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Abstract

Self-tuning unsupervised analysis of STED super resolution of fluorescent labelled Caveolin-1, confocal microscopy of retina
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Abstract—Identifying objects in fluorescence microscopy is
a non-trivial task burdened by parameter-sensitive algorithms.
With experiments spanning multiple channels, datasets, opera-
tors, and microscopes, there is a clear need for an approach that
adapts dynamically to changing imaging conditions. We introduce
an adaptive object detection method that, given a microscopy
image and an image level label, uses a kurtosis based matching
of the distribution of the image differential to express operator
intent in terms of recall or precision. Examples of image level
labels include genome-based alteration of sub-diffraction limited
cellular structures or pathological diagnosis based on image-
based analysis of tissue section, where we wish to capture those
aspects of the image that support the label, and to what extent.
We show how a theoretical upper bound of the statistical distance
in feature space enables application of belief theory to obtain
statistical support for each detected object. We validate our
method on 2 datasets: identifying Caveolin-1 labelled caveolae
and scaffolds acquired by STED superresolution microscopy, and
detecting amyloid-β deposits in confocal microscopy retinal cross
sections of neuropathologically confirmed Alzheimer’s disease
donor tissue. Our results show consistency with biological ground
truth and with previous subcellular object classification results,
yet adds insight into more nuanced object transition dynamics.
We illustrate the novel application of belief theory to object detec-
tion in heterogeneous microscopy datasets and the quantification
of conflict of evidence in a joint belief function. By applying our
method successfully to confocal and superresolution microscopy,
we demonstrate multi-scale applicability.
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I. INTRODUCTION

SCIENTIFIC discovery in multiscale biomedical imaging is
a difficult task confounded by multiple factors. Discovery

must cope with data that has no, sparse, or conflicting anno-
tation or supervision. Because discovery depends on the data
without prior annotation, robustness to confounding factors
such as changing acquisitions, datasets, and operators is a
key design priority. However, as such robustness relies on
manually adjusting a complex and large set of parameters,
results are difficult to reproduce and replicate in different
laboratories, such that researchers are burdened with time-
consuming and elaborate parameter sensitivity tests. An ideal
method to overcome these limitations is a self-tuning approach
that configures itself for consistent results without user inter-
vention. This allows for traceable and reproducible discov-
ery that combines multiple sources of evidence to support
the claimed observations of a novel phenomenon. Discovery
studies using fluorescence microscopy typically span multiple
cell lines, diverse fluorescent markers (imaged in parallel in
channels), and various microscopes and operators, requiring
a method that adapts automatically to this variability. In this
work we propose a robust, adaptive, and self-tuning method
that enables traceable biomedical knowledge discovery in
heterogeneous multi-scale microscopy. The class of discovery
problems we focus on is the identification of macro-molecular
structures implicated in certain biological phenomena captured
in an imaged specimen from subcellular super-resolution im-
ages to confocal tissue sections. The structures are labelled
with fluorescent markers, where the aggregation (‘deposit’) of
the marker is observed by the microscope (Fig. 1-A). The
identified deposits are not always clearly distinguishable from
the background or each other, for example, in the case of
smaller modular structures gradually combining into larger.
When deposits are indicative of a developing pathology, it is
expected that they span a spectrum of appearances, rather than
a single uniform identifiable instance. We focus on 2 specific
use cases: identifying and distinguishing sub-diffraction limit
(<100 nm diameter) caveolin-1 (Cav1) caveolae and scaffolds,
and identifying retinal amyloid-β deposits associated with
Alzheimer disease. In the first, superresolution (dSTORM) and
network analysis are able to identify different types of Cav1
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structures in fixed cells [1], [2]. Here we use STimulated
Emission Depletion (STED [3]) superresolution microscopy
that can achieve <40 nm resolution and can be used for high
speed live cell imaging [4]. In the second use case, we aim to
distinguish automatically which retinal amyloid-β deposits are
characteristic of Alzheimer disease labelled images, an open
question in the field [5].

A. Problem Statement

Given a microscopy image I and its label L, we wish to
identify the parts of the image that show evidence for L, or
for a possibly divergent L′. L is not necessarily equal to L′ :

L
�
6=L′. The label L and L′ are a subset of a largely unexplored

label space L. In the context of scientific discovery, we are, if
successful, able to offer insight into the evidence based support

for subsets of L. Similarly, L ∩ L′
�
6= ∅, for example L ⊂ L′

holds for a modular component L being a part of a larger
whole L′ [2]. With the contents of the image being the subject
of scientific discovery, the label is obtained outside of the
image domain. For instance, the image acquisition samples
a tissue where a pathologist diagnoses the entire specimen,
or the image captures the phenotype response to a genotype
modification. It is not known if the information encoded in the
image supports the label. We aim to model a function D that
identifies subsets (‘objects’) o of the image and a function SL
that assigns to each object the statistical support for the image
label L.

D : I 7→ o | o ⊂ I. (1)

SL : o 7→ e |e ∈ [0, 1], o ⊂ I, L ∈ L. (2)

In superresolution microscopy images of complex small-scale
protein oligomer structures (Fig. 1-A), exact delineation of
the object boundary is not always possible given the precision
of the system. If the representation of each detected object o
contains sufficient information to quantify its statistical support
for the image-level label, the exact delineation is of secondary
importance. In the remainder of this work, we use the notation
o → L for the proposition that the object o supports the
label L, and SL = S(o → L) is the function S assigning
a continuous support value to the proposition in the context
of belief theory [6], a generalization of probability functions.
A ‘frame of discernment’ Θ = {o→ L |o ⊂ I, L ∈ L} is the
set of all sources of evidence for the image I and label-space
L. When |T | = 1 ∀ ⊂ Θ, subsets of Θ are referred to as
‘singletons’.

B. Requirements for a solution

In this section, we list what we believe are must-have
features of an ‘ideal’ method for solving the stated problem.

1) Adaptive: In our problem setting, the diversity of
datasets, microscopes, operators, channels, and even temporal
information makes for a highly variable acquisition space.
An ideal method is not insensitive to this variation, but
rather adapts to it to ensure the information extraction is not
interrupted or biased.

2) Self-tuning: The ‘ideal’ function D should retrieve ob-
jects from the image without requiring the operator to spend
time on algorithm-specific parameter sensitivity studies. If
exploring a parameter space is unavoidable, then ideally the
parameters should be higher level, wherein the intent of the
user in terms of precision or recall is automatically translated
into lower level algorithm-specific parameters ensuring robust
reproducible results even for unseen datasets.

