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Just Use Distributions: Eliminating The Noise of
Sampling-Based Fitness Estimation

Zhenyue Qin, Tom Gedeon, R.I. (Bob) McKay

Abstract—Discrete gene regulatory networks (GRNs) play a
vital role in the study of robustness and modularity. A common
method of evaluating the robustness of GRNs is to measure their
ability to regulate a set of perturbed gene activation patterns back
to their unperturbed forms. Usually, perturbations are obtained
by collecting random samples produced by a predefined distribu-
tion of gene activation patterns. This sampling method introduces
stochasticity, in turn inducing dynamicity. This dynamicity is
imposed on top of an already complex fitness landscape. So where
sampling is used, it is important to understand which effects arise
from the structure of the fitness landscape, and which arise from
the dynamicity imposed on it. Stochasticity of the fitness function
also causes difficulties in reproducibility, analyticity, and other
post-experimental analyses.

In this paper, we develop a deterministic distributional fitness
evaluation by considering the complete distribution of gene
activity patterns, so as to avoid stochasticity in fitness assessment.
This fitness evaluation facilitates repeatability. Its determinism
permits us to determine theoretical bounds on the fitness, and
thus to determine whether the algorithm has reached a global
optimum. We also unveil some properties of desirable GRNs that
lead them to be robust and modular. We conclude by discussing
a number of obscure phenomena remaining to be understood in
the future.

I. INTRODUCTION

II. RELATED WORK AND MOTIVATION

In this section, we present a brief overview of the emergence
of modularity, of GRNs and of Espinosa-Soto and Wagner’s
GRN Model [1]. Then, we introduce the motivation of this
paper.

Judging by citations, of explanations for the emergence of
modularity, the parsimony-based model of modularity emer-
gence of Clune et al. [2] has recently been dominant. There is
little doubt of its importance for evolving modular engineering
systems, but its relevance to biology is moot. Parsimony pres-
sures have long been studied in genetic programming [3], yet
are notoriously difficult to tune – too strong a pressure (relative
to the primary objective) and one is left with tiny but highly
unfit solutions; too weak, and complexity runs riot. In biology,
as Clune et al. argue, modularity is ubiquitous. Yet there is
no obvious mechanism to tune the many different parsimony
pressures required to explain its widespread emergence. Clune
et a. [2] avoid this through use of the highly engineered
NSGA-II multi-objective evolutionary algorithm [4], which is
perfectly fine for engineering modularity in artificial systems,
but questionable as a model of evolution based on natural

All authors are with the Research School of Computer Science,
Australian National University, Canberra, ACT 2600, Australia (e-mails:
zhenyue.qin@anu.edu.au, tom@cs.anu.edu.au, robert.mckay@anu.edu.au).

selection(NSGA-II uses population-wide computations that
would require a ’hidden hand’ in biological systems). Thus
at least in understanding biology, it is worth re-examining
alternative explanations.

Espinosa-Soto and Wagner [1] traced the emergence of
modularity to specialisation. Their work is based on Wagner’s
GRN model, which has witnessed wide application in a variety
of computational biological studies [5]–[7]. It is important
to acknowledge that their system also included a parsimony
mechanism, but in the mutation operator, not as a second
objective. This parsimony mechanism is not sufficient on its
own to generate modularity, specialisation is required; equally
important, the parsimony of the mutation operator requires
little tuning, a wide range of values suffice.

A. Gene Regulatory Network (GRN)

A GRN is a collection of molecular regulators that coordi-
nate interactions between genes (including both the protein-
coding DNA sequences and regulatory non-coding DNA se-
quences), RNAs and proteins [8]. GRNs are central to the
operation of all known forms of cellular life (eukaryota, bac-
teria and archaea [9]) and viruses [10]. The network structure
of GRNs demonstrates a high level of modularity, considered
to be a key contributor to robustness [11].

