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Abstract

This paper introduces a non-parametric learning framework to combat outliers in online, multi-output, and nonlinear regression
tasks. A hierarchical-optimization problem underpins the learning task: Search in a reproducing kernel Hilbert space (RKHS)
for a function that minimizes a sample average $\ell p$-norm ($1 \leq p \leq 2$) error loss on data contaminated by noise and
outliers, subject to side information that takes the form of affine constraints defined as the set of minimizers of a quadratic
loss on a finite number of faithful data devoid of noise and outliers. To surmount the computational obstacles inflicted by the
choice of loss and the potentially infinite dimensional RKHS, approximations of the $\ell p$-norm loss, as well as a novel twist
of the criterion of approximate linear dependency are devised to keep the computational-complexity footprint of the proposed
algorithm bounded over time. Numerical tests on datasets showcase the robust behavior of the advocated framework against
different types of outliers, under a low computational load, while satisfying at the same time the affine constraints, in contrast
to the state-of-the-art methods which are constraint agnostic.
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ABSTRACT
This paper introduces a non-parametric learning framework
to combat outliers in online, multi-output, and nonlinear re-
gression tasks. A hierarchical-optimization problem under-
pins the learning task: Search in a reproducing kernel Hilbert
space (RKHS) for a function that minimizes a sample aver-
age ℓ𝑝-norm (1 ≤ 𝑝 ≤ 2) error loss defined on data contami-
nated by noise and outliers, under affine constraints defined
as the set of minimizers of a quadratic loss on a finite num-
ber of faithful data devoid of noise and outliers (side infor-
mation). To surmount the computational obstacles inflicted
by the choice of loss and the potentially infinite dimensional
RKHS, approximations of the ℓ𝑝-norm loss, as well as a novel
twist of the criterion of approximate linear dependency are
devised to keep the computational-complexity footprint of
the proposed algorithm bounded over time. Numerical tests
on datasets showcase the robust behavior of the advocated
framework against different types of outliers, under a low
computational load, while satisfying at the same time the
affine constraints, in contrast to the state-of-the-art methods
which are constraint agnostic.

Index Terms— Adaptive filtering, kernel, RLS, online
learning, outliers.

1. INTRODUCTION
Kernel adaptive filtering (KAF), e.g., [1], has been success-
ful in bringing arguments of classical adaptive filtering [2],
reproducing kernel Hilbert spaces (RKHSs) and approxima-
tion theory [3, 4], as well as non-parametric methods [5] into
online learning [6]. A central role in KAF is played by the
kernel recursive least squares (KRLS) [7], by analogy with
the pivotal role of RLS in adaptive filtering [2].

Recent KAF efforts revolve around cleansing data from
outliers to address their deteriorating effects in a wide variety
of learning tasks [8], where outliers are defined as (sparsely
appearing) contaminating data that do not adhere to a nomi-
nal data-generation model, and are often modeled as random
variables (RVs) with non-Gaussian heavy tailed distributions,
e.g., 𝛼-stable ones [9, 10]. Refraining from using the quadratic
error loss, which is notoriously sensitive to non-Gaussian out-
liers [10, 11], robust KAF approaches include methods which
are based mainly on (i) the ℓ𝑝-norm error loss [12, 13], moti-
vated by its beneficial role [14, 15] in classical adaptive filter-
ing [16–18]; and (ii) the correntropic loss [19–21], based on
the concept of correntropy [22]. Alternative loss functions,
designed in a similar way to that of the correntropic loss, can
be also found in [23, 24]. Among the previous methods, ap-
proaches that employ KRLS-type of iterations can be found
in [12, 20, 21].

K. Slavakis was supported by the NSF CIF award 1718796,
and M. Yukawa by JSPS KAKENHI grant number JP18H01446.
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Figure 1: The learning task: With the positive integer 𝑛 ∈ ℤ>0 de-
noting discrete time, and with the input-output data pair (𝐱𝑛, 𝐲𝑛)
becoming available to the user at time 𝑛, the goal is to devise an
online non-parametric algorithm to learn the unknown non-linear
and multi-output system via a reproducing kernel Hilbert spaceℋ,
where the 𝑄×1 vector 𝐲𝑛 may carry also noise and outliers. Among
all data, (𝐱𝑛𝑗, 𝐲𝑛𝑗)

𝐽
𝑗=1 are “clean,” with 𝐲𝑛𝑗 being devoid of outliers

and noise. Learning the system while rejecting noise and outliers
is achieved via the minimization of an error-loss function [see (1)]
subject to constraints formed by the faithful data (𝐱𝑛𝑗, 𝐲𝑛𝑗)

𝐽
𝑗=1.