3) Unsupervised: Provision of a per-object ground truth
annotation of the sought-after new discovery is, by defini-
tion of discovery, contradictory. Annotations can bias knowl-
edge discovery because supervision is based on pre-discovery
knowledge that can be flawed [7] and can prevent extracting
conflicting novel knowledge.

4) Unhindered by choice of statistical method: Modelling
the statistical support (function S) should not be restricted by
technical requirements induced by the chosen statistical frame-
work, such as the additive property for Bayesian inference. A
trivial example of a function S that models ‘ignorance’, or a
vacuous belief [6], is a naive SL(I) = 1 that only restates the
knowledge about the given image label itself, and is unable
to infer any relevant image parts, i.e. SL(o) = 0 |o ⊂ I,
and thus

∑
SL(o) = 0 |o ⊂ I. An alternative example is

an image heavily perturbed by noise such that state-of-the-art
object detectors fail to recover any objects containing signal
to support L at all above a random baseline. Unless careful
design ensures inference is robust to the choice of prior [8],
one risks either invalidating the chosen inference technique
or restricting the solution space. Bayesian inference requires
assignment of a probability value to ‘singletons’, yet such a
decomposition of Θ into singletons is not always possible due
to lacking evidence or support. An assignment of uniform prior
support can be used as a workaround, but this is not always
justified or can violate domain restrictions. A similar constraint
is Cromwell’s rule [9], where a prior of one or zero results in
a one or zero posterior.

5) Adapts to conflicting evidence: In the absence of perfect
information, it is expected to find a single object o ⊂ I that
provides evidence for multiple partially conflicting labels, i.e.
SL(o) 6= 1−SL′(o). An ideal method allows the quantification
of such conflicting evidence.

6) Supports a continuous support for the label space: The
evidence provided by an image may not lead to the exclusion
of all labels but one. For example, an image of tissue where a
pathology such as Alzheimer is present can have deposits that
are indicative of healthy tissue as well as deposits that support,
to a certain extent but not completely, the diagnosis. In this
case, an ‘ideal’ function SL(o) should output the support of
o for each L, either ‘healthy’ or ‘disease’, as a floating point
value representing the position of the support on a continuous
scale from uncertain (0) to certain (1).

7) Uncertainty-encoding and bounded error: The function
S should, in addition to capturing support, encode the uncer-
tainty involved in its computation. Given a label and a source
or body of evidence for that label, uncertainty is defined as the
difference between the maximal and minimal support for the
label provided by the source [10] (Fig. 1-C.3 ‘r’). Our working
definition of uncertainty requires lower and upper bounds on
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the support for a label. A non-trivial theoretical bound (trivial:
0 ≤ SL(o) ≤ 1), in contrast to an empirical bound, transfers
across datasets and enables more robust reproducibility in
scientific discovery.

8) Spans sparse heterogeneous data: Obtaining data for
biomedical knowledge extraction is a time and resource inten-
sive process with limited experiment and replicate sizes that
reduce statistical power. An optimal method should be able to
report results on few images, without requiring retraining or
transfer learning. Ideally, the approach should be decoupled
from the acquisition, that is, for microscopy, the approach
should work multi-scale, and be robust to device and operator
variance.

C. Challenges in current approaches

The state-of-the-art methods tackling problems closest to
our problem statement are broadly divided into (i) joint seg-
mentation and classification, (ii) interpretable deep learning,
and (iii) multiple instance learning (MIL).

(i) Joint or hybrid segmentation and classification decom-
poses the image into segments and classifies each segment, and
have been applied successfully to microscopy [11], chromo-
some microscopy [12], breast biopsy [13], fundus images [14],
and histopathology [15] to name a few. However, typically they
require annotations, which we do not have, do not provide a
theoretical upper bound to the label assigned to each segment,
nor is it clear on how to apply the same method across
heterogeneous datasets or quantify conflict.

(ii) Explainable AI, where neural networks can, for example,
produce the regions of the image that provide the most decisive
information supporting the predicted image level label, are
covered in more detail in recent reviews [16], [17]. Recently,
these approaches are accompanied by domain fusion, for
example augmenting MRI of Alzheimer [18] patients with
meta-data to learn the MRI signature of Alzheimer disease,
or fusing diagnostic reports with image data [19] to offer
interpretable improved diagnosis. While in such approaches
the support each region has for a single label is found, it is not
optimized to split those regions into smaller distinct objects,
nor is the support bounded. Filtering the attention maps [20]
to obtain a more precise delineation of which regions of an
image support a label are one direction closing the gap towards
granular object detection folded into interpretable AI.

(iii) In MIL terminology, a label exists for a ‘bag’ of
instances. The ‘bag’ can refer to the image, where instances
would be objects in the image. The standard MIL model has
it that all bags with label L− only contain instances with
label L−. Bags with label L+ contain instances with at least
one instance (‘witness’) with label L+. MIL has been adopted
successfully for microscopy-specific tasks such as classifying
and segmenting cells [21] with recent reviews [22], [23]
detailing the different approaches. We are not aware of MIL
methods that incorporate the explicit encoding of (conflicting)
evidence and uncertainty in the context of evidence theory, nor
do MIL approaches feature a theoretical bound on the support
for each observed instance. In conclusion, we did not find a
method that fulfils all our solution requirements.

D. Contribution

We introduce a 2-stage approach to model functions D
and S (Sec. I-A), object detection and evidence-based object
labelling, respectively, designed to satisfy all the aforemen-
tioned method requirements (Sec. I-B) and is novel in its
combination into a single framework. The ability to distinguish
scaffolds and caveolae in live cell superresolution microscopy
and the application of belief theory to identify Alzheimer
specific amyloid-β deposits in confocal microscopy is novel.
Our contributions are:
• Adaptive and self-tuning object detection using the kurto-

sis of the Laplacian to match distributions across channels
for fluorescence microscopy (Sec. II-A).

• Belief theory based labelling to quantify the support of
the identified objects for an image-level label (Sec. II-B).

To the best of our knowledge, our use of kurtosis to es-
timate algorithm-specific parameters consistently across het-
erogeneous data, such as images from different devices, is
novel. Furthermore, in this work, we do not have object-level
annotation. Rather than an ad hoc method for specific blob
detection, our work provides a novel, self-tuning, and robust
framework for analyzing data without pre-existing annotations
required for training and evaluation.

In Section II we detail both stages of our proposed method.
Recognizing the importance of dataset, operator, and acquisi-
tion agnostic performance, we show that our method obtains
stable results on a heterogeneous dataset when the operator and
microscope used to generate the data differ from the dataset
used for inference, and perform a parameter sensitivity study
to confirm that our method obtains consistent results.

