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Abstract

In this work, the Piecewise Variable-strain (PVS) approach is applied to the case of Concentric Tube Robots (CTRs) and

extended to include the tubes’ sliding motion. In particular, the currently accepted continuous Cosserat rod model is discretized

onto a finite set of strain basis functions. At the same time, the insertion and rotation motions of the tubes are included as

generalized coordinates instead of boundary kinematic conditions. Doing so, we obtain a minimum set of closed-form algebraic

equations that can be solved not only for the shape variables but also for the actuation forces and torques for the first time. This

new approach opens the way to torque-controlled CTRs, which is poised to enhance elastic stability and improve interaction

forces’ control at the end-effector.
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A Sliding-rod Variable-strain Model for Concentric Tube Robots
Federico Renda1, Conor Messer2, Caleb Rucker3, Frederic Boyer4

Abstract—In this work, the Piecewise Variable-strain (PVS)
approach is applied to the case of Concentric Tube Robots
(CTRs) and extended to include the tubes’ sliding motion. In
particular, the currently accepted continuous Cosserat rod model
is discretized onto a finite set of strain basis functions. At the
same time, the insertion and rotation motions of the tubes
are included as generalized coordinates instead of boundary
kinematic conditions. Doing so, we obtain a minimum set of
closed-form algebraic equations that can be solved not only for
the shape variables but also for the actuation forces and torques
for the first time. This new approach opens the way to torque-
controlled CTRs, which is poised to enhance elastic stability and
improve interaction forces’ control at the end-effector.

I. INTRODUCTION

Continuum robots can be considered a class of soft manipu-
lators, particularly suited for Minimally Invasive Surgery (MIS)
[1]. One of the most promising continuum robotic systems
developed so far is the Concentric Tube Robot (CTR), a
collection of nested millimeters tubes whose elastic interaction
is used to control the system’s overall shape and the iteration
force at the end-effector for surgical intervention [2]. CTRs have
demonstrated promising results in a variety of MIS applications.
For a thorough survey of the clinical applications of CTRs,
see [3] and the references therein.

The development of CTRs has been made possible thanks
to rapid advancement in modeling these kinds of complex
non-linear systems. These research efforts have converged on a
select type of Cosserat rods model with a particular kinematic
structure representing the internal tubes’ additional rotational
motion [4], [5]. Although this Cosserat approach has been
improved over the years to include tubes’ clearance, friction
[6], and inertial dynamics [7], it has been essentially maintained
as initially proposed [8]. Here, we refer to it as the standard
CTR model, and we briefly recall it in section II.

On the other hand, a general soft robot is composed of
flexible and rigid elements arranged in a parallel or serial
fashion and capable of locomoting in the environment. A novel
coordinate system has been proposed to model these kinds of
systems, which discretizes the continuous Cosserat model of the
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flexible components onto a finite set of strain basis functions
[9], [10]. This Piecewise Variable-strain (PVS) approach is a
generalization of traditional robotics’ geometric model [11]
to the case of highly flexible or soft robots [12]. Thus, it
provides the theoretical framework for applying traditional
control strategies to the field of soft robots. One of the aims of
the present work is to apply the PVS approach to CTR systems.
In this way, we further extend the general PVS approach
to this essential soft robotic technology. At the same time,
we open new prospects for the control design of CTRs. In
particular, the PVS model provides the equilibrium equations
as a minimum set of closed-form algebraic equations, which
may be easier to handle for control, design optimization, and
stability assessment.

Furthermore, in this work, we tackle one of the main
limitations of the standard CTR model concerned with the
sliding structure problem, also known as the spaghetti problem
[13]. In the standard model, the tube rotations and insertions
dictate the boundary conditions and locations of the section
domains. While the rotational actuator torques are easily
computed from the model solution, the insertion forces are
not present in the model equations. The recent extension to
dynamics also does not model the insertion forces and assumes
negligible insertion velocity and acceleration [7]. Here we relax
this assumption, although still in a static setting, which allows
calculation of the actuation insertion forces required for the
equilibrium for the first time. The spaghetti problem appears in
the planar models of animal locomotion [14], structural stability
[15], and finite element analysis [16]. Thus, to the authors’
knowledge, it is also the first time the spaghetti problem is
tackled in three dimensions and with an additional relative
rotation.

