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Abstract—Datasets containing class noise present significant
challenges to accurate classification, thus requiring classifiers
that can refuse to classify noisy instances. We demonstrate the
inability of the popular confidence-thresholding rejection method
to learn from relationships between input features and not-at-
random class noise. To take advantage of these relationships,
we propose a novel null-labelling scheme based on iterative
re-training with relabelled datasets that uses a classifier to
learn to reject instances that are likely to be misclassified. We
demonstrate the ability of null-labelling to achieve a significantly
better tradeoff between classification error and coverage than the
confidence-thresholding method. Models generated by the null-
labelling scheme have the added advantage of interpretability, in
that they are able to identify features correlated with class noise.
We also unify prior theories for combining and evaluating sets
of rejecting classifiers.

Index Terms—class noise, noisy not-at-random, rejection, ab-
stention, selective classification

I. INTRODUCTION

For as long as machine learning researchers have strived
to improve accuracy achieved by classifiers, noisy data has
always presented a major obstacle. This has led to the de-
velopment of many techniques for mitigating both feature
noise, where feature values are partially dependent on a
stochastic process, and class noise, where class labels are
partially dependent on a stochastic process. While techniques
such as feature selection and noise filtering are commonly
used to mitigate feature noise, class noise has the potential
to be much more disruptive to the learning process. If class
noise is more prevalent in certain regions of the input space,
under the so-called noisy not at random (NNAR) model [1]
then learning an accurate classifier for these regions may be
impossible without prior knowledge of the noise mechanism.
Such regions of noise may represent cases that human labellers
found difficult to classify, or they may be inherent to the
dataset. For example, when attempting to classify topography
based on aerial photography, a mix of class values would
be expected for the region of the input space where clouds
had obscured photographs [2]. Such not-at-random class noise,
which has been identified as a relatively unaddressed problem
[1], is the primary concern of this paper.

When a dataset contains instances that cannot be accurately
classified, one option is to allow the classifier to choose
to not classify (or reject) those instances. Building such a
rejecting-classifier makes intuitive sense, as there are many
situations where it is preferable for a decision maker to abstain
from making a decision in the presence of uncertainty rather
than giving their best guess, such as in a medical diagnosis
scenario. Depending on the use-case, rejected instances may
be forwarded to a more resource-heavy classifier or to a human
for manual judgement. The field of classification with rejection
has also been referred to as learning with abstention [3],
selective classification [4], and cautious classification [5].

One of the most prevalent rejection methods is to reject
instances where the confidence score or probability estimate
provided by the classifier is below a given threshold [6],
which we refer to as confidence-thresholding. The popularity
of this method is largely due to its simplicity of implementa-
tion for many common machine learning methods. However,
confidence-thresholding may not be the optimal rejection
strategy when dealing with class noise. Most classification
algorithms are designed to learn optimal decision boundaries
under the assumption that every instance must be classified,
and therefore may ignore important patterns in the dataset
that indicate regions of noise. Because confidence scores are
typically related to the learned decision boundaries, they may
not be correlated with regions of noise in the input space.

Consider the binary classification dataset in Fig. 1a, which
contains a uniform distribution of points that originally ex-
pressed the following classification rule: P(y|z; >= 0.5) =
1; P(y|z1 < 0.5) = 0, with P(y) denoting the probability of a
positive class label. However, introduced class noise replaced
each class label with a random class with probability equal
to x2, such that the rule evaluates to: P(ylz; >= 0.5) =
1—%2; P(ylz1 < 0.5) = 2. Because the degree of noise is not
random but is a function of xs, this represents not-at-random
class noise with a region of noise located in the upper region
defined by x2. We say that x is a signal dimension/feature that
indicates the class value, while x5 is a noise dimension/feature
that indicates the degree of class noise.

Fig. 1b presents the classification results for a logis-
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Fig. 1. Comparison of confidence-thresholding (CT) and null-labelling (NL)
on a dataset with not-at-random class noise.

tic regression (LR) classifier configured with confidence-
thresholding to reject the 40% of instances with the lowest
confidence scores. Because there is a uniform distribution of
each class along the x5 dimension, LR produces a vertical
decision boundary based solely on x;. Due to the fact that
LR confidence scores are determined by the distance of an
instance from the decision boundary, a band of instances are
rejected around this vertical decision boundary. However, this
leaves a large number of errors in the region of noise (high
a9 values) that have not been rejected, and also results in the
unnecessary rejection of instances with low x, values and x
values close to 0.5 that would be correctly classified without
the use of rejection.

This example shows that the classifier is not taking advan-
tage of the noise feature x5 because it is not discriminative of
class boundaries, even though it contains useful information
for identifying the region of noise. Such noise features may
exist in practice, such as the strength of a radio signal
indicating the reliability of other signal measurements.

In this paper, we propose a new rejection method that
enables the model to directly learn regions of noise as an
explicit null class. This is achieved by relabelling instances
in the training set with a new null class if they are mis-
classified under a k-fold cross-validation scheme. Fig. Ic
demonstrates the classification results after 3 iterations of
this method, which we refer to as null-labelling (labelling
instances with null). With null-labelling, LR is able to learn

the importance of the x, feature for identifying the region
of noise, rejecting instances with a high x5 value while not
unnecessarily rejecting correctly classified instances near the
“pos”/“neg” decision boundary.