This paper introduces a KRLS-type framework for out-
lier rejection with novel contributions in relation with the
state-of-the-art methodologies that are highlighted as fol-
lows. A non-linear, multi-output (a.k.a. multi-target or
multi-response) regression task [25] is considered (Figure 1).
Rather than adapting the classical RLS iterations [2] into
KAF, as in [7, 12, 20, 21], the proposed Algorithm 1 stems
from the stochastic-approximation framework [26]. Similarly
to [12], a sample average ℓ𝑝-norm error loss is used also here
to define the objective function in the optimization problem
of the learning task. Nevertheless, apart from the outlier con-
taminated data and in contrast to [12, 20, 21], the present
framework allows also the use of faithful data, devoid of
noise and outliers, as side information. Compliance to the
faithful data is achieved via an affine constraint set, defined
by the set of minimizers of a quadratic loss on the clean data.
The set of minimizers of a quadratic loss offers flexibility in
the way that the constraint set is incorporated in the pro-
posed Algorithm 1 (Section 3.2). Affinely constrained RLS
schemes have already appeared in adaptive filtering [27, 28],
but it seems that this is the first time that affine constraints
are considered in KRLS-type methods to accommodate side
information. The adoption of the ℓ𝑝-norm error loss and
the potential infinite dimensionality of the RKHS yield
computational bottlenecks. To surmount those bottlenecks,
approximations of the ℓ𝑝-norm error loss are proposed, and in
contrast to [12, 20] where all of the incoming data are incor-
porated in computations and the computational complexity
grows unbounded with time, this study proposes also a novel
twist of the approximate linear dependency criterion [7] to
ensure that the computational complexity of Algorithm 1



stays bounded over time. Numerical tests on datasets show
the robust behavior of Algorithm 1 against different types
of outliers, under a low computational load, while satisfying
at the same time the affine constraints, as opposed to the
state-of-the-art methods which are constraint agnostic.

Due to space limitations, the proofs of the subsequent
propositions, results on the convergence of the estimates of
Algorithm 1 to a solution of the ensemble average of the op-
timization problem, formulae for the recursive updates in Al-
gorithm 1, and more numerical tests than the ones presented
here will be included in the journal version of the paper.

2. THE LEARNING TASK, COMPUTATIONAL
BOTTLENECKS, AND APPROXIMATIONS

Available to the user are the real-valued input-output data
(𝐱𝜈, 𝐲𝜈)𝑛

𝜈=1, 𝑛 ∈ ℤ>0, where 𝑛 denotes discrete time, the 𝐷 × 1
vector 𝐱𝑛 stands for the input of an unknown non-linear sys-
tem (see Figure 1) and the 𝑄 × 1 vector 𝐲𝑛 ≕ [𝑦(1)

𝑛 , … , 𝑦(𝑄)
𝑛 ]⊺

for the corresponding output, possibly carrying noise and out-
liers, with ⊺ denoting vector/matrix transposition. Among
all data, (𝐱𝑛𝑗, 𝐲𝑛𝑗)

𝐽
𝑗=1 are clean (𝐲𝑛𝑗 ≕ [𝑦(1)

𝑛𝑗 , … , 𝑦(𝑄)
𝑛𝑗 ]⊺ is devoid

of noise and outliers) and known to the user (w.l.o.g. indices
(𝑛𝑗)𝐽

𝑗=1 are assumed known). In other words, (𝐱𝑛𝑗, 𝐲𝑛𝑗)
𝐽
𝑗=1 col-

lect all of the faithful side information about the system which
is available to the user. Upon the observation of (𝐱𝑛, 𝐲𝑛),
learning/adaptation rules are applied to the modeling sys-
tem via a feedback path (Figure 1), which operates in a time-
adaptive or online mode and where the learning-rules itera-
tion index coincides with 𝑛.

Learning the unknown non-linear system is viewed here
as a non-parametric regression problem [5], where a vector-
valued function 𝒇 ≔ (𝑓 (1), … , 𝑓 (𝑄)) ∈ ℋ𝑄 is sought such that
(s.t.) 𝑦(𝑞)

𝑛 ≈ 𝑓 (𝑞)(𝐱𝑛), and where each 𝑓 (𝑞)(⋅), ∀𝑞 ∈ {1, … , 𝑄},
is taken from a user-defined RKHS ℋ with inner product
⟨⋅ | ⋅⟩ℋ, norm ‖⋅‖ℋ, and reproducing kernel 𝜅(⋅, ⋅) ∶ ℝ𝐷 ×ℝ𝐷 →
ℝ [3]. Space ℋ may be infinite dimensional; e.g., ℋ with
a Gaussian kernel [4]. Hence, it is desirable that the learn-
ing algorithm operates on a computational budget to address
the unpleasant computational complexity implications which
may be inflicted by the potentially infinite dimensionality of
ℋ. Motivated by the sample average of quadratic error losses
in RLS [2], the hierarchical-optimization problem which un-
derpins the learning task is

min
(𝑓(1),…,𝑓(𝑄))∈ℋ𝑄

𝑄

∑
𝑞=1

1

Γ𝑛

𝑛

∑
𝜈=1

𝛾𝑛−𝜈|𝑦(𝑞)
𝜈 − 𝑓 (𝑞)(𝐱𝜈)|𝑝 + 𝜆ℋ

1

2

𝑄

∑
𝑞=1

‖𝑓 (𝑞)‖2
ℋ

s.to (𝑓 (1), … , 𝑓 (𝑄)) ∈

arg min
(𝑓′(1),…,𝑓′(𝑄))∈ℋ𝑄

𝑄

∑
𝑞=1

𝐽

∑
𝑗=1

[𝑦(𝑞)
𝑛𝑗 − 𝑓′(𝑞)(𝐱𝑛𝑗)]