II. MODEL PRELIMINARIES

Before applying the PVS approach to solve the CTR
equilibrium, we revise the standard CTR model [4], [5] using
geometric notation. For simplicity, we will present the case of
fully overlapping tubes here. Note that additional details about
the CTR kinematics will be provided for the more general
cases analyzed in section III. Furthermore, a new kinematic
model that includes the sliding and rotation of the the bases
of the tubes as generalized coordinates of the system will be
introduced in section IV.

A. Kinematics
Each tube of a concentric tube system can be modeled as

a Cosserat rod, a continuous set of rigid cross sections of
infinitesimal thickness along a material curvilinear abscissa
X ∈ [0, L] where L is the total length of the rod. Identifying
each rigid cross-section with the moving frame rigidly attached
to it, the configuration of the tube j is completely defined
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by a curve gj(·) : X 7→ gj(X) ∈ SE(3) represented by the
homogeneous matrix:

gj(X) =

(
Rj(X) rj(X)

0T 1

)
, (1)

where rj(X) ∈ R3 is the position vector of the origin of the
moving frame and Rj(X) ∈ SO(3) is the rotation matrix
representing its orientation with respect to the spatial frame.

The high aspect ratio and material property of the conven-
tional CTR allow assuming inextensibility and shearless defor-
mation (Kirchhoff-Love kinematics). Furthermore, neglecting
tube clearance, the rods are perfectly concentric. Thus, their
centerlines must be the same at any configuration. Then, it
follows that an inner tube j differs from its outer tube j − 1
only by a rotation around the tangent vector to the centerline
[5], defined by:

gθj (X) =


1 0 0 0
0 cos(θj(X)) − sin(θj(X)) 0
0 sin(θj(X)) cos(θj(X)) 0
0 0 0 1

 , (2)

where θj(X) is the rotation angle and we have assumed a local
coordinate frame as shown in Figure 1. Thus, for an ordered
set of tubes we obtain:

g1(X) = g1(X)

gj(X) = gj−1(X)gθj (X), (j = 2, ..., N)
(3)

where N is the total number of tubes and the outer tube is
numbered with 1. A pictorial representation of this kinematics
is shown in Figure 1. Note that in this model, the concentric
tubes share the same material abscissa X .

Let’s obtain the time (∂/∂t = ˙ ) and space (∂/∂X = ′ )
derivative of the tubes configuration g with the Lie algebra
se(3). Starting with tube 1 we get:(

g−11 (X)ġ1(X)
)∨

= η1(X) =
(
wT1 , v

T
1

)T ∈ R6 (4)(
g−11 (X)g′1(X)

)∨
= ξ1(X) =

(
kT1 ,u

T
1

)T
∈ R6. (5)

where v(X), u(X) ∈ R3 represent the linear strains and
velocity respectively, while w(X), k(X) ∈ R3 are the angular
strains and velocity respectively. All the quantities are defined
in the local frame at X . To indicate the angular strain in the
reference stress-free configuration, we use the notation k∗.
Finally, the superscript ∨ indicates the isomorphism between
the Lie algebra se(3) and R6 [11] (∧ will be used in the
opposite direction).

Equating the mixed partial derivatives of the tube configura-
tion, we obtain a compatibility equation between the velocity
and strain twists.

∂

∂t
g′1 =

∂

∂X
ġ1 =⇒ η′1 = ξ̇1 − adξ1η1 . (6)

As shown in [9], integrating (6) with respect to space yields
the following useful relation:

η1(X) = Ad−1g1(X)

∫ X

0

Adg1 ξ̇1ds , (7)

where the operator Ad is the Adjoint map in SE(3) defined
in Appendix A.