Fig. 1d provides a comparison between confidence-
thresholding (CT) and null-labelling (NL) in terms of the
tradeoff between the rejection rate and conditional error rate,
which is the error rate on non-rejected (covered) instances
[4]. As the confidence-threshold is raised (and the rejection
rate increases), there is little reduction of the error rate - the
rejection method is not much better than randomly selecting
instances to reject. However, the error rate is drastically
reduced by applying an increasing number of null-labelling
iterations, demonstrating that it is correctly rejecting instances
that were being misclassified in the region of noise.

Our null-labelling method also provides an additional ben-
efit: by treating rejection as an explicit class, we can use
model interpretation techniques to gain insights into which
regions of the input space are difficult to classify. This is
seen in Fig. 1c where the class boundary defined by the
coefficients for the null class discriminates primarily on
the zo feature, revealing the relationship between x5 and the
degree of noise. This can aid a user in diagnosing sources of
class noise, which they may be able to address in order to
provide a cleaner version of the training dataset, thus leading
to further improvements in classification accuracy. While other
rejection methods have modelled rejection as an explicit class
[31, [7], they require alterations to the underlying classification
algorithms and loss functions. Null-labelling, on the other
hand, is a model-agnostic method that can be applied with
any base classifier.

The contributions we make in this paper are:

« A novel model-agnostic null-labelling method for rejec-
tion that can achieve a better tradeoff between error
and rejection rates than confidence-thresholding in the
presence of class noise.

« Interpretation of null-labelled models for identifying fea-
tures that are correlated with class noise.

o A unification of prior theories to produce a framework
for combining rejecting-classifiers and evaluating perfor-
mance across different rejection rates.

II. RELATED WORK

In this paper we consider class noise to be present when the
class label (Y) for an instance depends not only on its input
features (X)), but also on a stochastic process (F) that distorts
the relationship between X and Y. This stochastic process may
describe cases where instances with the same input feature
values are assigned different classes, or where instances are
mislabelled in the training dataset [1]. We therefore consider
class noise to be a generalisation of label noise, which only
considers the latter case!. In particular, we address noisy not
at random (NNAR) class noise, where £ is also dependent on

IThough label noise is sometimes also referred to as class noise [8], we
make a distinction between the two in this paper.



X - i.e. there are regions of noise in the input space where
the stochastic process more strongly distorts the relationship
between X and Y. This NNAR class noise is a generalisation
of the NNAR model for label noise [1], as it does not assume
there is a “true” class value that underlies and determines the
noisy class label.

There has been extensive research into methods for mitigat-
ing label noise. Such methods rely on designing classifiers that
model the probability of noisy labels [9] or identifying noisy
training instances so that they may be relabelled with the pre-
sumably correct class or removed from the training set entirely
[8]. These methods assume that the true relationship between
X and Y can be learned in spite of label noise. However, any
method to identify the instances affected by label noise must
rely on prior knowledge of the noise mechanism [10], and
errors due to label noise are therefore irreducible if such prior
knowledge cannot be obtained or safely assumed. Furthermore,
in the more general case of class noise, the stochastic process
may affect the true Y values, thereby making it impossible
to learn a relationship between X and Y for some regions of
the input space. It is these irreducible errors that necessitate
rejection, where the classifier is allowed to reject instances
expected to have a high probability of misclassification.

Rejection has recently been applied as a means of address-
ing label noise [7], [11], but it has been extensively researched
prior to this. Rejection dates back at least to Chow’s rule
[12], which rejects instances with classification probabilities
below a threshold determined by the relative costs of rejection
and misclassification in the application domain. Chow’s rule is
Bayes-optimal when the classification probabilities are perfect
a posteriori probabilities [6], but in practice it is typical for
only probability estimates based on confidence scores to be
available. This has led to the further refinement of rejection
rules based on confidence-thresholding, including the use of
class-specific thresholds [5], [6] and metric-based threshold
optimisation [13]. However, as we have demonstrated in the
previous section, confidence scores are not an optimal means
of selecting instances for rejection in general, thus leading to
the development of alternative uncertainty measures [14].

The general issue we presented in Section I of confidence
scores not being aligned with the optimal regions to reject has
been noted previously [3]. This has led to methods that directly
learn a rejection function during classifier training that models
relationships between input features and noise and can be
interpreted to understand those relationships [7]. This research
has primarily involved custom classifiers and loss functions
[31, [7], [11], [15] that allow the classifier to reject instead of
selecting a class (at a user-configured cost). A major drawback
to these approaches is that they are model-specific algorithms
that require custom implementations, which we address with
our model-agnostic null-labelling approach.