2 , (1)

where the |⋅|𝑝 loss, with 1 ≤ 𝑝 ≤ 2, is adopted here to combat
noise and outliers, since values of 𝑝 < 2 give less importance
to large errors 𝑦(𝑞)

𝜈 − 𝑓 (𝑞)(𝐱𝜈) than the classical case of 𝑝 = 2.
To promote compact notations in the following discussion, let
𝜑𝑛 ≔ 𝜅(𝐱𝑛, ⋅) ∈ ℋ. The regularizer (𝜆ℋ/2)‖⋅‖2

ℋ, with 𝜆ℋ ≥ 0,
is a classical way to avoid overfitting and to constrain 𝑓 (𝑞)

into the linear subspace 𝒮𝑛 ≔ span 𝚽𝑛 of ℋ, spanned by the
columns of the dimℋ × 𝑛 “matrix” (better, linear operator)
𝚽𝑛 ≔ [𝜑1, … , 𝜑𝑛] [29]. Moreover, 𝛾 ∈ (0, 1) is a forgetting
factor that is often used in adaptive filtering [2] to penalize

the errors of the currently and recently received data heavier
than those of the remote past, and Γ𝑛 ≔ ∑𝑛

𝜈=1 𝛾𝑛−𝜈.
Since 𝑓 (𝑞) ∈ ℋ, the reproducing property [3] yields

𝑓 (𝑞)(𝐱𝑛) = ⟨𝑓 (𝑞) | 𝜅(𝐱𝑛, ⋅)⟩ℋ = ⟨𝑓 (𝑞) | 𝜑𝑛⟩ℋ ≕ 𝑓 (𝑞)⊺𝜑𝑛. Prob-
lem (1) is separable in {𝑓 (𝑞)}𝑄

𝑞=1, and thus equivalent to 𝑄
problems of the form

min
𝑓∈ℋ

ℒ𝑛(𝑓) ≔ 1

Γ𝑛

𝑛

∑
𝜈=1

𝛾𝑛−𝜈 |𝑦𝜈 − ⟨𝑓 | 𝜑𝜈⟩ℋ|𝑝 + 𝜆ℋ
1

2
‖𝑓‖2

ℋ

s.to 𝑓 ∈ 𝒜 ≔ arg min
𝑓′∈ℋ

∑
𝐽

𝑗=1
[𝑦𝑛𝑗 − ⟨𝑓′ | 𝜑𝑛𝑗⟩ℋ]2 , (2)

where superscript (𝑞) is omitted to avoid clutter in notations.
With (𝐱𝑛, 𝐲𝑛) becoming available to the user at every

time instance 𝑛, the dimension dim 𝒮𝑛 of the linear subspace
𝒮𝑛 may become unbounded as time 𝑛 advances due to the
potential infinite dimensionality of ℋ. Proposition 1 below
demonstrates that this “curse of dimensionality” inflicts ma-
jor burdens upon (2), as in the computation of the popu-
lar proximal mapping, defined for ℒ𝑛 as [30]: ∀𝑓 ∈ ℋ and
𝜆 ∈ ℝ>0, Prox𝜆ℒ𝑛(𝑓) ≔ arg min𝑓′∈ℋ 𝜆ℒ𝑛(𝑓′) + (1/2)‖𝑓 − 𝑓′‖2

ℋ.
Proposition 1. Let ℎ be any vector in 𝒮𝑛 and 𝐡 the unique
dim 𝒮𝑛 × 1 vector s.t. ℎ = 𝕭𝑛𝐡, where the columns of the
dimℋ × dim 𝒮𝑛 matrix 𝕭𝑛 ≔ [𝔟(𝑛)

1 , … , 𝔟(𝑛)
dim 𝒮𝑛] are the basis

vectors {𝔟(𝑛)
𝑗 }dim 𝒮𝑛

𝑗=1 of 𝒮𝑛. Let also the 𝑛 × 1 vector 𝓨𝑛 ≔
[𝑦1, … , 𝑦𝑛]⊺. Then,

Prox𝜆ℒ𝑛(ℎ) = 𝕭𝑛𝓚−1
𝑛 [𝓒𝑛𝓦𝑛(Prox𝜆ℒ𝑛(ℎ))𝓒⊺

𝑛

+ (𝜆−1 + 𝜆ℋ)𝓚−1
𝑛 ]−1

⋅ [𝓒𝑛𝓦𝑛(Prox𝜆ℒ𝑛(ℎ))𝓨𝑛 + 𝜆−1𝓒𝑛𝓓𝑛𝐡] , (3)
where the dim 𝒮𝑛 ×dim 𝒮𝑛 “kernel matrix” 𝓚𝑛 ≔ 𝕭⊺