For what concerns the inner tubes, first we define the
derivatives of the relative rotation gθj .(

g−1θj (X)ġθj (X)
)∨

= ηθj (X) =
[
θ̇j(X) 0 0 0 0 0

]T
(8)(

g−1θj (X)g′θj (X)
)∨

= ξθj (X) =
[
θ′j(X) 0 0 0 0 0

]T
. (9)

The same procedure that led to equation (7), in this case yields:

ηθj (X) =

∫ X

0

ξ̇θjds , (10)

Finally, the chain rule together with (4), (5), (8), and (9) yields,
for a general tube j:

(
g−1j ġj

)∨
= ηj(X) =

2∏
i=j

Ad−1gθi
η1(X) +

j∑
i=2

ηθi(X) (11)

(
g−1j g′j

)∨
= ξj(X) =

2∏
i=j

Ad−1gθi
ξ1(X) +

j∑
i=2

ξθi(X). (12)

B. Statics
In this work, we focus our attention on the static equilibrium

of concentric tubes with no external applied force (except for
the actuation in section IV) to get more neat results. However,
it should be noted that there are no particular impediments
that would prevent extending the approach to the general
dynamic case. We have also neglected friction forces and
torques interaction between the tubes as usually done with the
standard model.

The static equilibrium of a Cosserat rod in a concentric tube
setting can be derived from Hamilton’s principle (see [17] for
a derivation) with the addition of the constraints forces due to
the concentricity constraint. Thus, for a tube j we obtain:

F ′ij + ad∗ξjF ij + Fλj = 0, (j = 1, ..., N) , (13)

where F ij (X) =
(
MT
ij (X),NT

ij (X)
)T
∈ R6 is the vector

of internal moment and force, Fλj (X) ∈ R6 is the vector
of distributed constraint force, and ad∗ is the co-adjoint map
in SE(3) defined in Appendix A. Note that the value of the
internal force Nij is unknown due to the inextensibility and
shearless constraints. On the other hand, the internal moment’s
value can be computed from a constitutive law that we assume
linear for simplicity (Hooke’s law).

Mij (X) = Σj

(
kj(X)− k∗j (X)

)
, (14)

where Σ = diag(GJ,EI,EI) ∈ R3×3 is the elasticity matrix,
E is the Young modulus, G the shear modulus, and J , I are,
respectively, the polar and bending second moment of area
of the circular cross-section. For what concerns the constraint
contact force, although its value is also unknown, its basis can
be obtained from the virtual constraints equations that enforce
the concentricity constraint. These equations can be written in
the form

jj · (δrj(X)− δrj−1(X)) = 0, (j = 2, ..., N)

kj · (δrj(X)− δrj−1(X)) = 0, (j = 2, ..., N) ,
(15)

where jj and kj point in the y−, and z−axis directions of
tube j at X (see Fig. 1) , and δ is a virtual displacement.
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Equation (15) says that the distributed constraint force is equal
and opposite between two consecutive tubes and that it takes
the form:

Fλj (X) =
[
0 0 0 0 λyj (X) λzj (X)

]T −
Ad∗gθj+1

[
0 0 0 0 λyj+1(X) λzj+1(X)

]T
,

(16)

where λy(X) and λz(X) are Lagrange multipliers, and Ad∗

is the co-Adjoint map in SE(3) defined in Appendix A.
The static equilibrium of a collection of tubes imposes the

following boundary conditions on equation (13) [5].

N∑
j=1

Mij (X̄
−) =

N∑
j=1

Mij (X̄
+). (17)

Note that (17) also holds at discontinuity points X̄ where the
tubes stop to overlap (in that case, the upper limit of the sum
on the RHS will be smaller). Furthermore, since the concentric
tubes can not transmit axial torque to one another, the following
condition holds for each tube [5].

i ·Mi(X̄
−) = i ·Mi(X̄

+) , (18)

where i points in the x−axis direction, tangent to the midline
(see Fig. 1).

III. VARIABLE-STRAIN CTR MODEL

In [9], [10], a novel variable-strain approach has been
presented to model soft manipulators driven by tendons and
pneumatic chambers. This section aims to apply this technique
to CTRs to obtain a minimum set of closed-form equations
describing the system equilibrium.

According to the PVS approach, the configuration gj of
the collection of tubes is represented by the strain fields ξ1
and ξθj . In particular, the infinite dimensional strain fields are
discretized on a finite set of basis functions as follows.

ξ1(X) = B1(X)p1 + ξ , (19)
ξθj (X) = Bθj (X)pθj , (20)

where B1(X) ∈ R6×n1 and Bθj (X) ∈ R6×nθj are matrix
functions whose columns form the basis for the strain field
ξ1 and ξθj , respectively, while p1 ∈ Rn1 and pθj ∈ Rnθj are
the vectors of coordinates. Note that, due to the assumptions
made in section II, ξ is equal to [0 0 0 1 0 0], while the last
three rows of B1(X) and the last five rows of Bθj (X) are all
equal to zero. Then, the set of generalized coordinates become
q = (p1, pθ2 , . . . , pθN ), and the configuration gj(q) can be
reconstructed through the integration of equations (5), (9) and
the recursive formula given by (3).

