatly
affect Google’s services, since Google’s services are now
based on Web & App activity10.

Hence, the purpose of targeted advertising is to be
able to protect user’s privacy and effectively serve rel-
evant ads to appropriate users, in particular, to en-
able private profiling and targeted ads without revealing
user interests to the adverting companies or third party
ad/tracking companies. Furthermore, an private billing
process to update the advertising network about the ads
retrieved/clicked in a privacy preserving manner.

3.1 Privacy attacks
There are various kinds of privacy attacks e.g. in the
direct attack, the user profile is (legitimately) derived by

9. http://au.pcmag.com/mobile-operating-
system/31341/opinion/apple-ios-9-ad-blocking-explained-and-why-
its-a-ba

10. My Google Activity: https://myactivity.google.com/myactivity?
otzr=1

the analytics network (in our previous works [7], [8],
[9], we focus on Google AdMob). The indirect attack,
involves a third party, that monitors the ad traffic (sent in
clear text [9], [17] to mobile devices) and infers the user
profile based on their targeted ads. In both scenarios, the
user is not opposed to profiling in general and is willing
to receive ads on selected topics of interests, but does not
wish for specific parts of their profile (attributes), based
on the usage of apps (s)he considers private, to be known
to the analytics network or any other party, or to be used
for ads targeting.

3.2 Ad traffic analysis for evaluating privacy leakage

Several works investigate the in-app ads traffic primarily
for the purpose of privacy and security concerns. The
AdRisk [2], an automated tool, analyse 100 ad libraries
and studies the potential security and privacy leakages
of these libraries. The ad libraries involve the resource
permissions, permission probing and JavaScript link-
ages, and dynamic code loading. Parallel to this work,
[58] examines various privacy vulnerabilities in the pop-
ular Android-based ad libraries. They categorise the per-
missions required by ad libraries into optional, required, or
un-acknowledged and investigate privacy concerns such
as how user’s data is sent in ad requests. The authors in
[59] analyse the privacy policy for collecting in-app data
by apps and study various information collected by the
analytics libraries integrated in mobile apps.

Other works [60], [61] study the risks due to the lack
of separate working mechanisms between Android apps
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and ad libraries and propose methods for splitting their
functionality. The authors in [13] monitor the flow of
data between the ad services and 250K Android apps and
demonstrate that currently proposed privacy protecting
mechanisms are not effective, since app developers and
ad companies do not show any concern about user’s
privacy. They propose a market-aware privacy-enabling
framework with the intentions of achieving symmetry
between developer’s revenue and user’s privacy. An-
other work [62] carried out a longitudinal study in the
behaviour of Android ad libraries, of 114K free apps, con-
cerning the permissions allocated to various ad libraries
over time. The authors found that over several years, the
use of most of the permissions has increased over time
raising privacy and security concerns.

There has been several other works, exploring the web
advertisements in different ways i.e. form the monetary
perspective [21], [63], from the perspective of privacy
of information of users [64], from privacy information
leakage and to propose methods to protect user data [65],
[66], and the E-Commerce [67]. In similar way, a detailed
analysis of the web ad networks from the perspective in-
formation communicated on network level, the network
layer servers, and from the point of the content domains
involved in such a system are investigated [68].

3.3 Inference of private information

In recent years, several works [69], [70], [71], [72], [73],
[74], [75], [76], [77] have shown that it is possible to infer
undisclosed private information of subscribers of online
services such as age, gender, relationship status, etc. from
their generated contents. The authors in [73] analysed the
contents of 71K blogs at blogger.com and were able to
accurately infer the gender and age of the bloggers. The
authors were able to make their inferences by identifying
certain unique features pertaining to an individual’s
writing style such as parts-of-speech, function words,
hyper-links and content such as simple content words
and the special classes of words taken from the hand-
crafted LIWC (Linguistic Inquiry and Word Count) [78]
categories.

Another study [69] has shown that the age de-
mographics of Facebook users (both using apps and
browsers) can be predicted by analysing the language
used in status update messages. Similar inferences have
been made for IMDB users based on their movie re-
views [74]. Another work [76] predicts age, gender,
religion, and political views of users from the queries
using models trained from Facebook’s ‘Like’ feature. In
[71], the authors analysed client-side browsing history
of 250K users and were able to infer various personal
attributes including age, gender, race, education and
income. Furthermore, a number of studies [79], [80],
[81] have demonstrated that sensitive attributes of user
populations in online social networks can be inferred
based on their social links, group memberships and the
privacy policy settings of their friends [82].

3.4 Quantifying privacy algorithms
Quantifying privacy is an important and challenging
task as it is important to evaluate the level of privacy
protection achieved. It is difficult to formulate a generic
metric for quantifying privacy that is applicable to differ-
ent contexts and due to several types of privacy threats.

For instance, the proposal for fulfilling the privacy
requirements using k-anonymity, first proposed in [83],
requires that each equivalence class i.e. set of records
that are indistinguishable from each other with respect to
certain identifying attributes, must have a minimum of
k records [84]. Another study [85] reveals that satisfying
the privacy requirements for k-anonymity cannot always
prevent attribute disclosures mainly for two reasons:
First, an attacker can easily discover the sensitive at-
tributes when there is minute diversity in the sensitive
attributes, secondly, k-anonymity is not resistant to pri-
vacy attacks against the attackers that use background
knowledge. They [85] proposes an l-diversity privacy
protection mechanism against such attacks and evalu-
ates its practicality both formally and using experiment
evaluations. Another work [86] evaluates the limitation
of l-diversity and proposes t-closeness, suggesting the
distribution of sensitive attributes in an equivalence
class must be close to the distribution of attributes in
the overall data i.e. distance between two distributions
should not be more than the t threshold.

Besides, techniques based on crypto mechanisms, such
as PIR, provide privacy protection, for the database
present on single-server, against the computational com-
plexity [87], [88], multiple-servers for protecting privacy
against colluding adversaries [89], [90], [91], [92], [93],
or protection mechanisms [94] against combined privacy
attacks that are either computationally bounded evalua-
tions or against colluding adversaries; these techniques
are discussed later in detail in Section 4.

3.5 User information extraction
We experimentally evaluate [9] how to extract user pro-
files from mobile analytics services based on the device
identifier of the target; this method was demonstrated
using both Google analytics and Flurry in the Android
environment. Here the user profile, i.e. set of information
collected or inferred by the analytics services, consists
of personally identifiable information such as, unique
device ID, demographics, user interests inferred from the
app usage etc.

An crucial technique to extract user profiles from the
analytics services (we mainly target Google and Flurry
analytics services) is to first impersonate the victim’s
identity; then Case 1 Google analytics: to fetch user
profiles from a spoofed device, where the private user
profile is simply shown by the Google service as an
ads preference setting or Case 2 Flurry analytics: to
inject the target’s identity into a controlled analytics app,
which impacts those changes in the Flurry audience
analysis report using which the adversary is able to
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extract user profile. Following, we first describe how
to obtain and spoof a device’s identity, subsequently,
the user profile extraction for both cases of Google and
Flurry is presented in detail.

3.5.1 Information extraction via user profiles from
Google
Android system allows users to view and manage their
in-app ads preferences11, e.g. to opt-out or to update/delete
interests. This feature retrieves user profile from Google
server which is identified by the advertising ID. As a
consequence of the device identity spoofing, an adver-
sary is able to access the victim’s profile on a spoofed
device.