II. METHOD

In this section, we outline our method and verify that it
satisfies the requirements listed in Section I-B.

A. Adaptive kurtosis aligned object detection

1) Object detection principle: While simple manual thresh-
olding can balance a trade-off between precision and recall,
finding the same consistent balance across images, channels,
and datasets using manual thresholding requires a per-image
threshold and is sensitive to high operator variance. We
illustrate how we achieve this goal when thresholding V , the
negative Laplacian. The image Laplacian ∇2, a measure of
the second derivative of the image intensity, can be used to
detect edges of objects where ∇2 changes sign. In 2D mi-
croscopy images of 3D fluorescent deposits, we can leverage
that connected components of V = |min(∇2, 0)| (Alg. 1,
line 5) coincide with the approximate outline of the objects,
since the intensity curve of such observations is bell-shaped
(Fig. 2) when the fluorescent marker is labelling complex
spherical structures with a non-constant height. Even non-
specific binding can maintain the same assumption given its
tendency to self-organise [24] in concentrations of fluorescent
label. More formally, the domain, use case, and acquisition
allow us to state that the intensity profile for a single object
can be approximated by a generalised normal distribution with
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Fig. 1. Cav1 molecules imaged with fluorescent conjugated antibodies (A.1). A Cav1 molecule forms increasingly complex structures with oligomers grouping
into scaffolds (SC) up to (networks of) caveolae (C, A.2). Our representation is deliberately simplified as this is still an active research question. A Venn
diagram representation of the nested phenotypes in our problem statement (B). Cav1 KO cells only exhibit non-specific binding background labelling (BG)
with the Cav1 gene knocked out. PC3 cells exhibit scaffolds (SC) and non-specific binding. PC3-PTRF cells exhibit all three. Panel C shows the control flow
of SPECHT combining self-tuning object detection (Alg. 1, Sec. II-A) with belief function based labelling (Alg. 2,Sec. II-B). Examples for the object detection
(D) for representative images of Cav1 KO (D.1.A, intensity increased for visualization) and PC3 (D.2.A) cells with corresponding Laplacian and object mask.
It is hard to distinguish between Cav1 deposits in PC3 versus Cav1 KO, even in Laplacian space (D.1-2.B). The need to identify non-specific labelling in
PC3 and PC3-PTRF is crucial to avoid mis-identification with scaffold-like structures. The PC3-PTRF image (E) shows Specht’s belief based identification of
Cav1 objects, with high belief to be caveolae (E.d, red) showing an expected strong colocalization with PTRF (Cavin-1), a protein required for formation of
Caveolae. Transient objects believed to be on the spectrum between scaffold and caveolae (E.a-c, orange) are colocalizing with lower PTRF. An object with
high belief to be a scaffold shows a disjoint colocalization (E.b, green). An instance of identified non-specific labelling is shown in E.e (blue-green). Images
in D, E are insets of STED superresolution images containing a single cell each with 1e3 objects per image.

probability density function β
2αΓβ−1 e−

|x−µ|
α

β

with α scale, µ
location, Γ the gamma function, and 1 ≤ β ≤ 3. We apply a 2-
stage Gaussian (Alg. 1-line 4) smoothing before and after V to
ensure pixellation effects are minimized, with σ set at or below
the precision of the system. This is related to the Laplacian of
Gaussian (LoG) approach, underlying ‘blob’ detection in for
example ‘scale-space’ object detection [25]. However, in the
classical computer vision formulation of ‘blob’ detection, the
object representation is assumed to have a constant or similar
representation, not bell-shaped as is the case in our fluorescent
microscopy use cases. The 2nd σ is used to smooth rectilinear
effects by the Laplacian operator, the first can be omitted when
the acquisition microscopy has a specialized deconvolution
operator tuned to the point spread function used.

2) Self-tuning adaptive detection: Given an object detector
that gives a higher response with respect to the location of
the object, we need to threshold the response to obtain a
binary mask serving as object detection. To unburden the
practitioner and improve reproducibility as well as consistency
across images and channels, a self-tuning approach is needed.
The practitioner can be given the option to express their
intent in favoring precision or recall (Fig. 2) and expect to
have that intent translated consistently across heterogeneous
datasets into corresponding values in the parameter space of

the object detection method. In order to express user intent
consistently, we have to find a way to translate that parameter
across distributions of V -space. We observe that an image
with a few bright objects will have a long-tailed distribution
in V -space, whereas an image with a high frequency of faint
objects will have a short-tailed distribution in V -space (Fig. 2-
B red, blue, respectively). The kurtosis of a distribution is
a scalar value increasing with the length of a tail of the
distribution. We illustrate this behavior in biological data in
Fig. 1-D: compare Cav1 KO versus PC3 and PC3-PTRF; 3
cell lines that express markedly different image phenotypes
(Fig. 1-B, Sec. III-A). We next use these insights to normalize
V to ZV = | Vi−E(X)√

Var(V )
| ∀ Vi and then obtain an estimate

E′z ∼ E[Z] as a consistent threshold that can be scaled up
or down consistently across images. While we can compute
E′z ∼ E[Z] =

∫
zf(z)dz, this entails that we have a

probability density function, which in practice involves fitting
a parametric function, a process that is non-trivial to do
consistently across datasets, and unless corrected will have
a larger error at the tails of the distribution. Yet we have
established that it is at those tails that most of the variation
will occur. We can end up with E′zi < E[Zi], yet E′zj > E[Zj ],
defeating the purpose of obtain a consistent threshold in the
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worst case. However, when we have E′zi < E[Zi] ∀i, then
we are assured that our estimate will be consistent even in
the worst case, and can be scaled up or down consistently as
well. We can derive such a strict lower bound by noting that
kurtosis(V ) = E[Z4

V ] [26]. By a special case of the Cauchy-
Schwartz inequality, we know that

∀xi ∈ R+
n∑
i=1

x2
i ≤ (

n∑
i=1

xi)
2 ≤ n ∗

n∑
i=1

x2
i if n <∞ (3)

from which it then follows that
n∑
i=1

Z4
i ≤ (

n∑
i=1

Zi)
4. We can

then derive:
4
√
k(X) ≤ E(Z). (4)

We now have a lower bound approximation E′z to E(Z)
that allows us to express a threshold on the normalized
Laplacian that scales with the shape of the distribution of the
negative second derivative of the image, producing consistent
results across images, channels and datasets. Moreover, by
weighting the kurtosis, we can allow the user to alter the
threshold in an distribution-aligned space. We use the ‘excess’
kurtosis (k-3) in our implementation. We scale the outcome
by a floating point parameter ‘precision-recall (PRC)’ to
complete our aim of intent-based self-tuning (Sec. I-B2) and
adaptive method (Sec. I-B1). A value PRC > 1 leads to a
distribution-aligned object extraction that favours recall, PRC
≤ 1 favours precision. Appendix figure 2-B illustrates the
scaling effect on in silico distributions. Figure 7 shows the
aligned object detection in action on three markedly different
images and contrasts against a fixed threshold approach in
Z-space. However, our results illustrate the need for an auto-
tuning approach where the object detection method retrieves
objects consistent with the end-user intent by aligning the
image differential distributions. For a value of PRC=2 (high
recall), the associated z′ ≤ E(Z) values are listed to illustrate
the contrast with a fixed Z-value threshold. The complete
algorithm to detect objects from a heterogeneous set of images
is listed in Alg. 1.