The differential relation between configuration and general-
ized coordinates is obtained by replacing equations (19), (20)
in the velocity equations (7), (10), which yields

η1(X) =

[
Ad−1g1

∫ X

0

Adg1B1ds

]
ṗ1 = S1(X)ṗ1 , (21)

ηθj (X) =

[∫ X

0

Bθjds

]
ṗθj = Jθj (X)ṗθj , (22)

and, in turn, replacing the result in the velocity equation (11).
Finally, we obtain:

ηj(X) =

 2∏
i=j

Ad−1gθi
S1(X)

 ṗ1 +

j∑
i=2

Jθi(X)ṗθi

= Jj(X)ṗ1 +

j∑
i=2

Jθi(X)ṗθi .

(23)

Note that Jθi(X) is an analytical function that can be computed
offline given the choice of basis Bθi . The differential equation
(23) provides the required Jacobians to project the static equi-
librium (13) by d’Alembert’s principle. In particular, equation
(13) is projected with

∫ L
0
JTj (·) dX and

∫ L
0
JTθi (·) dX for all

j and i. The results are then summed over all j from 1 to
N to obtain as much algebraic equilibrium equation as the
dimension of q. This procedure is shown in detail for the case
of two fully overlapping tubes in the next section. The general
case of multiple non-overlapping tubes with straight actuation,
as shown in Figure 3, will be illustrated in the following.

A. Single overlapping sections
Let us consider the case of two fully overlapping tubes.

Applying d’Alembert’s principle as described above yields:
2∑
j=1

∫ L

0

JTj

(
F ′ij + ad∗ξjF ij + Fλj

)
dX = 0

∫ L

0

JTθ2
(
F ′i2 + ad∗ξ2F i2 + Fλ2

)
dX = 0.

(24)

Considering the form of the constraint force (16) and the

identity F ′ij + ad∗ξjF ij = Ad∗
g−1
j

(
Ad∗gjF ij

)′
, we get (note

that AdTg = Ad∗g−1 ):

2∑
j=1

∫ L

0

(∫ X

0

BT
1 AdTg1ds

)(
AdgjF ij

)′
dX = 0

∫ L

0

(∫ X

0

BT
θ2ds

)
Ad∗

g−1
2

(Adg2F i2)
′
dX = 0.

(25)

Finally, integrating by part we obtain:∫ L

0

BT
1

(
F i1 + Ad∗gθ2

F i2

)
dX = 0∫ L

0

BT
θ2F i2dX =

∫ L

0

JTθ2ad∗ξ1Ad∗gθ2
F i2dX ,

(26)

where we have used the strain equation (12), the identity
JTθ2ad∗ξθ2

F i2 = 0 and the boundary conditions (17), (18) at L.
Note that, since the generalized coordinates q are independent,
the unknown constraint forces Fλj cancel out as expected.

Equation (26) can be solved numerically for the unknowns
p1 and pθ2 that appear in F ij , ξ1, and gθ2 through equations
(19), (20), (14), and the integration of (9). This integration
becomes simple in this case, since the rotation angle θ of (2)
can be obtained by:

θ2(X) = α2 + (Jθ2(X)pθ2)x , (27)

where ()x extracts the first rotational element of a vector
and α2 is the rotation of the tube imposed at the base by
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the actuators. Note that the integrals of equation (26) can be
expressed analytically with the use of hypergeometric functions,
which makes their evaluation quick for numerical root finding.
Comparison with analytic torsionless case

As a first test to check the validity of the proposed
model, we consider here the case of two torsionless, fully
overlapping tubes with three-dimensional deformation. The
torsionless approximation was used at the beginning of the
CTR development, and analytic solutions are available for the
constant curvature approximation [18], [19], [20] as well as
the general variable curvature case [21].