We note that there are at least two possible ways to
that an adversary can capture victims Android ID. First,
an adversary can intercept the network communication,
in order to capture the usage reporting messages sent
by third-party tracking APIs, extract the device identifier,
and to further use it for ongoing communication with the
analytics services. Note that it is very easy to monitor IDs
of thousands of users in a public hotspots e.g. airport,
hospital etc. Similarly, in a confined area, an adversary
(e.g. an employer or a colleague) targeting a particular
individual can even associate the collected device ID
to their target (e.g. employees or another colleague).
During this privacy attack, we note that Google analytics
library prevents leakage of device identity by hashing the
Android IDs; however it cannot stop other ad libraries to
transmit such information in plain text (which can be
easily be mapped to Google’s hashed device ID).

An alternative way, although may be more challenging
in practice, is to obtain the target’s device identifier from
any application (controlled by the adversary) that logs
and exports the device’s identity information.

3.5.2 Information extraction via user profiles from Flurry
We note that extracting user profiles from Flurry is more
challenging since Flurry does not directly allow users
to view or edit user’s Interests profiles. In fact, except
the initial consent on the access of device resources,
many smartphone users may not be aware of the Flurry’s
tracking activity.

Figure 7 shows the basic operations of our profile ex-
traction technique within the mobile advertising ecosys-
tem. To compromise a user’s private profile, an adver-
sary spoofs the target device, identified by deviceIDa,
using another Android device or an emulator. Following,
the adversary uses a bespoke app with a (legitimate)
appIDx, installed on the spoofed device, to trigger a
usage report message to Flurry. Accordingly, the analytics
service is manipulated into believing that deviceIDa is
using a new application tracked by the system. Con-
sequently, all user related private information is made

11. Access from Google Settings → Ads → Ads by Google
→ Ads Settings. It claims that Google’s ad network shows ads on
2+million non-Google websites and apps.

1.2 User privacy

1.2.2 Extracting user information

Extracting user profiles from Google: Android system allows users to view and
manage their in-app ads preferences3, e.g. to opt-out or to delete interest categories4.
As a consequence of the device identity spoofing, an adversary is able to access the
victim’s profile on a spoofed device.
Extracting user profiles from Flurry: Extracting user profile from Flurry

is a bit challenging, as Flurry does not allow users to view or edit their Interests
profiles. In fact, many smartphone users may not be aware of the Flurry’s tracking
activity.
Figure 1.3 shows the basic operations of our profile extraction technique. An

adversary spoofs the target device, identified by deviceIDa, using another Android
device or an emulator. He then uses a bespoke app with a (legitimate) appIDx,
installed on the spoofed device, to trigger a usage report message to Flurry. The
analytics service is thus manipulated into believing that deviceIDa is using a new
application tracked by the system. Consequently, all user related information is
made accessible to the adversary through audience analysis of application appIDx.
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Figure 1.3: Privacy leakage attack scenario.

When the audience report from Flurry targets a unique user, an adversary can
easily extract the corresponding statistics and link them to that single user. Simi-
larly, the adversary will be able to access all subsequent changes to this user profile,
reported at a later time. In our presented technique, since we do impersonate a

3Access via Google Settings system app on Android devices i.e. under the “Adjust your Ads
Settings”

4Although the interests cannot be accessed now as the Google Settings app has changed in Q4
2014, however full list of Google profile interests can be found in https://www.google.com/
settings/ads, using ’View page source’

5

Fig. 7: Privacy leakage attack scenario [9].

accessible to the adversary through audience analysis
report of appIDx in Flurry system.

An adversary can easily extract the corresponding
statistics and link them to (legitimate) user once the
audience report from Flurry targets a unique user. In
addition, the adversary will be able to track and access
all subsequent changes to the user profile at a later time.
In our presented technique, since we do impersonate a
particular target’s device ID, we can easily associate the
target to a ‘blank’ Flurry-monitored application.

Alternatively, an adversary can derive an individual
profile from an aggregated audience analysis report by
monitoring report differences before and after a target
ID has been spoofed (and as such has been added to the
audience pool). Specifically, the adversary has to take
a snapshot of the audience analysis report Pt at time
t, impersonates a target’s identity within his controlled
Flurry-tracked application, and then takes another snap-
shot of the audience analysis report at Pt+1. The target’s
profile is obtained by extracting the difference between
Pt and Pt+1, i.e. ∆(Pt, Pt+1). However in practice, Flurry
service updates profile attributes on a weekly basis
which means it will take up to a week to extract a full
profile per user.

Finally, the segment feature provided by Flurry, the app
audience is further split by applying filters according
to e.g. gender, age group and/or developer defined
parameter values. This feature allows an adversary to
isolate and extract user profiles in a more efficient way.
For instance, a possible segment filter can be ‘only show
users who have Android ID value of x’ which results in
the audience profile containing only one particular user.

3.6 Third-party privacy threats
The third-party A&A libraries have been examined in a
number of works, such as [2], [14], [15], [58], [95], which
contribute to the understanding of mobile tracking and
collecting and disseminating personal information in
current mobile networks. The information stored and
generated by smartphones, such as call logs, emails,
contact list, and GPS locations, is potentially highly
sensitive and private to the users. Following, we discuss
various means through which users’ privacy is exposed.
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3.6.1 Third-party tracking

Majority of privacy concerns of smartphone users are
because of inadequate access control of resources within
the smartphones e.g. Apple iOS and Android, employ
fine-grained permission mechanisms to determine the
resources that could be accessed by each application.
However, smartphone applications rely on users to allow
access to these permissions, where users are taking risks
by permitting applications with malicious intentions to
gain access to confidential data on smartphones [96].
Similarly, privacy threats from collecting individual’s
online data (i.e. direct and inferred leakage), have been
examined extensively in literature, e.g. [10], [97], includ-
ing third party ad tracking and visiting [98], [99].

Prior research works show the extent to which con-
sumers are effectively tracked by a number of third par-
ties and across multiple apps [48], mobile devices leaking
PII [49], [50], apps accessing user’s private and sensitive
information through well defined APIs [51], inference
attacks based on monitoring ads [9] and other data
platform such as eXelate12, BlueKai13, and AddThis14

that collect, enrich and resell cookies.

The authors in [100] conducted a user survey and
showed that minor number of users pay attention to
granting access to permissions during installation and
actually understand these permissions. Their results
show that 42% of participants were unaware of the
existing permission mechanism, only 17% of participant
paid attention to permissions during apps installation
while only 3% of participants fully understood meaning
of permissions accessing particular resources. The au-
thors in [2] evaluate potential privacy and security risks
of information leakage in in-app advertisement by the
embedded libraries in mobile applications. They studied
100,000 Android apps and identified 100 representative
libraries in 52.1% of apps. Their results show that the
existing ad libraries collect private information that may
be used for legitimate targeting purposes (i.e., the user
location) while other data is harder to justify, such as the
users call logs, phone number, browser bookmarks, or
even the list of apps installed on the phone. Additionally,
they identify some libraries that use unsafe mechanisms
to directly fetch and run code from the Internet, which
also leads to serious security risks. A number of works
[101], [102], [103], identify the security risks on Android
system by disassembling the applications and tracking
the flow of various methods defined within various
programmed classes.

There are several works to protect privacy by assisting
users to manage permissions and resource access. The

12. https://microsites.nielsen.com/daas-partners/partner/exelate/
13. https://www.oracle.com/corporate/acquisitions/bluekai/
14. https://www.addthis.com/

authors in [104] propose to check the manifest15 files of
installed mobile apps against the permission assignment
policy and blocking those that request certain potentially
unsafe permissions. The MockDroid [105] track the re-
source access and rewrites privacy-sensitive API calls
to block information communicated outside the mobile
phones. Similarly, the AppFence [106] further improves
this approach by adding taint-tracking, hence, allowing
more refined permission policies.