Algorithm 1 Adaptive kurtosis-based self-tuning object detec-
tion

1: Input Set 2D images I, parameter σ1, σ2, precision-recall ratio (PRC))
2: Output Binary object masks M
3: for Ij ∈ I do
4: ∇2

j ← Gaussianσ1 (Laplacian(Gaussianσ2 (Ij))

5: Vj ← |min(∇2
j , 0)|

6: zj ← 4
√

kurtosis(Vj) . Adaptive consistency across channels

7: Vj [Vj ≤ µg(Vj) ∗ σg(Vj)
zj
PRC ]← 0 . Eq. 4

8: Mj ← connectedcomponents(Vj)
9: end for

B. Probabilistic object labelling using belief functions.

The previous section gives us a function D (Eq. 1) that
decomposes an image I with label L into objects ‘o’. Here we
aim to find a function S (Eq. 2) that quantifies the evidence
for the proposition o→ L for each object.

Computing support for an image level label using belief
theory: We model the problem of finding S for a label L ∈ L
and image I:

SL : o→ (p, q, r) |{o 7→ L} ⊂ Θ, o ⊂ I, p, q, r ∈ [0, 1].
(5)

The triplet (p, q, r) follows the notation of Dempster [10]
where ‘p’ expresses the belief supported by probabilistic
evidence that o supports the label L. ‘q’ is the belief o
does not support L. ‘r’ is the uncertainty in measuring
the respective beliefs. More formally a belief function on
a set of propositions Θ is a function Bel : 2Θ 7→ [0, 1]

such that Bel(Θ) = 1, Bel(∅) = 0, and Bel
(

n⋃
i=1

Ai

)
≥∑

I⊂{1,..,n}∧I 6=∅
(−1)|N |+1Bel(Ai) ∀Ai ⊂ Θ. Evidence can

be encoded by a mass function m(A)→ [0, 1]|A ⊂ Θ, where
indivisible subsets A are referred to as ‘focal elements’, such
that

∑
A⊂Θ

m(A) = 1. Probability functions and probabilities

in Bayesian inference are a special case of belief functions
where all focal elements are singletons. Unlike probability
functions, for general belief functions Bel(A) 6= 1 − Bel(A).
The ‘plausibility’ function is defined as Pl(A) = 1− Bel(A),
and Pl(A) ≥ Bel(A)∀A ⊂ Θ. In the (p, q, r) notation, we have
that p = Bel(A), q = Bel(A), r = Pl(A)−Bel(A). The reader
can find a graphical illustration in Figure 1-C.3. For a more
in-depth review of belief theory, we refer the interested reader
to Yager et al. [27].

1) Encoding evidence: Given a set of images J with (sin-
gular) label LJ , and a set of images I with unknown label,
we want to identify objects in images and assign to each
object o a tuple (p, q, r) expressing the belief, plausibility and
uncertainty on the proposition o→ LJ . In Alg. 2, we illustrate
the steps we undertake to arrive at a belief based labelling of
objects in images. The sets of images J and I can originate
from different channels. The adaptive object detection stage
ensures consistent results regardless of channel. After object
detection (Alg. 1), we compute a feature descriptor for each
object; in our experiments: intensity (sum), area (pixels) and
Laplacian (V , sum), a simple, low-dimensional, with non-
independent features. We next compute the statistical distance
of any object o to the distribution of objects in images J
in feature space using the Mahalanobis distance (Alg. 2-
line 11) which accounts for co-dependent dimensions. The
Mahalanobis distance range ([0,∞)) is not interpretable as
a mass function.

2) Inferring plausibility: We want to be able to quantify
both relative support and support for an individual label. We
normalise the statistical distance (Alg. 2, line-13) so we can
leverage Cantelli’s theorem [28]

Pr[Zi ≥ z] ≤
1

1 + z2
(6)

to assign a theoretical upper limit to the probability that the
object in question supports a label, which then becomes the
plausibility qj = Pl(o → LJ) ≥ Bel(o → LJ). From
belief theory [10], we know that Bel(A) = 1 − Pl(A). For
o ⊂ I we can formulate pi = Bel(o→ LJ) = 1 − qj .
When we swap I, J we can obtain qi and pj , giving us
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ri = qi − pi and rj = qj − pj . Figure 1-C.3 illustrates
the application of belief theory based labelling on object
detection and the interplay between belief and plausibility.
The resulting support function has no limiting specific priors
or assumptions (Sec. I-B4), is continuous (Sec. I-B6), has a
theoretical upper bound (Sec. I-B7, and requires no supervised
training data (Sec. I-B3). When we are interested in relative
support, comparing support for L1 versus L2, the statistical
distance can be sufficient without normalization. However,
normalization allows us to compute plausibility and support
for individual labels.

Algorithm 2 Probabilistic labelling algorithm
1: Input Images J with label LJ , Images I
2: Output PlI , plausibility labelled objects for I
3: MI ← objectdetect(I, σ1, σ2, PRC) . Alg. 1
4: MJ ← objectdetect(J, σ1, σ2, PRC) . Adapts to channel
5: FJ ← {features(oji) | oji ∈MJ [j], j ∈ [1, |J|]}
6: µJ ← E(FJ ), ΣJ ← Cov(FJ )
7: D ← [ ]
8: for Ij ∈ I do
9: for ok ∈Mi[j] do

10: xk ← features(ok)

11: Dj [k]←
√

( ~xk − ~µJ )TΣ−1
J ( ~xk − ~µJ ) . Mahalanobis

12: end for
13: Zj ←

Dj−E(Dj)√
Var(Dj)

. Z-normalization

14: for ok ∈Mi[j] do
15: Pl[ok → LJ ]← 1

1+Zj [k]2
. Eq. 6

16: end for
17: end for

In Section III we apply our method to 2 use cases. First,
we show how to apply our method on a hierarchical problem
formulation where we differentiate between 3 nested labels
{o ∈ LCav1KO} ⊂ {o ∈ LPC3} ⊂ {o ∈ LPC3−PTRF }
where a subset label is more specific as illustrated in Fig. 1-
B). We validate our results with independent biological ground
truth and previous art. We offer a parameter sensitivity study
to quantify robustness. Second, we illustrate how to extend
our method across heterogeneous small datasets and compute
a joint belief function while quantifying the conflict between
the composite belief functions. To the best of our knowledge
using a belief theory based approach for object identification
in images is novel.