In summary, we have highlighted the distinction between
label noise and the more general category of class noise, and
why the potential for class noise to result in irreducible errors
necessitates rejection methods. Much research on rejection has
involved confidence-thresholding. While this method is simple

to implement and model-agnostic, we have illustrated why
it is not an optimal choice for all cases of class noise, and
we further discuss the limitations of confidence scores in the
next section. Another significant line of research has addressed
these limitations with custom classifiers that directly learn a
rejection function of the input features. However, progress in
this research direction is limited by the need to design and
implement model-specific methods. We attempt to bridge the
gap between these approaches with our null-labelling method,
which is a model-agnostic meta-algorithm that allows the
region of rejection to be learned directly from input features
while model-interpretation methods of the base classifier can
be applied to the rejected region.

ITI. FOUNDATIONS FOR REJECTION BY
CONFIDENCE-THRESHOLDING

The goal within the standard classification context is to
learn a classifier function f : X — ¢ for a given M-
dimensional input space X = RM and a set of K classes i =
{c1,¢2,...,ck}. This is achieved through supervised learning
on a training dataset of NV instances represented as input/output
pairs: {X, Y} = {(a;,yi)|z; € X,y; € §,i=1,...,N}. This
allows a predicted class § € ¢ to be produced for any input
instance x € X as § = f(x).

In the context of classification with rejection, the set of
possible predictions is extended to include a rejection option
1l:g € y7,y7 = y U {L}. The performance of a rejecting-
classifier is typically evaluated in terms of its conditional
error rate (the error rate on non-rejected/covered instances;
E¢ = P(y # y|§ # L)) and coverage rate (the proportion of
instances not rejected; C = P(§ # 1)), which are typically
evaluated empirically on a test dataset. Coverage can also
be expressed as the rejection rate, which is the proportion
of instances that are rejected: R = 1 — C = P(y = 1).
Ideally, we would like a rejecting-classifier that achieves a low
conditional error rate while also retaining a high coverage rate.

To achieve rejection through confidence-thresholding, we
assume the trained classifier can produce a confidence score
for any prediction, represented by the function g : X — R. For
a given confidence-threshold ¢ the rejecting-classifier function
can be defined as:

fi@) = {f(x) if g(z) > t

1 otherwise

(D

Note that a user can achieve any coverage rate by selecting ¢
such that the desired proportion of confidence scores achieved
for their test dataset are greater than ¢. As the likelihood of
an instance being misclassified should decrease with a higher
confidence score, we would expect that increasing ¢ would
decrease the conditional error rate (while also decreasing
the coverage rate). However, this entirely depends on the
strength of the relationship between confidence scores and the
probability of misclassification. In the case of not-at-random
class noise, it is important for low confidence scores to be
correlated with noise.



Many common classification algorithms (including deci-
sion trees and forests, SVMs, logistic regression, and neural
networks) learn decision boundaries based on features that
are the most discriminative between the target classes (i.e.
signal features). This is an optimal strategy when all instances
will be classified, but not necessarily when the classifier is
allowed to reject some instances. In particular, a rejecting-
classifier should also take into account the noise features that
discriminate between regions that can be reliably classified
and those that cannot. Because linear models like logistic
regression base confidence scores on the distances between
instances and the decision boundary, a decision boundary not
accounting for noise features will result in confidence scores
that do not reflect the true reliability of classification. We
have demonstrated this with our motivating example in Fig.
1, where decision boundaries based solely on signal features
lead to poor confidence-thresholding performance.

For the remainder of this paper, we will compare
confidence-thresholding and our null-labelling method using
a logistic regression classifier. Logistic regression is a useful
model commonly used in medical applications that can often
benefit from judicious rejection (so that difficult cases can
be manually reviewed or classified by a more costly test).
Logistic regression is also valued for the interpretability of its
class coefficients, which can be used to identify noise features
through application of our null-labelling method.

IV. PROPOSED NULL-LABELLING METHOD FOR
REJECTION

In this section, we present our novel null-labelling method
for iteratively training rejecting-classifiers. In each iteration of
null-labelling, we train a classifier on a modified version of the
training dataset where a null class is assigned to instances
that are misclassified by the previous iteration’s classifier.
Specifically, if we define the initial set of training labels as
Y% =Y, then for all null-labelling iterations j > 0:

: 1
Yy = {yil

where f7 represents the classifier trained on labels Y7. Note
that, in order for the observed misclassifications to be represen-
tative of the classifier’s true performance, classification of the
training dataset must be performed via k-fold cross-validation.
Once a classifier has been trained using a null-labelled training
dataset as defined by Equation 2, it will have the ability to
directly predict null (i.e. reject) just as it can predict any
other class value.

Other rejection methods that enable classifiers to directly
reject instances require custom loss functions and implemen-
tations [3], [7], while null-labelling can be applied to any
base classifier by simply modifying the training dataset. Null-
labelling’s creation of the null class for noisy instances is
also distinct from other label noise mitigation methods that
alter the training dataset [8], which only seek to remove or
correct the class of noisy instances.

if fIY () £yl
otherwise

)

By defining a null class, we allow the classifier to directly
learn a rejection function based empirically on its own mis-
classifications. Regions of noise that cannot be accurately clas-
sified will contain many misclassifications, and will therefore
be relabelled to contain many null labels. Regions with few
misclassifications will only be sparsely null-labelled, allowing
the classifier to still learn the majority classes for those regions.
Modelling the regions of noise with an explicit class enables
the classifier to take advantage of the noise features that define
these regions. Furthermore, native interpretation methods for
the base classifier can be used to identify the noise features
that define the null class, which we demonstrate in Section
VI. Additionally, once null-labelling of the regions of noise has
been performed, the remaining regions will have higher class
uniformity and be simpler to learn, leading to more reliable
decision boundaries for the actual classes. These benefits
of null-labelling directly address the issues with confidence-
thresholding identified in Section III.