3.6.2 Re-identification of sensitive information
Re-identification involves service personalisation based
on pervasive spatial and temporal user information that
have already been collected e.g. locations that users
have already visited. The users are profiled and later on
provided with additional offers based on their interests,
such as, recommending on places to visit, or people to
connect to. There have been a number of research works
to identify users based on re-identification technique. For
instance, the authors in [107] analyse U.S. Census data
and show that on average, every 20 individuals from
the dataset share same home or work locations while
5% of people in dataset can be uniquely identified by
home-work location pairs. Another related work [108]
uniquely identifies US mobile phone users using gener-
alisation technique by generalising the top N homework
location pairs. They use location information to derive
quasi-identifiers for re-identification of users. Similarly,
a number of research works e.g. [109], [110], [111], raise
privacy issues in publishing sensitive information and
focus on theoretical analysis of obfuscation algorithms to
protect user privacy.

4 PRIVACY PRESERVING TECHNIQUES

There are several privacy protection techniques, such as
mechanisms based on differential privacy i.e. maximis-
ing the accuracy of queries from statistical databases
while minimising the chances of identifying its records,
techniques based on anonymisation e.g. encrypting or
removing PII, proxy-based solutions, k-anonymity i.e. gen-
eralisation and suppression, obfuscation (making the mes-
sage confusing, willfully ambiguous, or harder to un-
derstand), and crypto-based techniques such as private
information retrieval (PIR). Following, we specifically dis-
cuss background on differential privacy and various PIR
techniques and compare these PIR techniques.

4.1 Differential privacy
The concept of differential privacy16 was introduced in
[112], a mathematical definition for the privacy loss asso-
ciated with any released data or transcript drawn from

15. Every Android app contains the manifest file that describes essen-
tial information about app, such as, app ID, app name, permission to use
device resources used by an app e.g. contacts, camera, list of installed apps
etc., hardware and software features the app requires etc. https://developer.
android.com/guide/topics/manifest/manifest-intro.

16. A C++ implementation of differential privacy library can be found
at https://github.com/google/differential-privacy.
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a database. Two datasets D1 and D2 differ in at most
one element given that one dataset is the subset of the
other with larger database contains only one additional
row e.g. D2 can be obtained from D1 by adding or
removing a single user. Hence, a randomised function K
gives differential privacy for the two data sets D1 and D2

as: Pr [K (D1) ∈ S] ≤ exp (ε)× Pr [K (D2) ∈ S]. We refer
readers to [113] for deeper understanding of differential
privacy and its algorithms.

Differential privacy is vastly used in the literature for
anonymisation e.g. a recent initiative to address the pri-
vacy concerns by recommending usage of differential
privacy [114] to illustrate some of the short-comings of
direct contact-tracing systems. Google has recently pub-
lished a Google COVID-19 Community Mobility Reports17

to help public health authorities understand the mobility
trends over time across different categories of places,
such as retail, recreation, groceries etc., in response to im-
posed policies aimed at combating COVID-19 pandemic.
The authors in [115] use differential privacy to publish
statistical information of two-dimensional location data
to ensure location privacy. Other works, such as [116],
[117], partition data dimensions to minimise the amount
of noise, and in order to achieve higher privacy accuracy,
by using differential privacy in response to the given set
of queries.

4.2 Private Information Retrieval (PIR)
PIR [88], [89], [94], [118], [119], [120] is a multiparty
cryptographic protocol that allows users to retrieve an
item from the database without revealing any informa-
tion to the database server about the retrieved item(s).
In one of our previous works [7], our motivation for
using PIR rather than other solutions, e.g., Oblivious
Transfer [121], [122], is the lower communication and
computation overheads of such schemes.

A user wishes to privately retrieve βth record(s) from
the database D. D is structured as r × s, where r is
the number of records, s the size of each record; s may
be divided into words of size w. For multi-server PIR, a
scheme uses l database servers and has a privacy level of
t; k is the number of servers that respond to the client’s
query, among those, there are v Byzantine servers (i.e.,
malicious servers that respond incorrectly) and h honest
servers that send a correct response to the client’s query.
Following, we briefly discuss and compare various PIR
schemes.

4.2.1 Computational PIR (CPIR)
The single-server PIR schemes, such as CPIR [87], rely
on the computational complexity (under the assumption
that an adversary has limited resources) to ensure pri-
vacy against malicious adversaries. To privately retrieve
the βth record from D, a CPIR client creates a matrix

17. A publicly available resource to see how your community is
moving around differently due to COVID-19: http://google.com/
covid19/mobility

Mβ by adding hard noise (based on large disturbance
by replacing each diagonal term in Mβ by a random bit
of 240 words [87]) to the desired record and soft noise
(based on small disturbance) to all the other records.
The client assumes that the server cannot distinguish
between the matrices with hard and soft noises. The
server multiplies the query matrix Mβ to the database
D that results in corresponding response R; the client
removes the noise from R to derive the requested record
βth.

4.2.2 Recursive CPIR (R-CPIR)
The CPIR mechanism is further improved in terms of
communication costs [87] by recursively using the single-
server CPIR where the database is split into a set of
virtual small record sets each considered as a virtual
database. The query is hence calculated against part
of the database during each recursion. The client re-
cursively queries for the virtual records, each recursion
results in a virtual database of smaller virtual records,
until it determines a single (actual) record that is finally
sent to the client.

4.2.3 Information Theoretic PIR (IT-PIR)
The multi-server IT-PIR schemes [89], [90], [91], [92], [93]
rely on multiple servers to guarantee privacy against
colluding adversaries (that have unbounded processing
power) and additionally provide Byzantine robustness
against malicious servers.

To query a database for βth record with protection
against up to t colluding servers, the client first cre-
ates a vector eβ , with ‘1’ in the βth position and ‘0’
elsewhere. The client then generates (l, t) Shamir secret
shares v1, v2, · · · , vl for eβ . The shares (one each) are
subsequently distributed to the servers. Each server i
computes the response as Ri = vi · D, this is sent back
to the client. The client reconstructs the requested βth

record of the database from these responses. The use
of of Shamir secret sharing enables the recovery of the
desired record from (only) k ≤ l server responses [89],
where k > t (and t < l).

4.2.4 Hybrid-PIR (H-PIR)
The multi-server H-PIR scheme [94] combines multi-server
IT-PIR [89] with the recursive nature of the single-server
CPIR [87] to improve performance, by lowering the
computation and communication costs18. Let these two
schemes be respectively represented by τ for IT-PIR and
the γ for the recursive CPIR protocol. A client wants to
retrieve βth record then the client must determine the
index of virtual records containing the desired records
at each step of the recursion until the recursive depth d.
The client creates an IT-PIR τ -query for the first index
and sends it to each server. It then creates CPIR γ-
query during each of the recursive steps and sends it

18. A complete implementation of CPIR, IT-PIR and H-PIR, Percy++
is present on http://percy.sourceforge.net/.
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to all the servers. Similarly, on the server side at each
recursive steps; the server splits the database into virtual
records each containing actual records, uses the τ server
computation algorithm, and finally uses the γ CPIR
server computation algorithm. The last recursive step
results in the record Ri, that is sent back to the client.