In the following section we will apply our method to two
distinct use cases to illustrate more advanced usage, in addition
to validating the method.

III. USE CASES

The full description of the datasets used in this section is
listed in the Appendix (Sec. A). Each subsection has a detailed
breakdown of dataset structure, as this differs per use case.
The use cases share that each is composed of 2D image / label
pairs, where each image is a 2D observation of 3D fluorescent
labelling.

A. Capturing the gradual construction of complex protein
structures in live cells

Caveolae, subcellular structures composed of Cav1 protein
complexes, are ∼100 nm invaginations in the cell membrane
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Fig. 2. The principle of object detection using negative Laplacian of a
2D observation of 3D fluorescent emissions (A). Kurtosis scaling estimates
the required Z-threshold that aligns distributions across channels, cells, and
operators (B). The PRC parameter works in kurtosis space, allowing the user
to scale object detection consistently in favor of precision or recall across
images, channels, and time without risking overfitting to a single image.

with a varied spectrum of functions [29]. Cav1 forms non-
caveolar scaffolds (SC), including 8S oligomers that combine
to form larger non-caveolar hemispherical scaffolds as well
as caveolae (Fig 1-A.2) [1], [2], [30]–[32]. Scaffolds recruit
Cavin1 (PTRF) to finally become caveolae (C) illustrated in
Fig. 1-A.2. The gradual formation process enables a cell to
respond to mechanical and hypotonic stress and is a factor
in metastasis [29]. In fixed cells, superresolution (dSTORM)
network analysis identifies individual scaffolds into separate
subtypes whose modular similarity suggests that smaller scaf-
folds combine to form larger scaffolds and caveolae [2]. To
allow investigation of the dynamics of caveolae biogenesis in
live cells, we undertook to develop an approach to distinguish
scaffolds and caveolae using an alternate super-resolution mi-
croscopy approach, STED, that is amenable to high speed live
cell imaging. Cav1-labelled fluorescent deposits are identified
in STED microscopy images and assigned a belief label de-
scribing where the identified concentration is on the spectrum
between non-specific background labelling (BG, Fig. 1-A.1),
scaffolds, or caveolae. BG deposits are fluorescent markers not
associated with their biological target Cav1 molecules. BG can
be considered background signal, but is differing from signal
perturbing noise. BG fluorescent marker can have remarkable
self-organising properties similar to free floating proteins [24].
Identifying BG allows us to exclude it from our biological
targets. We study 3 cell lines: Cav1 CRISPR/Cas KO MDA-
MB-231 cells with genetically disabled expression of Cav1,
PC3 with genetically disabled expression of PTRF, and PC3-
PTRF with PTRF and Cav1 enabled. In Cav1 KO we can
only observe BG, in PC3 only SC and BG, in PC3-PTRF the
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SC, BG and C are present (Fig. 1-A,B). Our label space L
is then {BG, SC, C}, with subsets PC3={BG,C} and PC3-
PTRF=PC3 ∪ {C}.

1) Experimental procedure: We detect fluorescent deposits
(Alg. 1) in Cav1 KO and PC3 cell images and apply the
belief function labelling (Alg. 2) to obtain qx = Pl(o → Lx)
and px = Bel(o→ Lx) = 1 − qx, where x is BG, PC3
respectively. Next, we process superresolution images of fluo-
rescence labelled Cav1 deposits in PC3-PTRF (shorthand P3)
cells. PC3 cells contain both BG and SC objects, or more
formally qPC3 = qSC+qBG, therefore qSC = max(qPC3−qBG, 0).
The max formulation ensures the correct assignment to 0
plausibility when for outlier objects qPC3 < qBG. The
subtraction of plausibility functions represents the elimination
of the maximum support of a subset (BG) from a superset
(PC3) to correctly bracket the maximum support of the subset
SC = PC3 \ BG.

We know that objects unique to PC3-PTRF cells are (for-
mations of) caveolae (C), therefore pC = Bel(oP3 → LC) =
Bel(oP3 → LBG)∧Bel(oP3 → LSC) = pBG ∗pSC. We visualise
the results for a single PC3-PTRF cell in Figure 1-E where
blue, green, and red gradients correspond with qBG, qSC and
pP3, respectively. From visual inspection, we see correlation
of colocalized PTRF with objects labelled with a high pP3
value, as expected (Fig. 1-E.a,d). More interestingly, we can
now identify objects that are transitioning between SC and
C (Fig. 1-E.c). To confirm this, we next perform extensive
validation.

2) Validation: The scientific method obliges us to try, to
the best of our ability, to falsify [33] our results. We use
two independent sources of information, not leveraged during
the design of the method. First, we know from previous art
that the frequency of caveolae in the PC3-PTRF cell line has
been reported at ∼20% [2], when compared to other Cav1
structures. In Fig. 3-A, we show the cumulative distribution
function (cdf) of pC. The 20% caveolae frequency coincides
with a sudden and sustained increase of the cdf (pC ∼ 0.32),
or more formally the knee or elbow of the function [34]. Given
the imbalanced frequency, we expect to see the classification
boundary to coincide with a sudden increase in frequency of
a probability label. The bi-modality of the right hand side of
the probability density function (pdf) is indicative of 2 high
deposits of object types, namely SC and BG. We observe that
the network analysis [2] based decision boundary for caveolae
in PC3-PTRF is consistent with our belief label, given that the
cdf and pdf of our label show a marked and sustained increase
in frequency (‘elbow’ of the cdf) coinciding with the network
analysis decision boundary. Second, we know that caveolae
can only form in presence of PTRF. Therefore we expect
to see an increasing correlation of PTRF-Cav1 colocalization
as pP3 increases. We compute PTRF colocalization P by
measuring the mean PTRF intensity for each Cav1 object.
The regression computes a linear model between pP3 and P
for all objects, for all cells, per replicate (Fig. 3-C, replicate
is a repeat experiment to ensure consistency). PTRF colocal-
ization increases markedly when pP3 increases. In Fig. 4-C
a LOWESS-regression [35] is computed to discover a more
nuanced behavior in the correlation with PTRF association.