𝑛 𝕭𝑛, and
the dim 𝒮𝑛 × 𝑛 matrix 𝓒𝑛 as well as the 𝑛 × dim 𝒮𝑛 matrix
𝓓𝑛 are s.t. 𝚽𝑛 = 𝕭𝑛𝓒𝑛 and 𝕭𝑛 = 𝚽𝑛𝓓𝑛. Moreover, the
𝜈𝜈th entry of the diagonal 𝑛 × 𝑛 matrix 𝓦𝑛(Prox𝜆ℒ𝑛(ℎ)) is
[𝓦𝑛(Prox𝜆ℒ𝑛(ℎ))]𝜈𝜈 ≔ 𝛾𝑛−𝜈(𝑝/Γ𝑛)|𝑦𝜈 − ⟨Prox𝜆ℒ𝑛(ℎ) | 𝜑𝜈⟩ℋ|𝑝−2.

It is evident from (3) that the computation of the dim 𝒮𝑛×
dim 𝒮𝑛 kernel matrix 𝓚𝑛 poses serious problems in terms
of complexity and memory requirements, since dim 𝒮𝑛 may
become unbounded as time 𝑛 advances. Moreover, since
Prox𝜆ℒ𝑛(ℎ) appears at both sides of (3), solving (3) may be-
come an arduous large-scale computational task.

To surmount the bottleneck of solving (3), this work uses
a linear subspace ̃𝒮𝑛 ⊂ 𝒮𝑛 to serve as an approximation of
𝒮𝑛, under the requirement that the dimension of ̃𝒮𝑛 stays
bounded over time: dim ̃𝒮𝑛 ≤ 𝐿 ̃𝒮, ∀𝑛, for a user-defined buffer
length 𝐿 ̃𝒮 ∈ ℤ>0. To this end, vector �̃�(𝑛)

𝜈 ∈ ̃𝒮𝑛 is introduced
to serve as an approximation of 𝜑𝜈 (the precise definition
to be given in Section 3.1). Let also the dimℋ × 𝑛 matrix
�̃�𝑛 ≔ [�̃�(𝑛)

1 , … , �̃�(𝑛)
𝑛 ]. The following proposition introduces

two approximations of ℒ𝑛: The weighted quadratic (4a), and
(4b) which capitalizes on the first-order information of (4a).
Proposition 2. Consider the approximations of ℒ𝑛:

̃ℒ 1
𝑛 (𝑓) ≔ 1

2
∑

𝑛

𝜈=1
𝑤(𝑛)

𝜈 (𝑦𝜈 − ⟨𝑓 | �̃�(𝑛)
𝜈 ⟩ℋ)2 + 𝜆 1

ℋ

1

2
‖𝑓‖2

ℋ , (4a)

̃ℒ 2
𝑛 (𝑓) ≔ ⟨𝑓 − 𝑓𝑛 | ∑

𝑛

𝜈=1
𝑤(𝑛)

𝜈 (⟨�̃�(𝑛)
𝜈 | 𝑓𝑛⟩ℋ − 𝑦𝜈) ⋅ �̃�(𝑛)

𝜈 ⟩ℋ

+ 𝜆 2
ℋ

1

2
‖𝑓 − 𝑓𝑛‖2

ℋ + ̃ℒ 1
𝑛 (𝑓𝑛) , (4b)

where 𝑤(𝑛)
𝜈 ≔ 𝛾𝑛−𝜈(𝑝/Γ𝑛)|𝑦𝜈 − ⟨𝑓𝜈 | 𝜑𝜈⟩ℋ|𝑝−2, 𝐖𝑛 is the 𝑛 ×

𝑛 diagonal matrix whose 𝜈𝜈th diagonal entry is [𝐖𝑛]𝜈𝜈 ≔



𝑤(𝑛)
𝜈 , and 𝑓𝑛 is the current estimate of the unknown non-linear

system. If {𝑏(𝑛)
𝑖 }

̃𝒮𝑛
𝑖=1 denotes a basis of ̃𝒮𝑛, with the dimℋ ×

dim ̃𝒮𝑛 matrix 𝐁𝑛 ≔ [𝑏(𝑛)
1 , … , 𝑏(𝑛)

dim ̃𝒮𝑛
], then for any ℎ ∈ ̃𝒮𝑛, i.e.,

ℎ = 𝐁𝑛𝐡, where 𝐡 ∈ ℝdim ̃𝒮𝑛,

Prox
𝜆 ̃ℒ 1

𝑛
(ℎ) = 𝐁𝑛𝐊−1

𝑛 [𝐂𝑛𝐖𝑛𝐂⊺
𝑛 + (𝜆−1 + 𝜆 1

ℋ)𝐊−1
𝑛 ]

−1

⋅ [𝐂𝑛𝐖𝑛𝓨𝑛 + 𝜆−1𝐂𝑛𝐃𝑛𝐡] , (5a)