4.3 Comparison of various PIR techniques

Following comparative analysis, based on literature
work, would help the selection of various PIR schemes
for different applications. We note that various perfor-
mance metrics relate to the size of query along with
the selection of a particular PIR scheme e.g., the CPIR
takes longer processing delays and highest bandwidth
consumption compared to both the IT-PIR and H-PIR
schemes. This is due to the computations involved
in query encoding and due to the servers perform-
ing matrix-by-matrix computations instead of vector-by-
matrix, as is used by the IT-PIR and H-PIR schemes [94],
although, the communication cost can be lowered down
using the recursive version of the CPIR [87].

Furthermore, IT-PIR provides some other improve-
ments, such as the robustness, which is its ability to
retrieve correct records even if some of the servers do not
respond or reply with incorrect or malicious responses
[93]. It is further evident [94] that both the single-server
CPIR and the multi-server IT-PIR schemes, such as [89],
[90], [91], [92], respectively make the assumptions of
computationally bounded and that particular thresholds
of the servers are not colluding to discover the contents
of a client’s query. Alternatively, the H-PIR [94], provides
improved performance by combining multi-server IT-PIR
with the recursive nature of single-server CPIR schemes
respectively to improve the computation and communi-
cation costs.

A recent implementation i.e., Heterogeneous PIR
[123], enables multi-server PIR protocols (implemented
using multi-secret sharing algorithm, compatible with
Percy++19 PIR library) over non-uniform servers (in a
heterogeneous environment where servers are equipped
with diverse resources e.g. computational capabilities)
that impose different computation and communication
overheads. This implementation makes it possible to run
PIR over a range of different applications e.g. various
resources (ad’s contents such as, JPEG, JavaScript
files) present on CDN in distributed environments. Fur-
thermore, this implementation has tested and compared
its performance with Goldberg’s [89] implementation
with different settings e.g., for different database sizes,
numbers of queries and for various degrees of hetero-
geneity. This implementation achieves a trade-off be-
tween computation and communication overheads in
heterogeneous server implementation by adjusting vari-
ous parameters.

19. http://percy.sourceforge.net/

4.4 Building Blocks for Enabling PIR
This section introduces various building blocks for en-
abling PIR techniques i.e. Shamir secret sharing and Byzan-
tine robustness. It further discusses various techniques
that are used for private billing i.e. Threshold BLS sig-
nature, Polynomial commitment, and Zero-knowledge proof
(ZKP).

4.4.1 Shamir secret sharing
The Shamir secret sharing [124] scheme divides a secret
σ into parts, giving each participant e.g. l servers a
unique part where some or all of the parts are needed
in order to reconstruct the secret. If the secret is found
incorrect then it can be handled through error-correcting
codes, such as the one discussed in [125]. Let the σ
be an element of some finite field F then the Shamir
scheme works as follows: a client selects an l distinct non-
zero elements α1, α2, · · · , αl ∈ F and selects t elements
a1, a2, · · · , at∈RF (the ∈R means uniformly at random).
A polynomial f (x) = σ + a1x + a2x

2 + · · · + atx
t is

constructed and gives the share (αi, f (αi)) ∈ F × F to
the server i for 1 ≤ i ≤ l. Now any t+ 1 or more servers
can use Lagrange interpolation [93] to reconstruct the
polynomial f and, similarly, obtains σ by evaluating
f (0).

4.4.2 Byzantine robustness
The problem of Byzantine failure allows a server to con-
tinue its operation but it incorrectly responds. The Byzan-
tine failure may include corrupting of messages, forging
messages, or sending conflicting messages through mal-
ice or errors. In order to ensure the responses’ integrity in
a single-server, such as PIR-Tor [126], the server can pro-
vide a cryptographic signature on each database’s block.
However, in a multi-server PIR environment, the main
aim of the Byzantine robustness is to ensure that the proto-
col still functions correctly even if some of the servers fail
to respond or provide incorrect or malicious responses.
The client at the same time might also be interested in
figuring out which servers have sent incorrect responses
so that they can be avoided in the future.

The Byzantine robustness for PIR was first considered
by Beimel and Stahl [127], [128]; the scheme called the
t-private v-Byzantine robust k-out-of-l PIR. The authors
take the l-server information-theoretic PIR setting where
k of the servers respond, v servers respond incorrectly,
and the system can sustain up to t colluding servers
without revealing client’s query among them. Further-
more, they suggest the unique decoding where the pro-
tocol always outputs a correct unique block under the
conditions v ≤ t ≤ k/3.

The [89] uses the list decoding, that is an alternative
to unique decoding of error-correcting codes for large
error rates, and demonstrates that the privacy level can
be substantially increased up to 0 < t < k and the
protocol can tolerate up to k−

⌊√
kt
⌋
−1 Byzantine servers.

Alternatively, the list decoding can also be converted to
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unique decoding [129] at the cost of slightly increasing the
database size [93].

Following schemes are the essential building blocks
for enabling private billing along with evaluating the
PIR techniques for privately retrieving ads from the ad
database.

4.4.3 Threshold BLS signature
The Boneh-Lynn-Shacham (BLS) [130] is a ‘short’ signature
verification scheme that allows a user to verify that
the signer is authentic. The signer’s private signing key
is a random integer x ∈ Zq and the corresponding
public verification key is (ĝ, ĝx) (ĝ is a generator of
G2). The procedure for signature verification is as fol-
lows: Given the signing key x and a message m, the
signature is computed via σ = hx where h = hash(m)
is a cryptographic hash of m; the verification equation

is e(σ, ĝ)
?
=
e(h, ĝx), which results in true/false. To fit

into scenario of multiple PIR servers; a (k, l)-threshold
variant of BLS signature can be used where signing keys
are the evaluations of a polynomial of degree (k − l) and
the master secret is the constant term of this polynomial.
Similarly, the reconstruction process can be done using
Lagrange interpolation. The (k − l) threshold BLS signa-
ture partly provides the level of robustness against the
Byzantine signers since the signature share can be verified
independently using the signer’s public verification key
share.

4.4.4 Polynomial commitment
A polynomial commitment [131] scheme allows committers
to formulate a constant-sized commitments to polyno-
mials that s(he) can commit so that it can be used
by a verifier to confirm the stated evaluations of the
committed polynomial [132], without revealing any ad-
ditional information about the committed value(s). An
example of the Polynomial commitment constructions in
[131] provides unconditional hiding if a commitment is
opened to at most t−1 evaluations (i.e. t−1 servers for a
degree-t polynomial) and provides computational hiding
under the discrete log(DL) if polynomial commitment is
opened to at least t evaluations. As presented in [131],
commitment to a polynomial f (x) = atx

t + · · ·+ a1z+ a0

has the form Cf =
(
gα

t
)at
· · · (gα)

a1ga0 = gf(α) where α
is secret, g ∈ G1 is a generator whose discrete logarithm
with respect to g is unknown, including all the bases
are part of the commitment scheme’s public key. The
verifier, on the other side, can confirm that the claimed
evaluations is true by checking if V er (Cf , r, f (r) , w) =[
e (Cf , ĝ)

?
= e (w, ĝα/ĝr) .e(g, ĝ)

f(r)
]

is true, here the com-
mitment w is called the witness; detailed discussion can
be found in [131].

4.4.5 Zero-knowledge proof (ZKP)
The zero knowledge proof is an interactive protocol be-
tween the prover and the verifier that allows the prover to

prove to the verifier that it holds a given statement with-
out revealing any other information. There are several
ZKPs, such as range proof to prove that a committed
value is non-negative [133], the proof of knowledge of
a committed value [134], knowledge proof of a discrete
log representation of a number [135], and proof that a
commitment opens to multiple commitments [136]. Besides,
there are several batch proof techniques, such as [137],
[138] to achieve verification of a basic operation like
modular exponentiation in some groups, which signif-
icantly reduces the computation time.