B. Espinsa-Soto and Wagner’s GRN Model

The model of [1] abstracts cellular homeostasis, in which a
cell can recover from small perturbations to a target state and
recover that state. It consists of two components, one or more
targets, and the GRN itself. A target is a set of gene activation
patterns, represented by a vector of N binary values, with +1
and −1 respectively representing activity and inactivity. Figure
1 depicts two target activation patterns consisting of 10 genes
that happen to have a modular structure of two modules of five
genes each; the activation in the first module of the patterns
is identical (shared), but opposite in the second (divergent).

The gene state is regulated by a GRN g, which controls
the activation pathway of the organism. For a pattern of
N genes, it is abstracted as a ternary N2 transition matrix
g = [gji] with entries over {−1, 0, 1}, representing repression,
independence or activation of gene i by gene j. A gene activity
pattern regulated by this network is a Boolean row vector
s = [s0, ..., sN−1]. The state transition is modelled by:

A(g, s) = σ[g.s] (1)

where σ(x) = 1 if x > 0, σ(x) = −1 otherwise (applied
elementwise).
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Fig. 1: A target consisting of two gene activation patterns,
where white and black squares represent active (+1) and
inactive (−1) genes

The model focuses on the evolution of the N × N GRN
matrix, generally by an evolutionary algorithm. This can lead
to a terminological confusion. In the modeled biology, there
are N genes in the activation pattern; but considered at
the evolutionary algorithm level, the evolving chromosome
consists of N2 genes. Where we need to distinguish these,
we refer to the former as a “pattern gene”, and the latter as a
“network gene” or “network node”. Figure 2 presents a flow
chart of the fitness evaluation in the model.

In the rest of this paper, we will concentrate on the work
of [1] with the target of figure 1, where an evolutionary system
evolved first for 500 generations with a target consisting solely
of the first activation pattern, and then for the remainder of the
time (1500 further generations) with both activation patterns
as target.

C. Anomalous Behaviours of the GRN Model and Our Moti-
vation

Our initial work on this GRN model under typical genetic
algorithm settings revealed a number of anomalies [12]. In
summary, despite relatively fit, modular GRNs emerging in
simulated evolutions, they could often be readily improved in
both vitness and modularity by manually removing all inter-
module connections, as in Figure 3. Yet evolutionary search
does not find these improvements, despite mutation biases
appearing to favour finding them. Figure 4 reveals that this
is not due to discontinuous gradients: starting with the most
robust/fittest GRN from the final generation of a typical run
and removing non-modular edges one-by-one reveals a path
of steadily improving fitness to a fully modular GRN. This
phenomenon occurs even in runs incorporating elitism.

III. DISTRIBUTIONAL FITNESS EVALUATION

We hypothesised that the anomalies discussed in Sec-
tion II-C might arise from the stochasticity of the sampling
process of [1]: that in a population converged close to
a local optimum, using order-based (tournament) selection,
small stochastic variations in fitness might make it difficult to
follow weak gradients. To evaluate this hypothesis, we need to
separate the effects of the underlying fitness landscape from
the effects of stochastic sampling. Fortunately, this is not hard
to do, both in principle, and in this case, in practice.

In common with other GRN robustness models [13]–[15],
Espinosa-Sot & Wagner[1] sample perturbations stochastically,

Fig. 2: Flow Chart of the Fitness Evaluation in [1]’s GRN
model. Dark untextured squares represent activation, grey
texture repression and white lack of influence.
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(a) Before Removal (b) After Removal

Fig. 3: Illustration of deterministically removing all the inter-
module connections of a GRN. Solid and dashed circles
represent different modules. Solid and dashed arrows stand
for activation and repression respectively.

(a) With Elitism (b) Without Elitism

Fig. 4: Fitness increases continuously while removing inter-
module connections from a fit GRN. Green dots represent the
initial fitnesses, and red dots show the resulting fitnesses from
inter-module connection removal.

then study the recovery of the original pattern. They use a
binomial model: 500 perturbations of the locations in the
pattern are identically and independently sampled, with a
probability of being perturbed of p = 0.15, the recovery by
each GRN genrates a reward based on the level of recovery,
then the reward is averaged over the sampled perturbations.
Thus we can compute the expected fitness of a GRN by
tracing its behaviour over all 1024 possible perturbations, and
weighting appropriately. This produces a deterministic fitness
metric, and at a computational cost 1024/500 (i.e. roughly
double) that of [1]. We call this method distributional fitness
evaluation. The underlying idea is extensible beryond discrete
GRNs to a wide range of computational studies of discrete
netwroks, including other genetic networks [16], Boolean
neural networks [17], and Hopfield networks [18].