Fig. 2 compares the performance of confidence-thresholding
(CT) and null-labelling after two iterations (NL-2) on the UCI
Skin Segmentation Dataset [16]. As the goal of this dataset is
to predict whether or not a given pixel is from an area of
skin based only on RGB colour values, it is reasonable to
expect some colours could commonly appear both on skin
and elsewhere in an image. A judicious classifier should
reject pixels of such colours. We can see that the classifier
using null-labelling is able to better identify which colours
to reject, achieving a 70% reduction in conditional error
over confidence-thresholding when both classifiers only reject
approximately 10% of instances. Not only does null-labelling
reject the regions that are still misclassified under confidence-
thresholding, but regions that were rejected by confidence-
thresholding (because they were nearer the decision boundary)
are no longer rejected under null-labelling.

Algorithm 1 provides a comprehensive algorithm for imple-
menting null-labelling, including mechanisms for controlling
the number of iterations, the achieved coverage rate, and model
stability, which we present in the following paragraphs.

Selecting how many null-labelling iterations to perform
depends on the properties that are desired of the final classifier.
Because null-labelling is a greedy process (instances assigned
the null class in a previous iteration cannot be reverted to
their original class), the coverage rate will tend to decrease
with subsequent iterations, typically with a corresponding
decrease in conditional error. Therefore, if the goal is to
achieve the smallest possible conditional error for a minimum
allowable coverage rate (i.e. bounded rejection), iterations
can be stopped once the classifier falls below the minimum
coverage rate (evaluated on a validation dataset separate to the
training dataset), as in lines 4-6 of Algorithm 1. Conversely,
if the goal is to achieve as much coverage as possible for
a maximum conditional error rate (i.e. bounded error), then
iterations can be stopped once the classifier achieves the
desired conditional error rate, as in lines 7-9 of Algorithm
1. The maximum number of iterations J can be set as a
hard limit on the computation that handles cases where such
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Fig. 2. Comparison of CT and NL-2 on the skin segmentation dataset. Pixels
ordered by pre-rejection logistic regression activations.

constraints are never exceeded. If the above constraints are not
given for the application, then J should be set high enough
to achieve a broad range of coverage rates. A user can then
inspect a tradeoff plot such as Fig. 1d to select their preferred
classifier. Alternatively, if the cost of instance rejection (\;)
can be specified in the range (0,1) (with 0 denoting the cost
of a correct classification and 1 representing the cost of a
misclassification), then the cost-optimal classifier can be found
by selecting the classifier with minimal expected cost C as
defined in Equation 3 (from [4]) and applied in lines 15-17 of
Algorithm 1.

E[C] = CE + (1 - C)A, 3)

If the base classifier is unstable in relation to training
set changes, then repeated k-fold cross-validation (CV) can
be used to decide which instances to null-label, similar to
the label-noise filtering strategy of [17]. The k-fold cross-
validation used to identify misclassified instances can be

Input : Training dataset {X,Y'}, Validation dataset
{X",Y"}, Max iterations J, NL rate 6, CV
folds k, CV repetitions H, Min CV repetition
consensus 7, OPTIONAL Min coverage Cyin
OR Max conditional error E .. OR Rejection
cost A\,

Output: A set of potential rejecting-classifiers
1 YO« Y for j < 0 to J do

2 | Train classifier f/ on {X,Y7};
3 Evaluate f7 on {X",Y"} to determine C;; and Ef;
4 if Cyin provided and C; < Cy,in then
5 | return {f771};
6 end
7 if £ .« provided and EF < Ef, . then
8 | return {f7};
9 end
10 for k-fold CV runs h < 0 to H over {X,Y7} do
1 Train classifier 7" and confidence-scorer g7 to
cover the domain of X;
12 end
13 | Construct Y7t according to Equation 4;
14 end
15 if A, provided then
// Minimise cost as defined in Equation 3;
16 | return {f’|j € argmin E[C;]}
J€0,...,
17 end
18 return {f°,... [}

Algorithm 1: Application of null-labelling with stopping
criteria and coverage controls.

repeated [ times (lines 10-12 of Algorithm 1) with different
random splits. This will produce a set of classification results
for each training instance, and the set of null-labelled instances
can be limited to those that would be null-labelled by a
minimum consensus (1) of repetitions. 1 should be set to
represent at least a majority consensus (£ > 0.5). If classifier
stability is not of concern, then default values of H =n =1
can be used for computational efficiency.