4.5 Implementations of private billing for in-app mo-
bile advertising
An example implementation of our private billing for
ads, based on ZKP and Polynomial commitment, is pre-
sented in [7], also shown in 8. In this proposal, we pre-
sume that the following information is available to the
client (software e.g. the AdMob SDK that is integrated
in mobile apps for requesting ads and tracking user’s
activity) for all ads in the database: the Ad index m,
Ad category Φi, price tags CprsT and CclkT respectively
for ad presentations and ad clicks, and and the Advertiser
ID IDAdv . This private billing mechanism consists of
two parts: the work flow for retrieving ads (Step 1–3)
and private billing (Step 4–13). In Step 2, the Ad server
calculates the PIR response and sends it back to the client,
following, the client decodes the PIR response (step 3)
and forwards the retrieved ads to the mobile app.

Fig. 8: The work flow for Ads retrieval and billing for ad
presentations and ad clicks [7].

Once the ads presentation (or ad click) process finishes
then it undergoes the billing process. The client calculates
the receipt locally, consisting of various components that
are used to verify the following: (a) price tier for ad
presented or ad clicks; (b) the IDAdv (used for price
deduction from advertiser, as shown in Step 11 of Figure
8); and (c) the application ID (helpful for price credit
to App Developer i.e. Step 13). This billing mechanism is
based on PS-PIR [90], proposed for e-commerce. We note
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that this billing mechanism is only applicable to single
ad requests with no impact on privacy.

As opposed to above implementation, we suggested
another proposal [24] for ad presentations and clicks with
the use of mining Cryptocurrency (e.g. Bitcoin). The ma-
jor aim for this proposal was for preserving user privacy,
secure payment and for compatibility with the underly-
ing AdBlock proposal [24] for mobile advertising system
over Blockchain. Following notations are used in this
proposal: price tags CAdIDprs and CAdIDclk for ad presentation
and click; various wallets i.e. App Developer’s walletIDAPP

,
Advertiser’s walletADID

, Billing server’s walletBS ; public-
private key (PK + /−) and (Bitcoin) addresses, i.e.
AddIDAPP

, AddADID
, AddBS . It works as follows: The

advertiser buys advertising airtime, it signs the message
with the amount of Cryptocurrency with her private
key (PK−), adds Billing server’s address, requesting a
transaction. Following, this request is bind with other
transactions and broadcasted over the network for min-
ing. Once the transaction completes, the Billing server
receives its portion of Cryptocurrency in her wallet. In
addition, the Miner initiates billing transaction for ads
presentations or clicks respectively by encoding the CAdIDprs

and CAdIDclk price tags; this amount is then shared with
walletIDAPP

and walletADID
wallets.

5 EXISTING APPROACHES: PRIVACY IN MO-
BILE ADS: SOLUTIONS

The direct and indirect (i.e., inferred) leakages of individu-
als’ information have raised privacy concerns. A number
of research works propose private profiling (and adver-
tising) systems [26], [34], [139], [140], [141], [142]. These
systems do not reveal either the users’ activities or the
user’s interest profiles to the ad network. Various mech-
anisms are used to accomplish these goals: Adnostic [26],
Privad [140] and Re-priv [139] focus on targeting users
based on their browsing activities, and are implemented
as browser extensions running the profiling algorithms
locally (in the user’s browser). MobiAd [34] proposes
a distributed approach, specifically aimed at mobile
networks. The use of differential privacy is advocated
in Practical Distributed Differential Privacy (PDDP) [141]
and SplitX [142], where differentially private queries are
conducted over distributed user data. All these works
protect the full user profile and advocate the use of novel
mechanisms that necessitate the re-design of some parts
or all of the current advertising systems, although some
(e.g., Adnostic) can operate in parallel with the existing
systems. In addition, the works based on the use of noisy
techniques like differential privacy, to obfuscate user’s
preferences may result in a lower accuracy of targeted
ads (and correspondingly lower revenues), compared to
the use of standard targeting mechanisms.

Figure 9 shows the lifecycle of proposal for privacy-
preserving mobile/web advertising systems; specifi-
cally starting from data collection for evaluating pri-
vacy/security risks, baseline model and proposed busi-

ness model for preserving user’s privacy, finally model
evaluation and its comparison with the baseline model.
Various data scrapping elements, statistical measures
and privacy preserving techniques are also shown in this
figure.

An important thing in the development of private
advertising system is that the consumers’ trust in pri-
vacy of mobile advertising is positively related to their
willingness to accept mobile advertising [143], [144].
The AdChoices20 program (a self-regulation program
implemented by the American ad industry), states that
consumer could opt-out of targeted advertising via online
choices to control ads from other networks. However,
another study [145] examines that the opt-out users cause
52% less revenue (and hence presents less relevant ads
and lower click through rates) than those users who
allow targeted advertising. In addition, the authors noted
that these ad impressions were only requested by 0.23%
of American consumers.

5.1 Private ad ecosystems
There are a number of generic privacy preserving so-
lutions proposed to address the negative impact of ads
targeting. Anonymity solutions for web browsing include
the use of Tor [146], or disabling the use of cookies [147].
These accomplish the goal of preventing user tracking,
however, they also prevent any user (profile based)
service personalisation, that may actually be a desirable
feature for many users despite their privacy concerns.

Research proposals to enable privacy preserving ad-
vertising have been more focused on web browsing, as
the dominant advertising media e.g., [26], [27], [140],
[142], [148], propose to use locally derived user profiles.
In particular, Privad [140] and Adnostic [26] use the
approach of downloading a wide range of ads from the
ad network and locally (in the browser or on the mobile
device) selecting ads that match the user’s profile. On
the other hand, there are a smaller number of works
address privacy for mobile in-app advertising, with rep-
resentative works e.g., [7], [8], [24], [28], [34], [149], [150],
suggest the app-based user profiling, stored locally on
mobile device. The [7] is based on various mechanisms of
PIR and it complements the existing advertising system
and is conceptually closest to [149], which uses Oblivious
RAM (ORAM) to perform Private Information Retrieval
(PIR) on a secure coprocessor hardware. However, unlike
our solution it relies on specific (secure) hardware to
enable PIR, which may limit its applicability in a general
setting.

5.2 Privacy techniques and their usage in targeted
advertising systems
Various proposals address selected aspects of privacy
in advertising, described in Sections 3 and 4: collection
of data belonging to identified individuals, profiling of

20. https://optout.aboutads.info/?c=2&lang=EN
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Fig. 9: Lifecycle of proposal for privacy-preserving advertising systems for both in-app and in-browser targeted ads.

those individuals, distribution of targeted ads in line
with user’s profiles and accounting and billing for ads
(including ad impressions and ad clicks). These include:
mechanisms to prevent the identification of users and
therefore disable monitoring of individual user activity,
methods to provide user profiling in a privacy preserving
way, and complete systems that suggest changes to all
ad related functionality while respecting user’s privacy.
Following we present various privacy-preserving adver-
tising systems based on different privacy techniques.