A. Definition and Advantages of Distributional Fitness Eval-
uation

Partially following the ideas of [1], we can extend the (one
step) action A(g, s) of an N×N GRN g on an activation state
s of length N of equation 1 to its recursive application as

A0(g, s) = s

At+1(g, s) = A(g,At(g, s))

We define an elementary perturbation e of length N as a
vector of {−1, 1}, so that a perturbation of a target state s (also

of length N ) in the sense of [1] is the pairwise product e� s.
Following Boolean usage, the weight w(e) of an elementary
perturbation is the number of −1 values.

[1] follows the regulatory process for t0 = 20 steps:

G(g, e�s) =

{
s if At(g, e� s) = s for t < t0

At0(g, e� s) otherwise
(2)

and uses two auxiliary functions to weight contributions:

f(g) = 1− e(−3·g)

γ(x) = (1− x)5

Putting it together, we evaluate the effectiveness of GRN g
in recovering state s as

F (g, s) =

f

( N∑
n=0

pn ·
1

|En|
∑
e∈En

γ

(
H
(
G(g, e� s), s

))) (3)

where En is the set of elementary perturbations of length N
and weight n, pn is the probability pn ∼ B(N, p) from the
binomial distribution, and H is the Hamming distance.

Compared with the random sampling of perturbations of [1],
distributional fitness evaluation offers the following advan-
tages:

1) Determinism: evaluating the fitness of a GRN multiple
times will give the same fitness each time, while preserv-
ing essentially the same fitness landscape as sampling.
This allows us to disentangle the effects of the fitness
landscape itself, and that of noise.

2) Global Optimum Analysis: we can determine bounds on
the fitness, and test whether those bounds are achieved;
with a stochastically evaluated fitness, it is infeasible to
determine whether further improvement is possible.

3) Speed Optimisation: Due to the determinism of fitness
evaluation, cacheing of previously computed fitness may
reduce wasted computation.

B. Upper Bounds on Distributional Fitness

An obvious upper bound for the fitness of a GRN in the
scenario of [1] is for the GRN to return all perturbations of a
target to the corresponding target. When there is only a single
target, this is attainable (as we shall see), and for the 10× 10
GRNs that are the focus of this study, is readily evolved.
However we follow [1] in using a two-stage evolution, in the
second stage of which there are two targets. In this case, this
upper bound is not attainable. It is easy to see why. Consider
the first target of Figure 1. If it is perturbed by an elementary
perturbation of weight 0 (i.e. it is unperturbed), then we would
expect a GRN to readily recover it (it isn’t required to do
anything). But consider the second target perturbed by an
elementary perturbation whose first five locations are 1, with
the last five being -1. The resulting perturbed target is identical
to the previous one. Hence the GRN must map it to the same
end result: which is a Hamming distance of 5 from its target
state. In fact, for every perturbation of target 1, there is a
perturbation of target 2 that gives the same starting state for
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the GRN. At most one of them can be returned to its target
by the GRN. Which choice is best?

To answer this question, consider the bi-
nomial probabilities of elementary perturba-
tions by weight: to two decimal places: <
0.20, 0.35, 0.28, 0.13, 0.04, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00 >.
So perturbations of weights 0, 1 and 2 carry the most influence
in equation 3, and for higher weights the influence decreases
monotonically. Now for two elementary perturbations to
conflict in this way, they must be identical in the first five
places (since the two targets are identical there), and inverse
on the last five (since the two targets are inverse there).
So the choice is easy: the elementary perturbation with the
least weight (therefore 0, 1 or 2) in the second half should
be mapped back to the corresponding target. In this case,
the Hamming distance between the regulated and original
patterns is 0, and the result of function γ in Formula 3 is 1.
Conversely, for second-half weights of 3, 4 or 5, the GRN
will regulate the pattern to the opposite form. In such cases,
the Hamming distance is 5 and γ returns 0.03125.