Given the above parameters, we can express the complexity
of null-labelling as requiring O(JHk) invocations of the
underlying base classifier for both training and testing. This
complexity is derived from the iterations over J and H on
lines 1 and 10 in Algorithm 1, as well as the k-folds in each
application of cross-validation. The typical ranges for each of
these parameters are relatively small. We have found J = 10
is often more than sufficient to achieve an adequate range of
coverage rates. H can be set to 1 except when the classifier
is unstable to training set changes, in which case H < 10
is reasonable. Finally, our experiments show that £ = 5 is
sufficient for identifying noisy records via cross-validation.

One challenge to effectively applying null-labelling lies in
achieving a desired coverage rate. If the error rate of the
original classifier is very low, then a large number of instances



may be null-labelled in even the first iteration, resulting in an
initially low level of coverage that only continues to decrease
with subsequent iterations. In order to provide more control
over the level of coverage achieved by null-labelling, the
set of null-labelled instances can be reduced to only include
instances misclassified with low confidence scores. This tech-
nique essentially uses confidence-thresholding to contribute to
the decision of which instances to null-label, and its influence
can be controlled by a null-labelling rate 6 that determines the
proportion of misclassified instances that will be null-labelled.
0 should be set to a default value of 1, and only reduced in
order to increase coverage when necessary.

We can incorporate the 6, H, and 7 parameters in a
reformulation of Equation 2 (applied on line 13 of Algorithm
1) to construct the training set for each null-labelling iteration:

=t = L(g™", 0, {wil 7 (i) # 97))

J_{L if |[{hlz; € B | > helo H 4
Yi =9 -1 .
y; otherwise

where f7" and g7" are the classifier and confidence-scoring
functions for CV repetition h of iteration j, and L(r,q,S)
selects the lowest proportion ¢ of elements in set S as
ranked by function r. Z7" represents the proportion 6 of
instances classified with the lowest confidence scores that were
misclassified by CV repetition h of iteration j, which are then
aggregated over H iterations so that only instances that appear
at least n times are null-labelled.

V. COMBINING AND EVALUATING SETS OF
REJECTING-CLASSIFIERS

While the threshold used in confidence-thresholding can be
varied to achieve a given coverage rate, the classifier produced
by each null-labelling iteration has a fixed coverage rate. We
present a framework for combining a given set of rejecting-
classifiers into a composite classifier in order to achieve a
desired coverage rate. Such composite classifiers are inspired
by the concept of “proportionally mixed classifiers” proposed
by Ferri & Herndndez-Orallo [5].

Two given rejecting-classifiers A and B can be combined to
produce a composite classifier D by randomly selecting which
classifier to apply with probability P(A) = 1— P(B) = p. To
evaluate this composite classifier, we express its performance
metrics in terms of metrics for the original classifiers A and
B. The conditional error rate E° we have used so far is
intuitive to understand in tradeoff plots (such as Fig. 1d)
as the error rate achieved on covered instances. It turns
out that the conditional error rate for a composite classifier
is a function of the unconditional error and coverage rates
for the original classifiers, as shown in Theorem 1. The
unconditional error rate represents the error rate achieved
over all classified instances, including covered and rejected
instances: E* = P(§ ¢ {y,L}). The unconditional error
rate is therefore the product of the conditional error rate and
coverage rate, as shown in Equation 5. Consequently, when

Algorithm 1 minimises the product of conditional error and
coverage contained in the classifier cost (Equation 3), in effect
it minimises the unconditional error.
ExC =Pl #ylg#L)x Pl #1)
=P ¢{y, L}) =E"

We show in the first part of Theorem 1 that the com-
posite classifier’s expected unconditional error rate (E[E%])
is a linear combination of the unconditional error rates for
classifiers A and B, and that the same property also holds
for the expected coverage rate E[Cp|. This is consistent with
Ferri & Hernandez-Orallo’s claim that “proportionally mixed
classifiers” can be represented as a linear interpolation between
the original two classifiers on a plot of unconditional error
against coverage?.

(&)

Theorem 1. The expected conditional error rate (E[ES)])
of composite classifier D is given by %, where
EY, EY, Ca, and Cp are the unconditional error rates and
coverage rates for original classifiers A and B, and p is the

probability of applying classifier A.
Proof:

We first prove intermediate results for the expected uncondi-
tional error E[E?] and coverage E[Cp] rates:

E[Ep] = P9 ¢ {y, L})
= P(A)P(5 ¢ {y, L}[A) + P(B)P(§ ¢ {y, L}|B)
=pEi+(1-p)Eg
E[Cp]=P(§# 1)
= P(A)P(j # L|4) + P(B)P(j # L|B)
=pCa+ (1-p)Cp
E[ED] = P(§ #ylg # 1)
=P(Alg# L)P(§ #ylg # L, A)+
P(Blg# L)P(§ # ylg # L, B)
P(A) x P(g# L|A
P XPGALA)
P #1)
P(B) x P(j # L|B)
Py # 1)
_pCaBs  (1-p)CuBy _ pE%+(1-p)Bh
E[Cp] E[Cp] pCa+(1-p)Ch
|
Furthermore, the second part of Theorem 1 proves that the
composite classifier’s expected conditional error rate (E[E])
can be expressed in terms of the unconditional error and cov-
erage rates of classifiers A and B, mirroring the relationship in
Equation 5 (E¢ = %). Theorem 2 also proves that this simple
formulation for E[E¢)] is equivalent to the non-linear interpo-
lation scheme for conditional error proposed by Hanczar [4].
Note that while their notation interpolates between classifiers
X and O to produce a classifier 0 + x, we continue to refer

x B

2Though they refer to“unconditional error” simply as error, and plot the
inverse of coverage (rejection), which they refer to as “abstention”.