Prox
𝜆 ̃ℒ 2

𝑛
(ℎ) = 𝐁𝑛(𝐡 − 𝜆𝐂𝑛𝐖𝑛𝐂⊺

𝑛 𝐁⊺
𝑛 𝑓𝑛 + 𝜆𝐂𝑛𝐖𝑛𝓨𝑛)/(1 + 𝜆𝜆 2

ℋ)

+ 𝜆𝜆 2
ℋ𝑓𝑛/(1 + 𝜆𝜆 2

ℋ) , (5b)

where 𝐊𝑛 ≔ 𝐁⊺
𝑛 𝐁𝑛, the 𝑛×dim ̃𝒮𝑛 matrix 𝐃𝑛 and the dim ̃𝒮𝑛×

𝑛 matrix 𝐂𝑛 are s.t. 𝐁𝑛 = �̃�𝑛𝐃𝑛 and �̃�𝑛 = 𝐁𝑛𝐂𝑛.
Mapping (5b) realizes actually the “steepest-descent” di-

rection of (4a), and it requires no matrix inversion, unlike
(5a). However, the computational savings offered by (5b)
may render the proposed Algorithm 1 ineffective, especially
against large-variance outliers; cf. Section 4.

3. THE ALGORITHM
Algorithm 1 stems from [26]. It is also equipped with the
novel module of Section 3.1 to ensure that its computational
complexity stays bounded over time in the context of the
potentially infinite dimensional ℋ.

3.1. Approximate Linear Dependency on a Budget
To define subspace ̃𝒮𝑛, the approximate linear dependency
(ALD) criterion of [7] is considered, but with a novel twist
which ensures the boundedness of the dimension of ̃𝒮𝑛:
dim ̃𝒮𝑛 ≤ 𝐿 ̃𝒮, ∀𝑛. This condition is satisfied by monitoring
the amplitudes of the coefficients of the estimates 𝑓 (𝑞)

𝑛 . This
feature was not available in the original ALD [7], where the
user cannot fix upper bounds on dim ̃𝒮𝑛. The definition of

̃𝒮𝑛 is provided next via induction. To this end, it is assumed
that knowledge of ̃𝒮𝑛−1 is available to the user at time 𝑛.

The arrival of 𝜑𝑛 = 𝜅(𝐱𝑛, ⋅) ∈ 𝒮𝑛 = span{𝜑𝜈}𝑛
𝜈=1 trig-

gers the computation of its metric projection 𝑃 ̃𝒮𝑛−1
(𝜑𝑛) onto

̃𝒮𝑛−1, through the basis vectors 𝐁𝑛−1 = [𝑏(𝑛−1)
1 , … , 𝑏(𝑛−1)

dim ̃𝒮𝑛−1
]

as 𝑃 ̃𝒮𝑛−1
(𝜑𝑛) = 𝐁𝑛−1𝐊−1

𝑛−1𝐤
(𝑛−1)
𝑛 , where 𝐤(𝑛−1)

𝑛 ≔ 𝐁⊺
𝑛−1𝜑𝑛 and

𝐊−1
𝑛−1𝐤

(𝑛−1)
𝑛 = arg min𝐜∈ℝdim ̃𝒮𝑛−1 ‖𝜑𝑛 − 𝐁𝑛−1𝐜‖2

ℋ. The norm of
the residual 𝜑𝑛 − 𝑃 ̃𝒮𝑛−1

(𝜑𝑛) turns out to be equal to 𝜛𝑛 ≔
[𝜅(𝐱𝑛, 𝐱𝑛) − 𝐤(𝑛−1)

𝑛 ⊺𝐊−1
𝑛−1𝐤

(𝑛−1)
𝑛 ]1/2. If 𝜛𝑛 ≤ 𝜖ALD (Line 9 of Al-

gorithm 1), for a user-defined 𝜖ALD ∈ ℝ>0, vector 𝜑𝑛 is not
considered to carry sufficient novel information, and ̃𝒮𝑛−1, its
basis 𝐁𝑛−1, and kernel matrix 𝐊𝑛−1 do not change during
their updates (Line 10 of Algorithm 1). Moreover, vector
�̃�(𝑛)

𝑛 ≔ 𝑃 ̃𝒮𝑛−1
(𝜑𝑛).

If, however, 𝜛𝑛 > 𝜖ALD (Line 11 of Algorithm 1), then
𝜑𝑛 is considered to carry sufficient novel information to be
included in ̃𝒮𝑛. In the case where there is still space in
the buffer, i.e., dim ̃𝒮𝑛−1 < 𝐿 ̃𝒮, then �̃�𝑛 ≔ [�̃�𝑛−1, 𝜑𝑛], ̃𝒮𝑛 ≔
span �̃�𝑛, and 𝐁𝑛 ≔ [𝐁𝑛−1, 𝜑𝑛]. If there is no space in the buffer
(Line 14 of Algorithm 1), then 𝜑𝑛 takes the place of �̃�(𝑛−1)

𝑖∗ and
𝑏(𝑛−1)

𝑖∗ in �̃�𝑛−1 and 𝐁𝑛−1, respectively (Line 16 of Algorithm 1),
where index 𝑖∗ identifies the smallest contribution of basis vec-
tors in the representation of the current estimates {𝑓 (𝑞)

𝑛 }𝑄
𝑞=1 as

Algorithm 1: Kernel hierarchical-optimization RLS
Data : (𝐱𝜈, 𝐲𝜈)𝑛

𝜈=1, 𝑛 ∈ ℤ>0.
Output : (𝒇𝑛 = (𝑓 (1)

𝑛 , … , 𝑓 (𝑄)
𝑛 ))𝑛∈ℤ>0.