In summary, specialising equation 3 to the targets s1 and
s2 of Figure 1 gives

F (g) =

f

( 10∑
n=0

B(n; 10, 0.15)·

1(
10
n

) ∑
e∈En:w6,10(e)<3

γ

(
H
(
G(g, e� s1), s1

)
+H

(
G(g, e� s2), s2

)))
(4)

where w6,10(e) denotes the weight of (number of -1’s in) the
second half of e.

Substituting values 1 and 0.03125 into Equation 4 and
rearranging gives

F (g) = f

( 10∑
n=0

B(n; 10, 0.15)·(
10

n

)
·
( ∑
e:w6,10(e)<3

·1 +
∑

e:w6,10(e)>2

·0.03125

)) (5)

Table I summarises how many elementary perturbations of
each total weight have second half weights < 3 (resp. > 4).
Substituting its values into Equation 5 gives a fitness bound
to four decimal places of 0.9462.

C. Comparing Runs

The treatments examined in this paper use a mixture of
stochastic and distributional evaluation. How can we fairly
compare them? In the long run, if the same individual is repeat-
edly re-evaluated using stochastic evaluation, the mean fitness
must converge to the distributional fitness, in any particular
case the stochastically evaluated fitness may be above or below
the distributional fitness of the same individual. This would
just induce noise in any comparisons (itself undesirable).
However there is a further complication. We typically wish to

TABLE I: Numbers of Unrecoverable Elementarty Perturba-
tions by Weight.

Weight No. of Perturbations Unrecoverable

0
(10
0

)
0

1
(10
1

)
0

2
(10
2

)
0

3
(10
3

) (5
3

)
4

(10
4

) (5
3

)
·
(5
1

)
+

(5
4

)
5

(10
5

) (5
3

)
·
(5
2

)
+

(5
4

)
·
(5
1

)
+

(5
5

)
6

(10
6

) (5
3

)
·
(5
3

)
+

(5
4

)
·
(5
2

)
+

(5
5

)
·
(5
1

)
7

(10
7

) (5
3

)
·
(5
4

)
+

(5
4

)
·
(5
3

)
+

(5
5

)
·
(5
2

)
8

(10
8

) (10
8

)
9

(10
9

) (10
9

)
10

(10
10

) (10
10

)

compare the end-of-run best fitness achieved, which introduces
a bias: even if the same individual is produced as that best
individual: since it was chosen as the best individual in the
generation, in a stochastic evaluation run its fitness is more
likely to have been stochastically evaluated in the upper part
of the fitness distribution. To elminate this problem, for all
comparisons, in all tables, and in all figures, except where
explicitly mentioned, we always present the distributionally-
evaluated fitness for an individual, even if it is evolutionarily
evaluated using stochastic evaluation. This has the effect that
for stochastic evaluation runs, figures showing the course of
evoluation are not actually showing the fitness that was used
in the evolution. The effect on a specific run can potentially
be substantial. However our results are typically averaged over
100 runs for a treatment. In this case, the stochastic variations
should largely cancel out. .

D. Fitness Structure

IV. DISTRIBUTIONAL GRN MODEL

In this section, we present D-GRN, a distributional frame-
work for Wagner’s GRN model under distributional fitness
evaluation, and briefly delineate the mutation and recombina-
tion operators.

A. Algorithmic Framework of D-GRN

Algorithm 1 presents a high-level structure for a typical
haploid genetic algorithm; however the mutation and recom-
bination operators follow those of [1].