Regression of belief function to  colocalization of PTRF is consistent with ground truth
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Fig. 3. Validation of the probabilistic labelling. The network analysis based
classification reports a ∼20% frequency of caveolae in PC3-PTRF cells. This
threshold coincides with the inflection point of the cumulative density function
(BelQ(o) ≥ x) of our labelling (A) a label of ∼ 0.32 (Bel(¬(o→ SC∨o→
BG)). Our belief function has a clear correlation with presence of PTRF (B),
required for caveolae to form and unique to PC3-PTRF. Results are consistent
across replicates (n=3).

Probabilistic labelling of objects in PC3PTRF is consistent across parameter space
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Fig. 4. Parameter sensitivity study shows increased correlation with mean
PTRF is invariant to our parameter space. Precision-recall (A) and sigma (B)
for cell 5 of replicate 1, the median of the validation results (C.1- J), are
tested. Results for all cells, all replicates (C.1-3).

All cells show a consistent pattern across replicates. PTRF
association markedly increases from non-responsive to a linear
increase with the inflexion point of the LOWESS curve around
∼ 0.35, close to the network analysis based decision boundary
equivalent of pP3 at ∼ 0.32. The linear increase beyond the
inflection point reflects the expected gradual increase as PTRF
is recruited to construct caveolae.

3) Parameter sensitivity study: Our method has 2 parame-
ters: the Gaussian σ (std, Alg. 1) used in the smoothing and the
precision-recall balance. Sigma should be at or below system
precision to avoid creating artificially joined objects. For the
Cav1 dataset, we omit the first Gaussian filter (σ1, Alg. 1),
the sigma reported here is σ2. In superresolution microscopy,
a deconvolution operation tuned to the acquisition specific
point spread function is more accurate in restoring the signal.
PRC is set at the users discretion; it is nonetheless important
to document what its exact impact on the result can be. In
Figure 4-A we compute the results for replicate 1, Cell 5, the



8

median of the trend (Fig. 4-C). A lower PRC (1.5) results
in fewer, brighter objects dominating the selection. Fewer
spots similar to non-specific Cav1 binding will be included
explaining the upward shift of the curve while retaining the
trend. When PRC is high (2.5) the inverse process occurs
with BG spots driving the mean PTRF association lower. A
larger sigma (2 ↔ 1) can lead to low intensity borders being
included into the mask of an object. When those pixels are
outside of the actual caveolae structure the expected PTRF
association is not that of caveolae but of background, reducing
the mean PTRF association, resulting in lowered correlation.
We conclude that our parameter space does not invalidate our
results with the two independent sources of information. Our
method is therefore capable of extracting and identifying Cav1
structures in STED superresolution microscopy.

B. Identifying retinal amyloid-β deposits associated with
Alzheimer disease

Identification and quantification of amyloid-β (Aβ) deposits
in the retina in relation to Alzheimer disease (AD) is an
open research problem [5]. In previous studies using con-
focal microscopy on post-mortem donor tissues, retinal Aβ
quantification was performed manually by blinded raters [36]
or semi-automatically with manual segmentation. [37]. The
resulting measurement of retinal Aβ would be tested for its
relationship with age, AD neuropathology, retinal regions, and
other measures of interest. As the scarcity of postmortem
retinal tissues from neuropathologically confirmed AD donors
often limits the size of such data, variability from acquisition
and manual raters can affect the quantification of retinal Aβ
and pose a challenge to achieving statistical significance. We
illustrate how we can extend our method for measuring Aβ
across three heterogeneous sparse datasets of fluorescence
confocal microscopy images of retinal cross-sections after Aβ-
specific immunohistochemistry, acquired using two different
microscopes each operated by a different researcher. Rather
than counting objects in the image, we use the belief function
to identify which fluorescent marker deposits are more likely
to be present in an AD image.

1) Applying belief functions to identify AD across hetero-
geneous data: We collected the following sets of images and
labels:
• IH1

, LH : retinal tissue from healthy donors, microscope
1, n=2

• IH2
, LH : retinal tissue from healthy donors, microscope

2, n=3
• ID1 , LAD: retinal tissue from AD-confirmed donors,

microscope 1, n=3.
We show an example image from each set in Figure 5. We
identify fluorescent objects in all healthy images using Alg. 1
and obtain qxLH = Pl(o → LH) where x indicates which set
of healthy images is used (1,2). Next, for each object detected
in each AD image, we obtain as before pxLH = 1− qxLH =
pxLAD

. In Figure 5-D,F we illustrate the outcome of x=1, x=2
respectively. We use Dempster’s combination rule [38]:

m(A) =

∑
m1(B)m2(C)|B ∩ C = A∑
m1(B)m2(C)|B ∩ C 6= ∅

, |A ⊂ Θ (7)

to define a joint belief function that combines the evidence
from both sources to support a proposition A (o→ L), while
allowing the expression of the disagreement. Dempster’s rule
uses probability mass functions, which we can obtain from
our belief functions by observing that our propositions (o →
L) are singleton focal elements, therefore in our case Bel(A)
= m(A) (m(A) =

∑
B⊆A

(−1)|A\B|Bel(B)). We enumerate in

Table I the intermediate results needed to compute the joint
mass function for our use case. Let for a proposition A =
(o→ L) the probability mass mH1

(A) = t and mH2
(A) = s

respectively. The table is indexed by subsets of all propositions
(Θ) on which the belief functions are defined. An entry in the
table on row B, column C represents mH1

(B∩C)∗mH2
(B∩

C). The joint mass function mH′(A) is then given by:

TABLE I
DEMPSTER COMBINATION RULE FOR ALZHEIMER USE CASE. A,B,C ⊂ Θ

B ∩ C → [0, 1] mH1 (A) = t mH1(A) = 1− t
mH2 (A) = s A→ ts ∅ → s(1− t)
mH2(A) = 1− s ∅ → (1− s)t A→ (1− s)(1− t)

mH′(A) =
ts

1− ((1− s)t+ (1− t)s))
(8)

Combining sources of evidence should be accompanied by
a quantification of their disagreement or ‘conflict’ to allow
a practitioner transparency in the construction and usage of
the joint model. The weight (W) of conflict of the joint mass
function, an expression of the disagreement between the two
models, is given by the logarithm of the normalisation term
W = − log(1 − ((1 − s)t + (1 − t)s))). Combination is not
meaningful when both sources are in complete contradiction,
that is (t, s) = (0, 1) ∨ (1, 0). In such cases W is infinite,
allowing the practitioner a sanity check for combination. By
formulation a closed form expression for the joint model we
satisfy the requirement to span heterogeneous data (Sec. I-B8).