1 Initialization
2 ̃𝒮0 ≔ span(�̃�0 ≔ 𝚽c).
3 for 𝑞 = 1 to 𝑄 do
4 𝑓 (𝑞)

1/2 = 𝑇 (𝑞)
𝛼 (𝑓 (𝑞)

0 ).

5 𝑓 (𝑞)
1 = Prox𝜆 ̃ℒ𝑙

0
(𝑓 (𝑞)

1/2), where (5a) is used if 𝑙 = 1 ,
while (5b) if 𝑙 = 2 .

6 for 𝑛 = 1 to +∞ do
7 Data (𝐱𝑛, 𝐲𝑛) become available to the user.
8 Compute 𝜛𝑛 as in Section 3.1.
9 if 𝜛𝑛 ≤ 𝜖ALD then // Basis remains unchanged

10 Update �̃�𝑛 ≔ [�̃�𝑛−1, 𝑃 ̃𝒮𝑛−1
(𝜑𝑛)], basis 𝐁𝑛 = 𝐁𝑛−1,

subspace ̃𝒮𝑛 = ̃𝒮𝑛−1, dim ̃𝒮𝑛 = dim ̃𝒮𝑛−1, and
kernel matrix 𝐊𝑛 = 𝐊𝑛−1.

11 else if 𝜛𝑛 > 𝜖ALD then // Basis changes
12 if dim ̃𝒮𝑛−1 < 𝐿 ̃𝒮 then // There is space in

the buffer
13 Let dim ̃𝒮𝑛 = dim ̃𝒮𝑛−1 + 1 and update

�̃�𝑛 ≔ [�̃�𝑛−1, 𝜑𝑛], 𝐁𝑛 ≔ [𝐁𝑛−1, 𝜑𝑛],
̃𝒮𝑛 ≔ span �̃�𝑛, as well as the kernel matrix

and its inverse.
14 else if dim ̃𝒮𝑛−1 = 𝐿 ̃𝒮 then // Buffer

overflows
15 Identify 𝑖∗ as in Section 3.1.
16 Let dim ̃𝒮𝑛 = 𝐿 ̃𝒮 and update

�̃�𝑛 ≔ [�̃�(𝑛−1)
1 , … , �̃�(𝑛−1)

𝑖∗−1 , 𝜑𝑛, �̃�(𝑛−1)
𝑖∗+1 , … , �̃�(𝑛−1)

𝐿 ̃𝒮
],

𝐁𝑛 ≔ [𝑏(𝑛−1)
1 , … , 𝑏(𝑛−1)

𝑖∗−1 , 𝜑𝑛, 𝑏(𝑛−1)
𝑖∗+1 , … , 𝑏(𝑛−1)

𝐿 ̃𝒮
],

̃𝒮𝑛 ≔ span �̃�𝑛, as well as the kernel matrix
and its inverse.

17 Set 𝐟 (𝑞)
𝑛 [𝑖∗] ≔ 0 in 𝑓 (𝑞)

𝑛 = 𝐁𝑛𝐟 (𝑞)
𝑛 , ∀𝑞 ∈ {1, … , 𝑄}.

18 for 𝑞 = 1 to 𝑄 do
19 𝑓 (𝑞)

𝑛+1/2 = 𝑃 ̃𝒮𝑛
[𝑓 (𝑞)

𝑛−1/2 − 𝑇 (𝑞)
𝛼 (𝑓 (𝑞)

𝑛−1) + 𝑇 (𝑞)(𝑓 (𝑞)
𝑛 )].

20 𝑓 (𝑞)
𝑛+1 = Prox𝜆 ̃ℒ𝑙𝑛

(𝑓 (𝑞)
𝑛+1/2), where (5a) is used if

𝑙 = 1 , while (5b) if 𝑙 = 2 .

𝑖∗ ≔ min{arg min𝑖∈{1,…,𝐿 ̃𝒮} ∑𝑄
𝑞=1(𝐟

(𝑞)
𝑛 [𝑖])2⋅‖𝑏(𝑛−1)

𝑖 ‖2
ℋ}, where 𝐟 (𝑞)

𝑛 [𝑖]
stands for the 𝑖th entry of vector 𝐟 (𝑞)

𝑛 in 𝑓 (𝑞)
𝑛 = 𝐁𝑛−1𝐟

(𝑞)
𝑛 . Sym-

bol 𝑃 ̃𝒮𝑛
(⋅) stands for the metric projection mapping onto ̃𝒮𝑛

in Line 19 of Algorithm 1.