5.2.1 Anonymisation
The simplest and most straightforward way to anonymise
data includes masking or removing data fields (at-
tributes) that comprise PII. These include direct iden-
tifiers like names and addresses, and quasi-identifiers
(QIDs) such as gender and zip code, or an IP address;
the later can be used to uniquely identify individuals.
It is assumed that the remainder of the information is
not identifying and therefore not a threat to privacy
(although it contains information about individuals, e.g.
their interests, shopping patterns, etc.). A second ap-
proach is to generalise QIDs, e.g., by grouping them
into a higher hierarchical category (e.g., locations into
post codes); this can also be accomplished according
to specified generalisation rules. Anonymisation mecha-
nisms that deal with selected QIDs according to pre-
determined rules include k-anonymity [151] and it’s
variants like l-diversity [85] and t-closeness [86]. These,
in their simplest form (k-anonymity) modify (generalise)
individual user records so that they can be grouped into

identical (and therefore indistinguishable) groups of k, or
additionally apply more complex rules (l-diversity and
t-closeness).

A number of proposals advocate the use of locally
(either in the browser of the mobile device) derived user
profiles, where user’s interests are generalised and/or
partially removed (according to user’s privacy pref-
erences), before being forwarded to the server or an
intermediary that selected the appropriate ads to be
forwarded to the clients. In the context of targeted adver-
tising, the removal of direct identifiers includes user IDs
(replacing them with temporary IDs) or mechanisms to
hide used network address (e.g., using TOR [146]). How-
ever, if only the most obvious anonymisation is applied
without introducing additional (profiling and targeting
oriented) features, the ad networks ecosystem would be
effectively disabled. Therefore, we only mention repre-
sentative solutions from this category and concentrate on
the privacy-preserving mechanisms that enable targeted
ads.

The privacy requirements are also, in a number of
prior works, considered in parallel with achieving band-
width efficiency for ad delivery, by using caching mech-
anisms [32], [34], [140]. Furthermore, such techniques
have been demonstrated to be vulnerable to composition
attacks [152], and can be reversed (with individual users
identified) when auxiliary information is available (e.g.
from online social networks or other publicly available
sources) [153], [154].

In Adnostic [26], each time a webpage (containing ads)
is visited by the user; the client software receives a set of
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generic ads, randomly chosen by the broker. The most
appropriate ads are then selected locally, by the client,
for presentation to the user; this is based on the locally
stored user profile. We have categorised this work as a
generalisation mechanism as the served ads are generic
(non-personalised), although it could arguably be con-
sidered under the randomisation techniques. Adnostic
also uses crypto mechanisms, as detailed in sub-section
4.2. We note that in [26] the user’s privacy (visited pages
or ad clicks) is not protected from the broker.

In Privad [25], [140], a local, (detailed) user profile
is generated by the Privad client and then generalised
before sending to the ads broker in the process of
requesting (broadly) relevant ads. All communication
with the broker is done through the dealer, which effec-
tively performs the functions of an anonymising proxy;
the additional protection is delivered by encrypting all
traffic, this protecting user’s privacy from the dealer. The
proposed system also includes monitoring of the client
software to detect whether any information is sent to the
broker using, e.g., a covert channel. Similarly, in MobiAd
[34], the authors propose a combination of peer-to-peer
mechanisms that aggregates information from users and
only presents the aggregate (generalised activity) to the
ad provider, for both ad impressions and clicks. Caching
is utilised to improve efficiency and Delay tolerant net-
working for forwarding the information to the ad net-
work. Similarly, another work [155] proposes combining
of users interests via an ad-hoc network, before sending
them to the ad server.

Additionally, some system proposals [156] advocate
the use of anonymisation techniques (l-diversity) in
the targeting stage, where the ads are distributed to
users, while utilising alternative mechanisms for profil-
ing, learning and statistics gathering.

5.2.2 Obfuscation
A recent work [157] carries out a large scale investigation
of obfuscation use where authors analyse 1.7 million free
Android apps from Google Play Store to detect various
obfuscation techniques, finding that only 24.92% of apps
are obfuscated by the developer. There are several ob-
fuscation mechanisms for protecting private information,
such as the obfuscation method presented in [158] that
evaluates different classifiers and obfuscation methods
including greedy, sampled and random choices of ob-
fuscating items. They evaluate the impact of obfuscation,
assuming prior knowledge of the classifiers used for the
inference attacks, on the utility of recommendations in
a movie recommender system. A practical approach to
achieving privacy [159], which is based on the theoretical
framework presented in [160], is to distort the view
of the data before making it publicly available while
guaranteeing the utility of the data. Similarly, [161] pro-
poses an algorithm for publishing partial data that is safe
against the malicious attacks where an adversary can do
the inference attacks using association rule in publicly
published data.

Another work, ‘ProfileGuard’ [28] and its extension [8]
propose an app-based profile obfuscation mechanism with
the objective of eliminating the dominance of private
interest categories (i.e. the prevailing private interest
categories present in a user profile). The authors pro-
vide insights to Google AdMob profiling rules, such as
showing how individual apps map to user’s interests
within their profile in a deterministic way and that
AdMob requires a certain level of activity to build a
stable user profile. These works use a wide-range of
experimental evaluation of Android apps and suggest
various obfuscation mechanisms e.g. similarity with user’s
existing apps, bespoke (customised to profile obfuscation)
and bespoke++ (resource-aware) strategies. Furthermore,
the authors also implement a POC ‘ProfileGuard’ app to
demonstrate the feasibility of an automated obfuscation
mechanism.

Following, we provide an overview of prior work
in both randomisation (generic noisy techniques) and
differentially private mechanisms.

5.2.3 Randomisation
In the randomisation methods, noise is added to distort
user’s data. Noise can either be added to data values
(e.g., movie ratings or location GPS coordinates), or,
more applicable to profiling and user targeting, noise is in
the form of new data (e.g., additional websites that the
user would not have visited normally are generated by
a browser extension [162]), added in order to mask the
true vales of the records (browsing history). We note that
[162] protects the privacy of user’s browsing interests but
does not allow (privacy preserving) profiling or selection
of appropriate targeted ads.

The idea behind noise addition is that specific informa-
tion about user’s activities can no longer be recovered,
while the aggregate data still contains sufficient statisti-
cal accuracy so that it can be useful for analysis (e.g., of
trends). A large body of research work focuses on generic
noisy techniques e.g. [163] proposed the approach of
adding random values to data, generated independently
of the data itself, from a known e.g., the uniform distri-
bution. Subsequent publications (e.g., [164]) improve the
initial technique, however other research work [165] has
identified the shortcomings of this approach, where the
added noise may be removed by data analysis and the
original data (values) recovered.

A novel noisy technique for privacy preserving per-
sonalisation of web searches was also recently proposed
[166]. In this work, the authors use ‘Bloom’ cookies that
comprise a noisy version of the locally derived profile.
This version is generated by using Bloom filters [167], an
efficient data structure; they evaluate the privacy versus
personalisation trade-off.

5.2.4 Differential privacy
Differential privacy [168] work has, in recent years, re-
sulted in a number of system works that advocate the
practicality of this, previously predominantly theoretical
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research field. The authors in [141] propose a system
for differentially private statistical queries by a data ag-
gregator, over distributed users data. A proxy (assumed
to be honest-but-curious) is placed between the analyst
(aggregator) and the clients and secure communications
including authentication and traffic confidentiality are
accomplished using TLS [169]. The authors also use
a cryptography solution to provide additional privacy
guarantees.The SplitX system [142] also provides differen-
tial privacy guarantees and relies on intermediate nodes,
which forward and process the messages between the
client that locally stores their (own) data and the data
aggregator. Further examples include works proposing
the use of distributed differential privacy [170] and [171].

5.2.5 Cryptographic mechanisms
A number of different cryptographic mechanisms have
been proposed in the context of profiling and targeted
advertising (or, more broadly, search engines and rec-
ommender systems): Private Information retrieval (PIR)
[88], [89], [94], [118], [119], [120], homomorphic encryp-
tion [172], zero knowledge proofs [133], [134], [135], [136]
and mixing [173].