B. Recombination

In [12], we introduced and experimentally investigated diag-
onal recombination. Given two parental GRNs A1[1, . . . , 10]
and A2[1, . . . , 10], diagonal recombination proceeds by first
sampling a pivot point i from {1, . . . , 10}, then preserv-
ing the two sub-matrices A1[1 . . . i − 1, 1 . . . i − 1] and
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Algorithm 1: Algorithm Framework of D-GRN
Input: algorithm hyperparameters
population size Π of size
mutation rate M of rate (capital µ)
crossover rate X of rate (capital χ)
generations Γ of number
per-location perturbation rate E of rate (capital ε)
asymmetric stepsize Z of size (capital ζ)
evolutionary tournament size T of size (capital τ )
Output: robust networks
// Initialisation
crossover size Nχ = X.Π/2;
generate Π feasible networks randomly;
save generated individuals in the population P ;
get distributional fitness of each individual Ii ∈ P ;
// Loop until terminating condition
for i = 1 to Γ do

Reset P ′ = Φ;
// Crossover
for j = 1 to Nχ do

for l = 1 to 2 do
for k = 1 to T do

uniformly sample individual Ij,l,k ∼ P ;

select Ij,l = argmaxk∈{1,...,T}F (Ij,l,k);

generate Ij,3 and Ij,4 from Ij,1 and Ij,2 by
diagonal recombination;
P ′ = P ′

⋃
{Ij,3, Ij,4};

// Copying
for j = 2Nχ + 1 to Π do

uniformly sample individual Ij ∼ P ;
P ′ = P ′

⋃
{Ij};

// Mutation
foreach individual Ii in P ′ do

uniformly sample real r ∼ [0, 1);
if r < M then

biasedly mutate Ii;

// Updating
get distributional fitness of each individual Ii ∈ P ′;
update P = P ′ ;

A1[i . . . 10, i . . . 10], while exchanging the remainder of corre-
sponding locations between A1 and A2. This is illustrated in
figure 5. We note that if i is sampled as 1, the corresponding
recombination is a null operation.

C. Mutation

The mutation operator of [1] biases the edge density to
a specific, relatively low, level. A node in the network has
a probability µ to mutate every generation; if it mutates,
it can either lose or gain an interaction. In matrix terms,
the probability for each row to have a changed value is µ
(corresponding in the case of size 10 targets with µ = 0.2 to
a per-individual mutation rate, i.e. sampling a nonzero value
from B(10,0.2), of approximately 0.9). The probability for a

(a) Parental GRN 1 (b) Parental GRN 2

(c) Offspring GRN 1 (d) Offspring GRN 2

Fig. 5: Illustration of the diagonal recombination, with the
pivot index as 5. Solid and dashed circles represent different
modules. Solid and dashed arrows stand for activation and
repression respectively.

node to lose an interaction (a nonzero value to change to zero)
is defined as

p(u) =
4ru

4ru +N − ru
(6)

where N is the number of genes in a gene activation pattern
of a target, and ru is the number of regulators of gene u [1],
i.e. nonzero values in column u. Conversely, the probability
for a gene u to gain an interaction (i.e. for a nonzero value in
row u to become nonzero) is 1 − p(u). The neutral point of
this bias can be computed as:

p(u) = 1− p(u)⇒ ru =
N

5

The bias acts to maintain the sparsity of the network at around
this value, which research in computational biology suggests
is essential to induce modularity [19].

V. EXPERIMENTAL SETUP

All simulation code was implemented in Java 1.8.0 and
Python 2.7.10. All programs are publicly available at (to
come). We use the Mann-Whitney significance test in all
comparisons.

A. Parameter Tables and Explanations

The specific targets T used in the experiments appear in
Table II. Evolutionary and other simulation parameters for
the main body of experiments are specified in Table III and
explained in Table IV. A few variations on these will be
specified in the relevant context.
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TABLE II: Gene Activity Patterns (Target)

Target Pattern Introduction Stage

+1 -1 +1 -1 +1 -1 +1 -1 +1 -1 0
+1 -1 +1 -1 +1 +1 -1 +1 -1 +1 500

TABLE III: Parameters of the Evolutionary Simulations

Pattern Size GRN Size Initial Density
10 100 0.2

# Perturbations Perturbation Rate Population Size
2N or 500 0.15 100

Mutation Rate Activation Rate Crossover Rate
0.2 0.5 0.2

Crossover Type Selection (Size) Reproduction Rate
Diagonal Tournament (3) 0

Max. Generation Trials per Treatment Significance Test
2000 100 Mann Whitney

B. Population Initialisation

A population in our simulated evolution consists of 100
individuals, each being a GRN as defined in Eq 1. During
initialisation, each individual in the population will randomly
generate 20 edges with arbitrary directions for its GRN. The
choice of number 20 comes from Eq. 6 that biases towards
sparse networks as indicated in Subsection IV-C, Specifically,
Eq. 6 shows each gene has 2 regulators and there are 10 genes,
therefore the total edge number will be biased towards 20 in
a GRN. Nonetheless, since the edge number lies in the range
of 0 to 100 (the edges are directional), the probability mass
function of edge numbers within a GRN, although it will have
a peak at p(e = 20), where p stands for probability and e
represents edge number, the function curve will skew to the
right. Formally,