to these classifiers as A, B, and D respectively. Based on
their notation, classifier A rejects X more instances than B,
and D rejects x = pX more instances than B. We also use
the notation of G and M as the counts of instances rejected
by classifier A that are correctly and incorrectly classified by
classifier B (G = X — M), N as the total number of instances,
r = NR = N(1—C) as the number of instances rejected by a
classifier, and R = R4 — Rp=Cp—Cx4 = % Finally, we
note that the corrected definition of M = N(E% — E%) must
be used in place of M = N(E§ — E9) as stated by Hanczar,
as the E° values are relative to different coverage rates.

Theorem 2. Hanczar’s method [4] of non-linear interpolation

for two classifiers A and B also results in an expected
pE4Y+(1—p)Eg

conditional error given by E[E$)| = SO (I=p)C

Proof:

Hanczar sums conditional errors for each possible g correct
classifications out of the = extra instances classified by D
(E519h), weighted by P(g) for binomial distribution B(z, £):

E[E5) = Plg) x Ef
g=0

We expand the above summation and express the conditional

error in terms of the expected value of g, which is m%:

BN~ rp) (2~ 2§)
N-rg—z%—(z-2%)

E4(N — NRp) — pX +pX XM

N — NRp — pX

_ ER(1—-Rp)—pRa +PRA%§_EZ)
B 1—Rp—pRa
_ E3Cp —pRA +p(Ra — Ef + EY)
- Cp —p(Cp — Cay)
_ B} —pER+pEy  pEY+(1-pE}
- Cp—pCs+pCa  pCa+(1—p)Cp

|

This framework for combining rejecting-classifiers also sup-
ports use of the capacity curve and metric proposed by Ferri
& Hernandez-Orallo [5] to compare the performance of sets of
rejecting-classifiers. To construct a capacity curve for a set of
classifiers, we begin by plotting each classifier’s coverage rate
against its unconditional error rate. To cover the full range of
coverage rates, we also plot points for the non-rejecting base
classifier (f°) and the fully rejecting classifier (f+(z) = 1)*.
As linear interpolation between any two classifiers represents
a composite classifier, the convex hull of classifier points
represents a Pareto front where the coverage/error tradeoff of
any point above the curve will be dominated by a point on
the curve. An example of such a capacity curve is plotted in

3We do not consider artificial variations of rejecting-classifiers with full
coverage as Ferri & Herndndez-Orallo do, because estimating their perfor-
mance relies on assumptions of class distributions.
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Fig. 3. Plotting and interpolation between classifiers.

Fig. 3a. Furthermore, the plot of coverage against conditional
error in Fig. 3b demonstrates the results of the non-linear
interpolation required for conditional error.

From an end-user perspective, the conditional error E°
of a classifier should be as small as possible for a given
coverage level C. Given that unconditional error decreases
monotonically with coverage, we can conclude from Equation
5 that classifiers with a rapid decrease of unconditional error
E" with decrease in coverage C are preferred over ones whose
decline is less rapid. In turn, this implies that the area above the
plot of unconditional error versus coverage (i.e. the capacity
metric) should be as large as possible. Furthermore, the
capacity metric evaluates the performance that can be achieved
over the full range of coverage rates [0, 1], similar to how the
AUC for ROC and PRC curves evaluates performance over
all classification thresholds. Therefore, we use the capacity
metric to compare the sets of rejecting-classifiers produced by
confidence-thresholding and null-labelling in Section VI.

VI. EXPERIMENTAL STUDY

In the following experimental study, we demonstrate null-
labelling’s superior handling of class noise as compared to
confidence-thresholding. We also explore the impact of the
correlation between signal and noise on null-labelling and
confidence-thresholding. Furthermore, we interpret the coef-
ficients of the null class to identify features correlated with
class noise (so-called “noise features”) and we demonstrate
the use of the proposed 6 parameter to increase the coverage
rate achieved by null-labelling.

All source-code for the experimentation (including dataset
pre-processing) has been made available online*. The scikit-
learn implementation of logistic regression is applied using
the 1bfgs solver, a maximum of 10,000 iterations (never
reached), and a multinomial loss for multi-class datasets.
Except where noted otherwise, null-labelling is performed
without repetitions (H = 1,7 = 1) on all misclassifications
(0 = 1) from 5-fold cross-validation.