A web-based advertising system based on Private
Information retrieval was first proposed by Juels [174]
, where they use information-theoretic (threshold) PIR in
an honest-but-curious multi-server architecture. Central to
their system is the choice of a negotiant function, that is
used by the advertiser to select ads, starting from a user’s
profile - the authors describe both a semi-private and
a fully private information-theoretic (threshold) PIR in an
honest-but-curious multi-server architecture. They evaluate
the benefits of both alternatives in regards to security,
computational cost and communication overheads.

The ObliviAd proposal [149] uses a PIR solution based
on bespoke hardware (secure coprocessor), which en-
ables on-the-fly retrieval of ads. The authors propose
the use of Oblivious RAM (ORAM) model, where the
processor is a “black box”, with all internal operations,
storage and processor state being unobservable exter-
nally. ORAM storage data structure comprises of entries
that include a combination of keyword and a corre-
sponding ad (multiple ads result in multiple entries).
The accounting and billing are secured via the use of
using electronic tokens (and mixing [175], [176]). More
generally, a system that enables private e-commerce
using PIR was investigated in [90], with tiered pricing
with record level granularity supported via the use of
the proposed Priced Symmetric PIR (PS-PIR) scheme.
Multiple sellers and distributed accounting and billing
are also supported by the system.

Additionally, cryptographic solutions can be used to
provide part of the system functionality. They are com-
monly used in conjunction with obfuscation, e.g., in [170],
[171] or generalisation [26]. Adnostic [26] uses a combi-
nation of homomorphic encryption and zero-knowledge
proof mechanisms to enable accounting and billing in the
advertising system in a (for the user) privacy preserving

way. Effectively, the user is protected as neither the pub-
lisher (website that includes the ads) or the advertisers
(that own the ads) have knowledge about which users
viewed specific ads. The authors in [170] also combine
differential privacy with a homomorphic cryptosystem, to
achieve privacy in a more generic setting of private data
aggregation of distributed data. Similarly, Shi et al. [171]
also use a version of homomorphic techniques to enable
private computing of sums based on distributed time-
series data by an un-trusted aggregator.

Chen et al. [141] uses cryptographic mechanism to
combine client-provided data (modified in accordance
with differential privacy). They utilise a probabilistic
Goldwasser-Micali cryptosystem [177]. In their subse-
quent work [142], the authors use an XOR-based crypto-
mechanism to provide both anonymity and unlinka-
bility to analysis (queries) of differentially private data
distributed on user’s devices (clients). A cryptography
technique, mixing [175], [176] is also commonly used as
part of anonymisation [149], [174], where mix servers are
used as intermediaries that permute (and re-encrypt) the
input.

5.2.6 Blockchain-based advertising systems
Blockchain [178] has numerous applications and has
been widely used, e.g. IoT [179], Bid Data [180], Health-
care [181], Banking and finance [182] etc. Blockchain
has become a new foundation for decentralised busi-
ness models, hence in the environment of advertising
platform, made it a perfect choice for restricting com-
munication between mobile apps (which is potentially a
big source of private data leakage) and the ad/analytics
companies and keeping individual’s privacy.

To our knowledge, we note that there are very limited
works available for Blockchain-based mobile targeted
ads in the literature e.g. the [29] presents a decen-
tralised targeted mobile coupon delivery scheme based
on Blockchain. The authors in this work match the
behavioral profiles that satisfy the criteria for targeting
profile, defined by the vendor, with relevant advertise-
ments. However, we note that this framework does not
include all the components of an advertising system
including user profiles construction, detailed structure of
various Blockchain-based transactions and operations, or
other entities such as Miner and the billing process. Our
recent work, AdBlock [24], presents a detailed framework
(in addition to Android-based POC implementation i.e.
a Bespoke Miner) for privacy preserving user profiling,
privately requesting ads, the billing mechanisms for pre-
sented and clicked ads, mechanism for uploading ads
to the cloud, various types of transactions to enable
advertising operations in Blockchain-based network, and
methods for access policy for accessing various resources,
such as accessing ads, storing mobile user profiles etc.
This framework is parented in Figure 10. We further ex-
perimentally evaluate its applicability by implementing
various critical components: evaluating user profiles, im-
plementing access policies, encryption and decryption of
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user profiles. We observe that the processing delays with
various operations evaluate to an acceptable amount of
processing time as that of the currently implemented ad
systems, also verified in [7].

Summary of various privacy preserving approaches,
in terms of architecture, mechanism, deployment and app
domain, for both in-browser web and in-app mobile ad-
vertising systems is given in Table 1.

5.3 The economic aspects of privacy
Research works also investigate the notion of compen-
sating users for their privacy loss, rather than imposing
limits on the collection and use of personal information.

Ghosh and Roth [186] studied a market for private
data, using differential privacy as a measure of the pri-
vacy loss. The authors in [187] introduce transactional
privacy, which enables the users to sell (or lease) selected
personal information via an auction system. On a related
topic of content personalisation and in-browser privacy,
in RePriv [139] the authors propose a system that fits
into the concept of a marketplace for private information.
Their system enables controlling the level of shared
(local) user profile information with the advertising net-
works, or, more broadly, with any online entity that aims
to personalise content.

6 OPEN RESEARCH ISSUES

In this section, we present various future research di-
rections that require further attention from the research
community i.e. diffusion of user data in Real Time
Bidding (RTB) scenarios and associated privacy risks, the
complicated operations of advertising system, the user-
driven private mobile advertising systems and its private
billing mechanism.

6.1 Diffusion of user tracking data
A recent shift in the online advertising has enabled by
the advertising ecosystem to move from ad networks
towards ad exchanges, where the advertisers bid on
impressions being sold in RTB auctions. As a result, the
A&A companies closely collaborate for exchanging user
data and facilitate bidding on ad impressions and clicks
[188], [189]. In addition, the RTB cause A&A companies
to perform additional tasks of working with publishers
to help manage their relationship for ad exchange (in
addition to user’s tracking data) and to optimise the ad
placement (i.e. targeted ads) and bidding on advertiser’s
behalf. This has made the online advertising operations
and the advertising ecosystems themselves extremely
complex.

Hence, it is important for the A&A companies to
model (in order to accurately capture the relationship
between publisher and A&A companies) and evaluate
the impact of RTB on the diffusion of user tracking (sen-
sitive) data. This further requires assessing the advertis-
ing impact on the user’s contexts and profiling interests,

which is extremely important for its applicability and
scalability in the advertising scenarios. This will also
help the A&A companies and publisher to effectively
predict the tracker domain and to estimate their adver-
tising revenue. Furthermore, to ensure the privacy of
user data since the data is collected and disseminated
in a distributed fashion i.e. users affiliated to different
analytics and advertising platforms and shared their data
across diverse publishers. This also necessitates a dis-
tributed platform for the efficient management and shar-
ing of distributed data among various A&A platforms
and publishers. In particular, the RTB has demanded
to develop efficient methods for distributed and private
data management.