2) Results: In Figure 5-D,E,F we illustrate the difference
between the separate and joint belief functions. The individual
belief functions are consistent in their results with respect to
each other and the visually easily observable AB-deposits. The
joint belief function combines both models to offer a weighted
combination of the evidence provided by each model. In
Figure 6 we plot the weight of conflict of the joint belief
function for all 3 AD images. The weight of conflict is the
smallest at both extrema of the joint belief function, indicating
that the models from the two different microscopes agree the
most for the objects that are strongly believed to be from in a
healthy or AD retina by the joint belief function, while there
is a greater disagreement for the objects without strong belief.
A practitioner can use the weight of conflict for each object-
prediction pair to quantify the agreement between multiple
sources of evidence along with the output of joint evidence
based on the joint belief function. (Sec. I-B5).

IV. DISCUSSION AND CONCLUSION

The motivation for this work was the need for a robust,
adaptive, and self-tuning unsupervised probabilistic object
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E Joint model

B healthy donor tissue (H2)A healthy donor tissue (H1)

0       1

F Component model 2

D Component model 1

0    

10 um

C AD donor tissue

Fig. 5. Results of the separate and joint belief functions on Alzheimer’s
retina study. Examples of the healthy retina images from different microscopes
(H1, H2; panels A, B) and the AD retina image from microscope 1 (C).
Visually easily observable amyloid-β deposits are marked by white circles
in C. The AD image is analysed using the H1 (D), H2 (F) and joint H’ (E)
models. Objects are labelled as a function of the Bel(o → AD+) 7→ [0, 1]
function where 1 (red) indicates strong evidence support for the out of band
AD image level label. Despite high inter-operator and acquisition variance, the
predictions of all three models are consistent for visually observable amyloid-
β objects (white circles) with disagreement exemplified by the blue marking.
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Fig. 6. The weight of conflict (y-axis, conflict between component belief
functions) as a function of the joint belief function BelH′ (x-axis) for the
Alzheimer pilot study for all 3 AD images. A second order regression is fit
through the points, with each point representing the label of an object in
one of the 3 images. Minimum conflict occurs at either ends of the range of
BelH′ , with minimal conflict maximal for BelH′ ∼ 0.5.

detection method applicable to heterogeneous multi-scale su-
perresolution microscopy. while it is feasible to use a larger
number of more elaborate features to describe objects, e.g.
deep learning, during development we found using simple low-
dimensional features and statistical modelling obtained results
validated by biological ground truth. Per Occam’s razor, the
introduction of more complex models would not have been
justified. We note that our formulation of belief functions
makes them separable (A∩B is a focal element) and consonant
(A ⊂ B or B ⊂ A) support functions [6]. As a result, our p
and q functions are equivalent to ‘necessity’ and ‘possibility’
functions from possibility theory [39]. We note that the joint
model can also be formulated when objects from 2 different
models overlap, for example, when we run our method with
different σ and PRC values to obtain two models, one with

high recall, one with high precision. In such a joint model,
we now have for each object o an inner, smaller object o’.
One formulation for focal elements then can be: A = {(o →
L) ∧ (o′ → L)}, B = {(o → L) ∧ ¬(o′ → L)}, leading
to a more complex formulation for a joint model. A more
interesting use case is when the object detection is fuzzy and
allows for non-empty intersections. Due to space constraints
we discuss the computation of uncertainty n Appendix C.

A. Limitations

When the intensity profile of the fluorescence diverges from
a generalised normal distribution, our object detection will in-
creasingly fail and split objects into parts; a different detection
method is then warranted [40]. The Mahalanobis distance can
be uninformative in high-dimensional space due to the ‘curse’
of dimensionality, however, this is only the case if the increase
in dimensions is due to non-discriminatory features [41].
While the joining of belief functions by Dempster’s rule is
not without criticism [42], we note that the preconditions [42]
for its use are satisfied in our case with independent evidence
sources and exclusive exhaustive hypotheses. In future work,
we aim to adopt advances in evidence combination [43] to
enable quantification of reliability of individual sources and
make the joint model robust against unreliable sources.

B. Conclusion

We introduced a novel adaptive self-tuning method for
object detection in 2D microscopy images of 3D fluorescent
labelled proteins that enables consistent results across chan-
nels, and a novel method to assign each object a belief that
expresses numerically the evidence encoded. We validated our
method on superresolution data of Cav1 deposits where we
showed agreement with related work and biological ground
truth. We showed we are able to identify and characterize
Cav1-labeled caveolae and scaffolds by STED superresolution
microscopy, setting the stage for robust, reproducible tempo-
ral live cell analysis where consistency across images and
channels is essential for scientific discovery. We applied our
method on an Alzheimer pilot study illustrating the multiscale
applicability. We illustrated with a closed form expression the
capability to formulate a joint model spanning heterogeneous
datasets while recording the conflict of evidence between the
separate models as a reliability measure.
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APPENDIX

In this section we describe details that are not required for
interpreting the results but necessary for their reproducibility.
SPECHT is written as a Julia module leveraging the high
level features this scientific programming language offers in
combination with high performance. The source code is under
embargo for patent filing, US provisional patent 63/071,557
filed 28th Aug 2020.

A. Data sets

1) CAV1: PC3, PC3-PTRF and CRISPR/Cas Cav1 KO
MDA-MB-231 cells [1], [44]–[46] were cultured in RPMI-
1640 medium (Thermo-Fisher Scientific Inc.) complemented
with 10% fetal bovine serum (FBS, Thermo-Fisher Scientific
Inc.) and 2 mM L-Glutamine (Thermo-Fisher Scientific Inc.)
at 37 Celsius in a 5% CO2/95% air incubator. Cells grown
on 1.5H coverslips (Paul Marienfeld) were fixed with 3%
paraformaldehyde (PFA), 15 min at room temperature, rinsed
with PBS, permeabilized with 0.1% Triton X-100 in PBS plus
0.1 mM Ca2+ and 1 mM Mg2+ (PBS-CM) and blocked with
10% Goat Serum (Thermo Fisher Scientific, Waltham, MA)
and 1% bovine serum albumin (Sigma, St. Louis, MO) in PBS-
CM. Cells were incubated with the primary antibody (12h, 4
Celsius) and the secondary antibody (1h, room temperature).
The primary and secondary antibodies were diluted in SSC
(saline sodium citrate) buffer containing 1% BSA, 2% goat
serum and 0.05% Triton X-100. Coverslips were mounted with
Prolong Gold (Life Technologies, Thermo Fisher Scientific).
Cells were washed after antibody incubations using SSC buffer
containing 0.05% Triton X-100. Images were acquired with
a 100x/1.4 Oil HC PL APO CS2 STED White objective
of a Leica TCS SP8 3x STED microscope (Leica, Wetzlar,
Germany) equipped with a white light laser, HyD detectors,
time-gated fluorescence detection and Leica Application Suite
X (LAS X) software. Acquisition was done at a scan speed
of 600 Hz with a line average of 5. Pixel size is 20nm and
resolution (precision) is around 70nm for the PTRF channel
and 50nm for the Cav1 channel. GFP was excited at 488
nm and depleted at 592 nm. Alexa Fluor 647 was excited at
653nm and depleted at 775 nm. Huygens Professional software
(Scientific Volume Imaging, Hilversum, NL) was used to
deconvolve STED images, chromatic aberration correction was
applied on PTRF images using the Cav1 channel as reference
channel using the ‘correlation full’ method.