3.2. Accommodating the Affine Constraints
Algorithm 1’s precursor [26], which was introduced to solve
composite and convex stochastic problems s.to (stochastic)
affine constraints, as well as its deterministic predecessor [31],
accommodates affine constraints via affine and nonexpansive
mappings 𝑇 ∶ ℋ → ℋ [30], whose fixed point set Fix 𝑇 ≔
{𝑓 ∈ℋ | 𝑇 (𝑓) = 𝑓} coincides with the affine constraint.

In the present context, gathering the “clean” data in 𝚽c ≔
[𝜑𝑛1, … , 𝜑𝑛𝐽] and 𝐲(𝑞)

c ≔ [𝑦(𝑞)
𝑛1 , … , 𝑦(𝑞)

𝑛𝐽 ]⊺ renders the constraint
set in (2) an affine set, as suggested by its equivalent de-
scription 𝒜(𝑞) = arg min𝑓′∈ℋ‖𝐲(𝑞)

c − 𝚽⊺
c 𝑓′‖2. Consequently, by

virtue of the flexibility that affine nonexpansive mappings of-
fer, Proposition 3 below shows several ways via which the
constraint 𝒜(𝑞) can be accommodated.



Proposition 3. Let the 𝐽 × 𝐽 kernel matrix 𝐊Φc ≔ 𝚽⊺
c 𝚽c.

Then, any of the following 𝑇 (𝑞) is affine nonexpansive with
Fix 𝑇 (𝑞) = 𝒜(𝑞), and can be thus used in Algorithm 1.

(i) 𝑇 (𝑞)(𝑓) = 𝑓 − (𝜚/𝜂)𝚽c(𝚽⊺
c 𝑓 − 𝐲(𝑞)

c ), ∀𝑓 ∈ ℋ, where
𝜂 ≥ 𝜆max(𝐊Φc), with 𝜆max(𝐊Φc) denoting the largest
eigenvalue of 𝐊Φc, and 𝜚 ∈ (0, 1].

(ii) 𝑇 (𝑞)(𝑓) = 𝑓 + 𝚽c𝐊†
Φc(𝐲(𝑞) − 𝚽c𝑓), ∀𝑓 ∈ ℋ, where su-

perscript † denotes the pseudoinverse of a matrix.
(iii) 𝑇 (𝑞)(𝑓) = (𝚽c𝚽⊺

c + 𝜇 Id)−1(𝜇𝑓 + 𝚽c𝐲(𝑞)), ∀𝑓 ∈ ℋ and
𝜇 ∈ ℝ>0. In the case where 𝑓 = 𝚽c𝐟, for some 𝐽 × 1
vector 𝐟, then 𝑇 (𝑞)(𝑓) = 𝚽c(𝐊Φc + 𝜇𝐈)−1(𝜇𝐟 + 𝐲(𝑞)).

In Algorithm 1, 𝑇 (𝑞)
𝛼 ≔ 𝛼𝑇 (𝑞)+(1−𝛼) Id, for 𝛼 ∈ [0.5, 1). It

is also assumed that span 𝚽c ⊂ ̃𝒮𝑛, ∀𝑛. Since time instances
(𝑛𝑗)𝐽

𝑗=1, where the clean data are observed, are known to the
user, the previous condition can be guaranteed, without any
loss of generality, by initializing ̃𝒮0 ≔ span(�̃�0 ≔ 𝚽c) (Line 2
in Algorithm 1), and by refraining from removing any of the
columns of 𝚽c via index 𝑖∗ in Section 3.1.

4. NUMERICAL TESTS
Algorithm 1 is compared with KRLS [7], the state-of-the-
art KRLP [12] and KRMMC [20], as well as [32–34], whose
kernel versions with the criterion of Section 3.1 were crafted
specifically for these tests. In [32–34], outlier vectors become
parameters to be estimated. The software code was written
in Julia [35], while 𝛼-stable noise was generated by [36].

The number 𝐽 of clean data is set equal to 1, and the ver-
sion of Proposition 3(ii) is chosen for 𝑇 (𝑞) in Algorithm 1. Per-
formance is measured by the following metrics on 𝑁t = 500
noise- and outlier-free test data (𝐱t,𝑘, 𝐲t,𝑘)

𝑁t
𝑘=1: (i) Root mean

square error RMSE(𝑛) ≔ [(1/𝑁t) ∑𝑁t
𝑘=1‖𝐲t,𝑘 − 𝒇𝑛(𝐱t,𝑘)‖2]1/2;

(ii) distance (1/𝑄) ∑𝑄
𝑞=1‖𝑓

(𝑞)
𝑛 − 𝑃𝒜(𝑞)(𝑓 (𝑞)

𝑛 )‖ℋ from constraint,
where 𝑃𝒜(𝑞) is the metric projection mapping onto the affine
set 𝒜(𝑞) ≔ {𝑓 (𝑞) ∈ ℋ | 𝑓 (𝑞)(𝐱𝑛1) = 𝑦(𝑞)

𝑛1 }; and (iii) computa-
tional time per iteration 𝑛. Multiple independent tests were
run and average results are reported in Figures 2 and 3.