20∑
e=0

p(e) <

100∑
e=21

p(e)

TABLE IV: Explanations of simulation parameters

Target Pattern pattern to be perturbed then recovered
Introduction Stage generations where target is introduced
Pattern Size N , number of locations in an activation pattern
GRN Size N ×N , the size of each GRN (evolved genotype)
Initial Density initial density of edges in the GRN
# Perturbations number of perturbations of each targeta
Perturbation Rate expected proportion of corrupted genes
Population Size the number of individuals in the population
Mutation Rate probability GRN node gains/loses an interactionb

Activation Rate proportion of new interactions that are activationsc

Crossover Rate proportion of individuals that are crossed overd

Crossover Type the tupe of crossover (recombination) used
Selection (size) the type of selection and size when relevant
Reproduction Rate proportion of old generation randomly copied on
Max. generation the generation when the simulation will terminate
Trials per Treatment number of trials for comparing treatments
Significance Test statistical test used in comparing treatments

a For distributional evaluation, this will be 2N .
b For compatibility with the terminology of [1]. In EC terms:

the per-gene mutation rate in the evolving GRN is 1/N of this
the per-individual mutation rate is N times this
c Gained interactions are either activations or repressions.
d Some crossovers may be ineffective, see subsection IV-B.

As a result, the expected number of edges within a GRN may
not be exactly 20, despite the bias. We conducted experiments
in which we did not apply selection pressure during the
simulated evolution; the average GRN edge number converged
to approximately 22.

C. Selection Scheme: Tournament vs Proportional Selections

In evolutionary computation, there are two prevalent selec-
tion schemes: tournament and proportional. Although [1] uses
proportional, we use tournament in this paper because it gives
similar results to proportional selection, but is better suited to
incremental evaluation, a strategy we plan to use in extending
this work to larger targets.

D. Modularity Metric

We adopt the normalised Q scoring system to quantify
modularity in a GRN, ultimately based on the definition
proposed by Newman [20]. Briefly, this quantity is defined
as the difference between, on the one hand, the ratio of the
number of edges in the network connecting nodes within
modules to the total number of edges, and on the other, the
expected value for the same quantity for a randomly connected
network with the same edge density [21]. Formally, Q is
calculated as

Q =

K∑
i=1

[
li
L
− (

di
2L

)2] (7)

where i represents one of the K potential modules within a
network, L is the total number of connections in a network,
li stands for the number of interactions in the module i, and
di is the sum of degrees of all the nodes in module i [1]. The
value Q will lie in the range of [−0.5, 0.5] for our module
structure.

Unfortunately the expected value of Q varies according
to the density of edges. In order to eliminate the effects of
variations in total edge numbers within a GRN, and provide
fair comparisons, we normalise Q as in Equation 8, following
the spirit of [21].

Qn =
Q−Qran

Qmax −Qran
(8)

where Q is the modularity Q value obtained from Equation 7
for the specific network {V,E}, Qran is the average Q value
of 10,000 random networks with the same number of vertices
V and edges E as the network {V,E}, and Qmax stands
for the maximum Q value in these 10,000 random networks.
This normalised Qn shows us how modular our network is by
comparing it to sampled highly modular and random networks
with the same attributes [1].