Assuming no torsion, the equilibrium equation (26) becomes:∫ L

0

BT
1 (F i1 + F i2) dX = 0 , (28)

with θ2 = 0 and ξ1 = ξ2 = ξ. To reproduce the available
analytic solution with variable curvature [21], we select the
following basis for the strain ξ.

BT
1 (X) =


0 (k∗1)y (X) 0 0 0 0

0 (k∗2)y (X) 0 0 0 0

0 0 (k∗1)z (X) 0 0 0
0 0 (k∗2)z (X) 0 0 0

 ,

(29)
where k∗j is the reference strain of tube j. Thus, n1 = 4 and
the generalized coordinates p1 = q = [q1 q2 q3 q4]

T represent
the amount of reference curvatures making up the equilibrium
configuration. Rearranging (28), we can write:(∫ L

0

[
(k∗1)

2
y (k∗1)y (k∗2)y

(k∗2)y (k∗1)y (k∗2)
2
y

]
dX

)[
q1
q2

]
=

1

(EI1 + EI2)

∫ L

0

[
EI1 (k∗1)

2
y + EI2 (k∗1)y (k∗2)y

EI1 (k∗2)y (k∗1)y + EI2 (k∗2)
2
y

]
dX .

(30)

A similar equation can be obtained for q3 and q4. Solving for
q, we get:

q =
1

(EI1 + EI2)
[EI1 EI2 EI1 EI2]

T
, (31)

which correctly corresponds to the analytic solution k =
(Σ1 + Σ2)

−1
(Σ1k

∗
1 + Σ2k

∗
2).

B. Multiple non-overlapping sections
Let us now move to the case of multiple non-overlapping

tubes. To address this problem, we divide the system domain
into piecewise variable-strain sections corresponding to the
curvature discontinuity located at the end of every overlapping
portion. Thus, the kinematic equation (3) is applicable locally
at each overlapping portion and can be generalized as follows
(see Figure 1):

gjs(X) =

(
j−1∏
i=1

gi(Li)gθ(i+1)s
(Li)

)
gj(X)

gks(X) = g(k−1)s(X)gθks (X), (k = j + 1, ..., N) ,

(32)

where gjs indicates the configuration of tube j with respect
to the spatial frame, while gj represents the configuration
with respect to the local overlapping portion. Li is the length

Fig. 1: Kinematics of multiple non-overlapping sections. For each overlapping
portion the kinematic equation (3) applies.

of tube i, which corresponds to the end of an overlapping
portion. gθjs (X) is the total rotation between tube j and tube
j − 1 at X , which is obtained through the product of the
partial rotation of each overlapping portion preceding X . For
example, consider the total rotation between tube j and tube
j − 1 at X located on the third overlapping section, then
gθjs (X) = gθj1 (L1)gθj2 (L2)gθj3 (X).

A procedure similar to the single overlapping sections case
leads to the equilibrium equations for general multiple non-
overlapping tubes in the generalized variable-strain coordinates.
For example, consider the case of three non-overlapping tubes,
then we obtain:∫ L1

0

BT
1

(
F i1 + Ad∗gθ2s

(
F i2 + Ad∗gθ3s

F i3

))
dX = 0∫ L1

0

BT
θ21

(F i2 + F i3) dX =∫ L1

0

JTθ21 ad∗ξ1Ad∗gθ2s

(
F i2 + Ad∗gθ3s

F i3

)
dX∫ L1

0

BT
θ31

F i3 =

∫ L1

0

JTθ31 ad∗ξ1Ad∗gθ2s gθ3s
F i3dX+

JTθ31 (L1)

∫ L2

L1

ad∗ξ2Ad∗gθ3s
F i3dX

− − − − − − − − − − − − − − − − − −∫ L2

L1

BT
2

(
F i2 + Ad∗gθ3s

F i3

)
dX = 0∫ L2

L1

BT
θ32

F i3dX =

∫ L2

L1

JTθ32 ad∗ξ2Ad∗gθ3s
F i3dX

− − − − − − − − − − − − − − − − − −∫ L3

L2

BT
3 F i3dX = 0 .