To compare confidence-thresholding and null-labelling in
the presence of class noise, we inject noise into a set of
benchmark datasets from the UCI Machine Learning Reposi-
tory [16], listed in Table I. These datasets represent a variety

“https://github.com/ben-denham/pyrejection
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TABLE I
BENCHMARK DATASETS

Dataset [ N [ K [ Num. M [ Cat. M
ARM (AReM - top 5 activities) 35,999 5 6 0
BNK (Banknote) 1372 2 4 0
DIA (Diabetic) 1151 2 16 3
ELE (Electrical) 10,000 2 13 0
EYE 14,980 2 14 0
DIG (Handwritten Digits) 1797 10 64 0
GAS 13,910 6 128 0
LED 10,000 | 10 0 7
LTR (Letter Recognition) 20,000 | 26 16 0
MUS (Mushroom) 8124 2 0 22
PHI (Phishing) 11,055 2 0 30
SEG (Statlog - Segment) 2310 7 19 0
VEH (Vehicle) 846 4 18 0

of instance (N), class (K), and feature (M) counts (including
numerical and categorical features), and many have been used
in past studies on rejection. While the Gaussian distribution is
commonly used to model feature noise, we use a distribution
that simulates not-at-random class noise. To achieve this, we
add a noise_feature to each dataset with values uni-
formly distributed in range [0, 1]. We then re-assign instance
class values with probability increasing exponentially with
the noise_feature: P(noise|z) = Ae (1 -Troise_rearure)
where A = 0.8 to produce an 80% re-assignment rate
when Zpoise feature = 1, and s is used to scale the [0, 1]
noise_feature values such that they range over 95%
of the probability mass of the exponential distribution, with
s computed as the 95% quantile of the distribution: s =
—M. If a class value is re-assigned, it will be replaced
with a random selection from all possible class values (which
may result in the selection of the instance’s original class
value). This exponential noise distribution simulates a scenario
in which the correlation between input features and class
values holds for typical feature values, but not when the noise
feature(s) reaches extreme/outlier values. Note that because we
inject our own noise, the typical feature noise used with the
LED dataset was not included in our generated dataset.

In addition to the benchmark datasets, we perform experi-
ments with synthetic “radial” datasets that vary the correlation
between the signal features that determine the class value
and noise features that determine the rate of class noise. We
expect null-labelling to outperform confidence-thresholding
to a greater extent when the signal and noise features are
orthogonal to each other. We generate 2-dimensional (z1, x3)
datasets with instances randomly distributed within the unit
circle and an initial binary class value of 1 when z; > 0
and O otherwise (i.e. X is the signal feature). Exponentially
distributed class noise is introduced by randomly re-assigning
class values with probability: P(noise|z) = e **(1=ws)
using the same values of A and s as for the benchmark datasets,
and where w, represents a combination of x; and x5 values
that is mapped from range [—1, 1] to [0, 1]:

TABLE I
RESULTS FOR CT AND NL ON NOISY DATASETS
Capacity E'% @ 80% C | C% @ 50% of E“

CT NL o CT NL o CT NL o
ARM | 800 .805 .002 | 33.3 342 03 | 582 584 05
BNK | 941 951 .007 | 96 8.2 1.1 | 595 731 3.7
DIA | .859 844 011 | 249 264 18 | 61.8 567 28
ELE | 937 953 .002 | 10.1 84 04 |594 750 1.7
EYE | 796 797 .004 | 34.1 342 05 | 543 545 06
DIG | .872 .889 .009 | 21.0 20.7 14 | 642 704 23
GAS | 891 927 .003 | 175 13.5 05 | 547 750 12
LED | .893 933 .003 | 17.7 12.6 0.5 | 540 774 15
LTR | .821 .829 .002 | 31.1 325 04 | 651 639 04
MUS | 937 951 .004 | 102 7.7 06 | 509 70.6 4.6
PHI | 933 942 .003 | 10.7 105 05 | 68.0 729 18
SEG | .887 .908 .007 | 194 178 12 | 665 744 22
R90 | 946 .957 .006 | 8.7 7.3 1.0 | 578 722 4.0
R65 | 947 956 .006 | 84 74 1.0 | 627 738 42
R45 | 944 954 005 |90 81 09 | 665 755 4.6
R25 | 943 950 .006 | 90 8.6 1.0 | 727 770 4.7
ROO | 942 951 .006 | 90 89 1.0 | 781 799 38

([xl,xg] : [cos(a),sin(a)}) +1
2

where « is an angle that determines the correlation between
the signal feature x; and the probability of noise. We perform
experiments with a range of a values from 0° (signal and noise
are fully correlated / both determined by x1) to 90° (signal
and noise are orthogonal / z; is a signal feature, x2 is a noise
feature). These datasets are referred to as ROO through R90.

All datasets are randomly divided into stratified 70/30
train/test splits for performance evaluation, with z-score nor-
malisation applied to numeric features and drop-first one-
hot encoding applied to categorical features. Dataset pre-
processing is performed before train/test splitting, as the
influence of differences in train/test distribution is not part
of the evaluation.