Synthetic data were generated by 𝐲𝑛 ≔ sinc(𝐋𝐱𝑛)+𝐨𝑛+𝐧𝑛,
∀𝑛, with (𝐷, 𝑄) = (2, 5) (Figure 2). The entries of 𝐱𝑛 are
realizations of independent and identically distributed (i.i.d.)
uniform RVs with values in [−1, 1], zero mean and variance 𝜎2

𝑥.
The entries of the 𝑄×𝐷 matrix 𝐋 are generated by i.i.d. nor-
mal RVs of zero mean and unit variance, sinc(⋅) ≔ sin(⋅)/(⋅) is
applied entry-wise, and the entries of noise 𝐧𝑛 are realizations
of i.i.d. normal RVs of zero mean and variance 𝜎2

n. Each entry
of the outlier vector 𝐨𝑛 is modeled as the product 𝑜B ⋅ 𝑜U of
two independent RVs, where 𝑜B ∈ {0, 1} is a Bernoulli(𝑝B) RV
with 𝑝B = ℙ(𝑜B = 1) = 0.2 (sparse 𝐨𝑛), and 𝑜U is uniformly
distributed, with zero mean and variance 𝜎2

o. In Figure 2,
𝜎2

𝑥/𝜎2
n = 20dB and 𝜎2

o/𝜎2
n = 30dB. A Gaussian kernel with

variance 0.5 was used and 𝐿 ̃𝒮 = 70. Figure 2a shows that
Algorithm 1 with (5a) achieves identical performance with
KRLP [12] in much smaller time per 𝑛. By virtue of Sec-
tion 3.1, the computational time per iteration stays fixed for
Algorithm 1, in contrast to KRLP and KRMMC where time
grows unbounded as 𝑛 advances. Using only the first-order
information in (5b) does not seem to be an effective strategy
in the case of large-variance outliers.

Data [37] refer to an inverse dynamics problem for a
7 degrees-of-freedom SARCOS anthropomorphic robot arm.
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Figure 2: Synthetic data. Curve markers: KRLS [7]: , [32]: ,
[33]: , [34]: , KRLP [12]: , KRMMC [20]: , Algorithm 1
(5a): , Algorithm 1 (5b): . Average computational times per
iteration 𝑛 in secs are: KRLS: 2.51 × 10−3, [32]: 2.72 × 10−3,
[33]: 9.51 × 10−3, [34]: 1.38 × 10−4, KRLP [12]: 4.30 × 10−1, KR-
MMC [20]: 4.29 × 10−1, Algorithm 1 (5a): 1.62 × 10−2, Algo-
rithm 1 (5b): 7.34 × 10−4.

2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

10−1

100

Time/iteration index n (×102)

R
M

SE

(a) RMSE

2.5 5 7.5 10 12.5 15 17.5 20 22.5 2510−5

10−4

10−3

10−2

10−1

100

Time/iteration index n (×102)

D
ist

an
ce

fro
m

co
ns

tr
ai

nt

(b) Distance from constraint

Figure 3: SARCOS data [37]. Curve markers follow those
of Figure 2. Average computational times per iteration 𝑛 in secs
are: KRLS: 2.47 × 10−2, [32]: 2.59 × 10−2, [33]: 2.85 × 10−2, [34]:
5.32 × 10−4, KRLP [12]: 6.41 × 10−1, KRMMC [20]: 6.39 × 10−1,
Algorithm 1 (5a): 2.50 × 10−1. Algorithm 1 (5b) diverged, and
hence, its performance is not shown here.

The task is to map (𝐷 = 21)-dimensional vectors (7 posi-
tions, 7 velocities, and 7 accelerations) to their correspond-
ing 𝑄 = 7 joint torques. Outliers are synthetically inserted
into the data by adding to each output entry values of an RV
with an 𝛼-stable distribution [9] and the following param-
eters: index/stability: 1.5, skewness: 0.5, location: 0, and
scale: 10−2 [36]. A Gaussian kernel with variance 0.1 was
used and 𝐿 ̃𝒮 = 150. Similarly to Figure 2, Figure 3 shows
that the RMSE performance of Algorithm 1 with (5a) reaches
and even exceeds that of KRLP with smaller computational
complexity and memory footprints.

To conclude, KRMMC [20] performed poorly in cases of
large-variance outliers, but performed similarly to KRLP and
Algorithm 1 with (5a) under small/moderate-variance out-
liers (due to space limitations, these tests will be detailed
elsewhere). Extensive tests have showed that Algorithm 1
with (5b) achieved competitive performance in cases of small-
variance outliers, but performed poorly otherwise. In all
tests, regardless of the size of the variance of the outliers,
Algorithm 1 with (5a) achieved the best RMSE performance
among all competing methods, matched, and even exceeded
in some cases, the RMSE performance of KRLP [12], with a
bounded computational complexity over time, while comply-
ing with the side information, in contrast to the constraint-
agnostic methods [7, 12, 20, 32–34].
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