(33)

Each dashed line separates an overlapping section. As with
(26), equation (33) can be solved numerically for the unknown
q =

(
p1, pθ21 , pθ31 , p2, pθ32 , p3

)
. We note that the model

grows linearly with the number of tubes, and number of degrees
of freedom.
Comparison with simulation in literature

The multiple overlapping tubes model is tested by comparing
the equilibrium configuration obtained for a two tubes robot
with a literature benchmark reported in [21]. Consider two tubes
of length 140 mm (outer) and 200 mm (inner) with constant
pre-curvature and physical properties reported in Table I. We
seek for the equilibrium configuration when the inner tube
is rotated by α2 = 180◦. The system domain is divided into
two variable-strain sections. The generalized coordinates are
q = (p1, pθ2 , p2), and the equilibrium equations are a subset
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Fig. 2: Equilibrium configurations computed with the variable-strain model
for two concentric tubes with constant pre-curvature. The inner tube is rotated
by 180◦. The result of the variable-strain model match well with the one off
the standard CTR model [21].

of (33). The resulting model takes the form of a nonlinear
algebraic system of equations that can be solved numerically
with the MATLAB© fsolve function. We chose a linear non-
homogeneous base for the strains involved in the first section,
i.e.: k1, and θ′2. Then, we have

B1 =


1 X 0 0 0 0
0 0 1 X 0 0
0 0 0 0 1 X
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , Bθ2 =


1 X
0 0
0 0
0 0
0 0
0 0

 ,
(34)

For the second section, since it is unloaded, we use the reference
strain k∗2 as a basis for the strain k2, which gives p2 = 1.

TABLE I: Physical Properties of Tubes

Outer tube Inner tube
Young’s Modulus (GPa) 58 58

Shear Modulus (GPa) 21.5 21.5
Inner diameter (mm) 2.01 0
Outer diameter (mm) 2.39 1.6

Reference curvature (mm−1) 0.0099 0.0138

As illustrated in [21], the CTR has three equilibrium
configurations. The solution to which the solver converges
depends on the initial guess. Figure 2 illustrates the equilibrium
configurations obtained with the variable-strain model. Com-
paring the Cartesian tip positions with respect to the standard
model, we find a maximum error of 1.17mm, and a mean
error of 7.8∗10−1mm, which correspond to 0.58% and 0.39%
of the backbone length, respectively. Furthermore, the inner
tube’s rotation with respect to the outer tube at the end of the
overlapping section is equal to θ2(L1) = ±85.5◦, which is
only 1.3% bigger than the value reported in [21] (±84.4◦).

C. Complete CTR system
The CTR systems considered so far only include the tubes’

portions that follow the insertion orifice, assuming that the

rotation input α was applied there (see equation (27)). However,
a complete CTR system is also composed of a straight portion
that precedes the insertion point and terminates with an
actuation system responsible for applying the input angle and
insertion motion. To include this part, we place the 0 of the
system domain X at the innermost tube base. Then, we divide
the system domain into several sections corresponding to the
different discontinuities. Those include a change in the number
of overlapping tubes (as before), the insertion orifice, and,
eventually, a reference strain jump. For instance, the straight
portion is usually obtained by letting the tube be originally
straight at the proximal end and curved toward the distal end.
Finally, we constrain the straight portion by choosing only a
torsional strain basis for these proximal sections. Note that this
method applies to fully curved tubes as well, where external
constraints enforce the straightness condition.

For example, let us consider the two tubes CTR sys-
tem shown in Figure 3, where each tube has a straight
proximal reference strain of length Ljs as indicated. There
are five sections in this example indicated with an addi-
tional subscript in the following. Define D1, D2 to be the
distance between the insertion orifice and the outer and
inner tube base, respectively, and ∆D = D2 − D1. Then,
the equilibrium equations for the generalized coordinates
q =

(
pθ21 , p12 , pθ22 , p13 , pθ23 , p14 , pθ24 , p25

)
are given

by:∫ ∆D

0

BT
θ21

F i2dX = JTθ21 (∆D)

(∫ L2s

D2

ad∗ξ1Ad∗gθ2s
F i2dX+∫ ∆D+L1

L2s

ad∗ξ1Ad∗gθ2s
F i2dX

)
− − − − − − − − − − − − − − − − − − − −∫ D2

∆D

BT
12

(F i1 + F i2) dX = 0∫ D2

∆D

BT
θ22

F i2dX = JTθ22 (D2)