VI. EXPERIMENTAL RESULTS AND ANALYSIS:
STOCHASTIC VS DETERMINISTIC EVALUATION

In this set of experiments, we compare the behaviour of
the algorithm using stochastic evaluation with that using
distributional evaluation. From the perspective of the particular
domain, this helps to understand to what extent aspects of
the behaviour (for example, emergence or non-emergence of
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modularity) are a consequence of the fitness landscape of the
problem, and to what extent they derive from the noise effects
of random sampling imposed upon that landscape. From an
evolutionary biology perspective, they allow us to compare
the behaviour of small population and perturbation sample
sizes (computationally tractable but generally biologically im-
plausible) against the smoothing effect of effectively infinite
perturbation samples. Because a key effect of increasing either
population size or perturbation sample size is to smooth be-
haviour, this can help to gain some insight into what we might
expect from more biologically realistic (but computationally
infeasible) population sizes. Finally, from a methodological
perspective, this section illustrates what is feasible if the
distribution underlying the noise is small enough to be directly
computable (in this case, the GRN target is sufficiently short).
Without further theoretical advances, distributional evaluation
would not be computationally tractable if the target, and thus
the distribution, was much larger.

We conducted 100 independent evolutionary simulations
for distributional and for stochastic fitness evaluation. We
collected the fittest GRNs in each generation and evaluated
their fitnesses and modularities. We remind readers that these
results are reported using the distributional fitness, even for
runs using stochastic evaluation. An important consequence
is that we know, even for stochastic runs, whether we have
actually found a true optimum.

A. Effects of Stochastic Evaluation on Evolutionary Efficiency

TABLE V: Mean Best Fitnesses and Modularity Q Values of
Fittest GRNs (over 100 runs) from the Final Generation, for
Distributional vs Stochastic Fitness Evaluation

Distributional Stochastic p-value
Mean SD Mean SD

Fitness 0.9395 0.0183 0.9370 0.0202 1.04× 10−12

Distributional Equivalent 0.9256

Modularity 0.9785 0.2840 0.9513 0.3011 0.5016

1) Results: Table V shows the outcomes for fitness and
modularity in the final generation, while figure 6 shows the
evolution of fitness and modularity over the generations.

Distributional fitness evaluation leads to a tiny, but statis-
tically highly significant, increase in final-generation fitness
when compared with stochastic evaluation. Thus, at least
with these evolutionary settings, the dynamicity imposed by
stochastic evaluation has a deleterious effect. The fitness effect
is mirrored by a small, but non-significant, improvement
in modularity. Distributional evaluation achieves a (distribu-
tional) fitness only 0.0067 below the theoretical bound of
0.9462, while distributional fitness evaluation is 0.0206 below.
Thus while the fitness difference is small, the difference
from the attainable optimum is a factor of three larger. For
completeness, in the table we also show the fitness that the
stochastic best individuals recorded using stochastic evaluation
(in fact the difference is small). Figure 6 shows that fitness
and modularity evolve very similarly for the two evaluation
methods up to the change of target. Subsequently, the fitness

graphs remain similar (although stochastic fitness is always
slightly below distributional), but the modularity from stochas-
tic evaluation increases more slowly after the target change
than the distributional. It is tempting to speculate that the
latter might result from reduced search eagerness due to the
stochasticity of the fitness function, but if that is the reason, it
is surprising that the effect on fitness is not more pronounced
(in fact, it seems imperceptible).

B. Deterministic Fitness Evaluation with Complete Sampling
Can Help Better Analyse GRN Edge Functions

VII. CHARACTERISTICS OF THE GRN MODEL

VIII. DISCUSSION

IX. CONCLUSION

It is essential to identify characteristics of nature-inspired
algorithms that lead to solutions of high modularity. Our
expectation that such features exist relies heavily on the
ubiquity of modular structures in biological evolution. In this
paper, we studied one one well-accepted scenario that leads to
the emergence of modularity in Wagner’s GRN model, namely
gene specialization. We showed that this problem can be better
simulated using complete sampling of all perturbations of
gene activation patterns instead of stochastical sampling. This
enables the quantification of fitness upper bounds, and permits
us to study under what conditions evolution attains the global
optimum. Future studies will explore the functions evolved
by network edges, particularly those connectiong between
modules. The aim is to remove most inter-module edges
spontaneously by evolutionary algorithms, to automatically
obtain highly modular solutions.
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