2) Alzheimer: Confocal microscopy images of retinal cross-
sections after immunohistochemistry staining for amyloid-β.
Tissues were obtained from control eyes from Eye Bank
of BC, and AD eyes from donors with post-mortem neu-
ropathological diagnosis of Alzheimer’s disease from UBC
Department of Neurology. Tissues were processed as paraffin
embedded cross-sections (5 um). BA4 primary antibody was
used for specific binding for the first 2 amino acids of the AB
peptide amino terminus, Cy3 secondary antibody was used to
label BA4 in red fluorescence. Samples imaged at 543 nm
wavelength using Zeiss LSM 510 at 0.44 um x 0.44 um pixel
dimension over 450 um x 450 um area, and Zeiss Axio Imager
M2 at 0.454 um x 0.454 um pixel dimension over 624.70 um

x 501.22 um area. LSM 510 images were resized to match the
pixel dimension of those from Axio Imager M2. Images were
manually segmented for the retinal layers, the vitreous and
the region posterior to the outer nuclear layer were masked to
reduce artefactual signals.

B. Self-tuning illustration

Fixed Z filtering (Z 1.5)

Kurtosis aligned
PRC 2.0 ~ Z = 1.22

A.1 CRISPR Cav1 Objects

Fixed Z filtering (Z 1.5)

Kurtosis aligned 
PRC 2.0 ~ Z = 0.935

A.2 PC3 Cav1 Objects A.3 PC3PTRF Cav1 Objects

Fixed Z filtering (Z 1.5)

Kurtosis aligned 
PRC 2.0 ~ Z = 1.246

Fig. 7. Illustration of self-tuning object detection on the 3 different cell lines.
A self-tuning (red) versus fixed Z-threshold (green) based object detection
across cell lines illustrates how the different statistical signature of each image
requires a self-tuning threshold (red) to have consistent results.

C. The value of uncertainty

1) Defining uncertainty: In this section, we briefly discuss
the computation of ‘r’ (Eq. 5), the uncertainty in measuring
the belief. For an object o, label x we have the plausibilty
qx = Pl(o → Lx) and belief px = Bel(o→ Lx) = 1 − qx.
Uncertainty, in this context, is defined as rq = qx − px
Intuitively this makes sense, one can interpret belief as the
measurable support, whereas plausibility is the maximum
potential support. When we divide the label space L into
‘supports x’ versus ‘does not support x’, we have that L is
composed of two focal elements, x and x. N ote that while
here x is a single label, x is not. Examples where |x| == |x|
are when x is ‘healthy’ versus ‘disease’. Given qx, and our
division of label space (and frame of discernment) into x and
x we can compute px. Finally, we compute rx = qx − px,
and rx = qx − px. Our contribution gives us a way to
compute both qx and qx, therefore we can derive the belief
functions, and with them the uncertainty, in essence a ‘top-
down’ computation of belief functions.

2) Interpreting uncertainty: It is helpful to reflect what
this ‘uncertainty’ actually means for the practitioners. Let us
explore the most uncertain scenario, qx = 1, and px = 0, with
rx = 1. Uncertainty increases with the inability of the belief
function to obtain evidence (px → 0). An inability to find
evidence for a negative (px → 0), leads to qx → 1 and
uncertainty increases. Let us now consider the converse, a
scenario where uncertainty is minimal. Then it must be that
px = qx, and px = qx. This can occur when the information
measured is never neutral, the features always support or
negate a label, but never both, and our capability to measure
those features is perfect. In theory it is possible to obtain
such a scenario, by increasing the dimensions of the feature
space to infinity. However, one must ensure that the added
dimensions (features) are maximizing information (support),
otherwise we invoke the ‘curse’ of dimensionality [41]. A
final analogy that can help is that of the balance between
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precision and recall. Inability to discern (believe in) the true
support for a label would lead to low precision, and thus a
belief tending to zero for label x. Low recall, conversely, is a
belief function unable to discern support for a true negation of
the label (x). Uncertainty informs on both (rx, rx, but in our
setting is able to infer this without the need for annotation. If
this is surprising, consider that quite often objects in an image
support both the label x and its negation. When we label an
image as ‘healthy’, versus ‘diseased’, we can be sure that both
labels are supported by a confounded label of ‘tissue’, and
perhaps the label of ‘background’ or non-tissue acquisition.
The capture of the support for ‘healthy’ will include statistical
support that is shared with ‘disease’, because not all tissue is
affected equally, and before tissue is diagnosed as ‘diseased’
it has undergone a transition towards ‘diseased’. What we
intuitively mean by ‘healthy’, is ‘healthy’ and never seen in
‘diseased’ and vice versa. In practice, this is not expressed
in the labels, nor do we tend to encode this in the statistical
learning methods employed. In these conditions, uncertainty
can help to quantify exactly what we can capture. Due to
space limitations and given that it is challenging to validate
uncertainty, we have omitted empirical results on computing
uncertainty on our datasets as they would be illustrative, rather
than quantitative support for our method.

D. Practical limitations

1) Numerical stability:
a) Combination rule: The closed form expression for the

Alzheimer use case (Eq. 8) is sensitive to loss of precision due
to catastrophic cancellation (loss of significance) when t, s are
close to 0, we therefore correct t and s values to max(x, ε)
with ε the machine epsilon.

b) Kurtosis: Computing the 4th root of the kurtosis can
be numerically unstable. However, we note that the alternative,
for example, the geometric mean of V , more appropriate
compared to the arithmetic mean given that V is a ratio, has
similar issues in that it uses similar operations.
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