We performed tests with confidence-thresholding (CT) and
null-labelling (NL) on each dataset. Nine iterations of null-
labelling were performed on each dataset, allowing a ca-
pacity curve to be plotted for classifiers: fo,..., f9. For
confidence-thresholding, a capacity curve was created for
each dataset using ten thresholds that achieved coverage rates
[0.1,0.2,...,1], matching the number of rejecting-classifiers
produced with null-labelling. These capacity curves were used
to determine the capacity metric, as well as the unconditional
error rate achieved for a coverage rate of 80% (E“% @ 80%
C), and the coverage rate achieved for a 50% reduction in
unconditional error rate as compared to the classifier with
100% coverage (C% @ 50% of E™).

One hundred experiments with different randomly selected
train/test splits were performed on each dataset, resulting in
one hundred capacity curves and associated metrics for each
rejection method on each dataset. The metric means are pre-
sented in Table II, along with the maximum standard deviation
over both methods (for all metrics and all datasets other than

(6)
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Fig. 4. Comparison of CT and NL on benchmark datasets.

MUS, NL achieved a lower variance). We performed corrected
re-sampled t-tests to test the null hypothesis that there was
no significant difference between the metric values achieved
with confidence-thresholding and null-labelling. The superior
method is bold-faced in Table II where the null hypothesis
was rejected with p < 0.05 for that dataset and metric. These
results were cross-checked with a two-sided Wilcoxon signed-
rank test, which rejected the null hypothesis with p < 0.05 for
all datasets and metrics.

Table II shows that null-labelling significantly outperformed
confidence-thresholding on all 3 metrics that we tracked.
Null-labelling achieved greater capacity than confidence-
thresholding for all datasets except DIA, and was also able
to achieve lower error and higher coverage at the fixed points
more often than confidence-thresholding. The results with the
radial datasets also confirm our hypothesis that improvement
of null-labelling over confidence-thresholding tends to increase
with the cosine of the angle between the signal and noise
features, reaching a maximum at 90°.

In Fig. 4, we carry out an in-depth examination of
two datasets to gain greater insights into the performance

of null-labelling vis-a-vis confidence-thresholding. On the
Segment dataset, we can see from Fig. 4b that NL cap-
tures the relationship between the noise_feature and
the rate of misclassification: rejecting more instances with
high noise_feature values, and fewer instances with low
noise_feature values. However, in Fig. 4a, CT fails to
capture this relationship, as the rate of rejection is approxi-
mately uniform across the range of noise_feature values,
thus exposing the limitation of confidence as a measure for
estimating noise. The superior noise detection capability of NL
explains why it is able to achieve a lower conditional error rate
at approximately the same coverage rate as CT. Conversely,
the plots in Figs. 4d and 4e show that there is a much higher
error rate with little correlation to the noise_feature for
the Eye dataset, indicating that there are other factors that have
a greater impact on classification accuracy than the injected
class noise. These inherent misclassifications do not appear
to be strongly correlated with any particular “noise” features,
resulting in rejection performance from NL that is not much
better than that of CT. We observed similar results with the
Diabetic dataset, for which NL does not perform as well as
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CT.

Furthermore, Figs. 4c and 4f demonstrate how we can
interpret the learned coefficients for null-labelling’s null
class to identify which features are correlated with misclas-
sifications/class noise. For the Segment dataset, the coefficient
for the noise_feature tends to increase with subsequent
null-labelling iterations, indicating that instances with high
noise_feature values will be assigned the null class.
Therefore, we can interpret the noise_feature as being
strongly correlated with the class noise. In the case of the
Eye dataset, the noise_feature coefficient also increases
with subsequent null-labelling iterations, but there are other
features with coefficients of greater magnitude, indicating that
the noise_feature is not correlated with the majority
of inherent misclassifications in the dataset. Note that the
coefficients for noise_feature may not always increase
monotonically: when each coefficient is re-learned by logistic
regression at each iteration, regularisation will result in coef-
ficient values that are only sufficient for class discrimination
relative to all other coefficients.

Finally, Fig. 5 demonstrates use of ¢ to more precisely
control the coverage rate achieved by null-labelling on the
letter-recognition dataset. Decreasing the value of 6 to 0.4
is able to achieve a lower rejection/higher coverage rate.
However, this comes at the cost of conditional error rates
closer to those achieved with confidence-thresholding, because
we are now using the same confidence scores to influence the
selection of instances to null-label.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated the short-comings of
rejection by confidence-thresholding in the presence of not-
at-random class noise, and proposed an alternative rejection
method: null-labelling. Through iterative learning from the
empirical misclassifications of a model, null-labelling enables
a classifier to learn the relationships between input features
and class noise. We have experimentally demonstrated null-
labelling’s capability to provide a better tradeoff between
coverage and error using an evaluation based on a framework

for combining sets of rejecting-classifiers that unifies prior
theories. We have also demonstrated how a classification
model produced by null-labelling can be interpreted to identify
features that are correlated with class noise.

This research has also opened several avenues for future
research. Further work is required to explore the impacts of
class noise on imbalanced datasets, where class noise may alter
the class balance and require more specialised learning and
evaluation methods. The knowledge gained by modelling class
noise with an explicit null class could also be leveraged to
further improve models, in a similar fashion to the probabilistic
and model-based methods for addressing label noise [1]. We
also see potential in applying null-labelling in the context of
active learning, as a means of identifying instances to query.
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