6.2 Complex operations of advertising system
The complexity of online advertising poses various chal-
lenges to user privacy, processing-intensive activities,
interactions with various entities (such as CDN, ana-
lytics servers, etc.) and their tracking capabilities. In
order to reduce the complexity of the advertising sys-
tems, we envision few more areas of research: devising
processing-sensitive frameworks, limiting the direction-
redirection of requests among A&A entities, unveil user
data exchange processes within the ad platform, identi-
fying new privacy threats and devising new protection
mechanisms. Unveiling user data exchange will expose
the extent to which the intermediate entities prone to
adversarial attacks. Hence, it requires a better knowledge
of adversary, which will contribute to develop protection
mechanisms for various kinds of privacy threats, such as,
interest-based attacks, direct privacy attacks. Note that
this will further require comparative analysis of basic
and new proposals for the trade-off achieved between
privacy and computing overheads of processing user’s
ad retrieval requests/responses, communication band-
width consumption and battery consumption.

6.3 Private user-driven mobile advertising systems
An enhanced user-driven private advertising platform
is required where the user interest (vis-à-vis their pri-
vacy) and advertising system’s business interests may
vary, in addition, the assessment of user information
as an inherent economic value will help to study the
tradeoff between such values and user privacy within
the advertising system. This will require the proposal
for complex machine learning techniques to enhance ads
targeting (since previous works found that majority of
received ads were not tailored to intended user profiles
[17], [33], which will ultimately help advertising systems
to increase their revenues and enhance user experience
in receiving relevant ads. Likewise, introducing novel
privacy preserving mechanisms, a very basic step would
be to combine various proposals, as described in Sec-
tion 5, which will introduce more robust and useful
privacy solutions for various purposes: enhanced user
targeting, invasive tracking behaviors, better adapting
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Fig. 10: A framework for secure user profiling and Blockchain-based targeted advertising system for in-app mobile
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Ref Architecture Mechanism Deployment Domain
Privad [140] 3rd-party anonymising proxy Crypto Browser add-on

Web

Adnostic [26] Complements to existing sys Crypto billing Firefox extension
PASTE [170] Untrusted third party Fourier Perturbation Algo Browser add-on
[183] Cookie management User preference Standalone[184] Anonymising proxy Differential privacy
DNT [185]21

Delay Tolerant Network HTTP header Browser side
MobiAd [34] Encryption Mobile phone

Mobile

ObliviAd [149]

Complements existing sys

Crypto-based

Client/Server sides

[150] Differential privacy
SplitX [142] XOR-based encryption
CAMEO [32] Context prediction
ProfileGuard [8], [28] Profile Obfuscation
[29] BlockchainAdBlock [24]
[7] Autonomous system Crypto-based Standalone

TABLE 1: Summary of the in-browser web and in-app mobile advertising systems.

privacy enhancing technologies, better adapt the chang-
ing economic aspects and ethics in ads targeting. Another
research direction would be to extend the analysis of pri-
vacy protection mechanisms to other different players,
such as, advertisers, ad exchange, publishers with the
aim to analyse and evaluate privacy policies and protec-
tion mechanisms that are claimed by these parties. This
would help various entities in the advertising system
to identify the flaws and further improve their working
environment.

Another research direction would be to create smarter
privacy protection tools on the user side i.e. to create
such tools as an essential component of mobile/browser-
based platform within the advertising ecosystem. To
develop such tools where users effectively enforce var-
ious protection strategies, it require various important
parameters of usability, flexibility, scalability etc., to be
considered to give users transparency and control over

their private data.
Another research direction would be to extend the

analysis of privacy protection mechanisms to other dif-
ferent players, such as, advertisers, ad exchange, pub-
lishers with the aim to analyse and evaluate privacy
policies and protection mechanisms that are claimed
by these parties. This would help various entities in
the advertising system to identify the flaws and further
improve their working environment.

6.4 Privet billing mechanism
Billing for both ad presentations and clicks is an important
component of online advertising system. As discussed in
Section 4.4, a private billing proposal is based on Thresh-
old BLS signature, Polynomial commitment, and Zero knowl-

21. It [185] proposes a DNT field in the HTTP header that requests a
web application to either disable the tracking (where it is automatically
set) or cross-site the user tracking of an individual user.
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edge proof (ZKP), which are based on PIR mechanisms
and Shamir secret sharing scheme along with Byzantine
robustness. The applicability of this private billing model
can be verified in the online advertising system, which
would require changes on both the user and ad system
side. Furthermore, note that the this private billing mech-
anism, implemented via polynomial commitment and zero-
knowledge proof, is highly resource consuming process,
henceforth, an alternative implementation with reduced
processing time and query request size can be achieved
via implementing together billing with PIR using multi-
secret sharing scheme. In addition, to explore the effect
of multi-secret sharing scheme in multiple-server PIR and
hence comparative analysis to choose between the two
variations of single-secret and multi-secret sharing system
implementations. Multi-secret sharing scheme would help
reduce the communication bandwidth and delays along
with the processing time of query requests/responses

In addition, our billing mechanism for ad presentations
and clicks presented in [7], also described in Section 4.5,
is applicable only to single ad requests with no impact
on privacy. However, the broader parameter values (si-
multaneously processing multiple ad requests) and the
use of other PIR techniques, such as Hybrid-PIR [94] and
Heterogeneous-PIR [123], can be used to efficiently make
use of processing time.

Furthermore, with the rise in popularity of Cryptocur-
rencies, many businesses and individuals have started
investing in them, henceforth, the applicability of em-
bedding the Cryptocurrency with the existing billing
methods needs an investigation and developing new
frameworks for coexisting the billing payments with
the Cryptocurrency market. In addition, this would re-
quire techniques for purchasing, selling, and transferring
Cryptocurrency among various parties i.e. ad systems,
app developers, publishers, advertisers, crypto-markets,
and miners. A further analysis would require inves-
tigating the impact of such proposals on the current
advertising business model with/without a significant
effect.

An important research direction is to explore imple-
mentation of private advertising systems in Blockchain
networks since there is limited Blockchain-based ad-
vertising systems e.g., [24], [29]. The [24] presents the
design of a decentralised framework for targeted ads that
enables private delivery of ads to users whose behavioral
profiles accurately match the presented ads, defined by
the advertising systems. This framework provides: a pri-
vate profiling mechanism, privately requesting ads from
the advertising system, the billing mechanisms for ads
monetisation, uploading ads to the cloud system, various
types of transactions to enable advertising operations in
Blockchain-based network, and access policy over cloud
system for accessing various resources (such as ads,
mobile user profiles). However, its applicability in an
actual environment is still questionable, in addition to,
the coexistence of ads-billing mechanism with Cryptocur-
rency.

7 CONCLUSION

Targeted/Online advertising has become ubiquitous on
the internet, which has triggered the creation of new in-
ternet ecosystems whose intermediate components have
access to billions of users and to their private data.
The lack of transparency of online advertising, the A&A
companies and their operations have posed serious risks
to user privacy. In this article, we break down the various
instances of targeted advertising, their advanced and
intrusive tracking capabilities, the privacy risks from the
information flow among various advertising platforms
and ad/analytics companies, the profiling process based
on user’s private data and the targeted ads delivery pro-
cess. Several solutions have been offered in the literature
to help protect user privacy in such a complex ecosys-
tem, henceforth, we provide a wide range of mechanisms
that were classified based on the privacy mechanisms
used, ad serving paradigm and the deployment sce-
narios (browser and mobile). Some of the solutions are
very popular among internet users, such as blocking,
however their blocking mechanism negatively impacts
the advertising systems. On the other hand, majority of
the proposals provide naive privacy that require a lot of
efforts from the users; similarly, other solutions demand
structural changes with the advertising ecosystems. We
have found that it is very hard, based on various privacy
preserving approaches, while demanding for devising
novel approaches, to provide user privacy that could
give users more control over their private data and
to reduce the financial impact of new systems without
significantly changing the advertising ecosystems and
their operations.
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