(∫ L2s

D2

ad∗ξ1Ad∗gθ2s
F i2dX+∫ ∆D+L1

L2s

ad∗ξ1Ad∗gθ2s
F i2dX

)
− − − − − − − − − − − − − − − − − − − −∫ L2s

D2

BT
13

(
F i1 + Ad∗gθ2s

F i2

)
dX = 0∫ L2s

D2

BT
θ23

F i2dX =

∫ L2s

D2

JTθ23 ad∗ξ1Ad∗gθ2s
F i2dX+

JTθ23 (L2s)

(∫ L2

L2s

ad∗ξ1Ad∗gθ2s
F i2dX

)
− − − − − − − − − − − − − − − − − − − −∫ ∆D+L1

L2s

BT
14

(
F i1 + Ad∗gθ2s

F i2

)
dX = 0∫ ∆D+L1

L2s

BT
θ24

F i2dX =

∫ ∆D+L1

L2s

JTθ24 ad∗ξ1Ad∗gθ2s
F i2dX

− − − − − − − − − − − − − − − − − − − −∫ L2

∆D+L1

BT
25
F i2dX = 0.

(35)
In developing the equilibrium equation (35), we have used the
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Fig. 3: Sketch of the simulated complete CTR system. Dimensions of the tubes
are as follows: straight length L1s = 93.5mm (outer) L2s = 218.5mm
(inner), curved length L1c = 92.3mm (outer) L2c = 85mm (inner)

identity JTθ ad∗ξF i = 0 for the straight portion that precedes the
insertion orifice. Furthermore, note that B12 has only torsional
components, and Bθ22

(X), Bθ23
(X) are equal to zero at X <

∆D and X < D2, respectively.
Considering the CTR systems of equation (33) and (35),

we notice that each section follows the same structure of the
single overlapping case (26).
Comparison with experiments in literature

The results of the complete system model (35) are compared
with experimentally validated simulations available in the
literature [21]. Consider two tubes with a straight portion
followed by a constant pre-curvature, as shown in Figure
3, and physical properties reported in Table I. We seek the
equilibrium configuration in two sets of insertion and rotation
conditions of the inner tube. In the first set, the full overlap
case, D2 = 208.5 mm, and α2 goes from 0◦ to 280◦ in
20◦ increments. In the second set, the partial overlap case,
D2 = 170.5 mm, and α2 goes from 0◦ to 200◦ in 20◦

increments. D1 and α1 are always equal to 93.5 mm and
0, respectively. We chose a quadratic basis for all the strains
involved, except for the last section, where we use k∗2.

Figure 4 illustrates the equilibrium configurations obtained
with the variable-strain model. Comparing the Cartesian tip
positions with respect to the standard model, we find a
maximum error of 4.8 ∗ 10−1mm, 8.9 ∗ 10−1mm and a mean
error of 4.4∗10−1mm, 7.2∗10−1mm, respectively, for the full
overlap and partial overlap case. The mean errors correspond
to 0.14% and 0.23% of the backbone length.

D. Benefits of the PVS model for CTR
The proposed piecewise variable-strain approach for con-

centric tube robots presents several benefits. It provides the
equilibrium equations as a minimum set of closed-form
algebraic equations. The system is easy to handle for control
and design optimization since all the boundary and continuity
conditions are already intrinsically embedded in the equilibrium
equations. Furthermore, extension to dynamics can be done
without any change to the number and type of generalized
coordinates. Finally, the PVS model is well-posed to accom-
modate additional DOFs and incorporate design variation of
CTRs as well as generalization to other rod-driven soft robots.
In the next section, we include the tubes’ insertion and rotation
motion as generalized coordinates of the system for the first
time.

Fig. 4: Equilibrium configurations computed with the variable-strain model
for two concentric tubes with straight portion and constant pre-curvature. The
inner tube is rotated from 0◦ to 280◦ in 20◦ increments (right) and from
0◦ to 200◦ in 20◦ increments (left). The result of the variable-strain model
match well with the one of the standard CTR model [21].

IV. SLIDING CTR MODEL

In the standard model approach, the tube rotations and
insertions are actuation variables that dictate the boundary
conditions of the governing ODEs. Actuator motion is thus
simulated by simply varying the], thus producing what is
known as a “quasi-static” simulation. While the Jacobian can be
numerically computed along the robot [22], the tube velocities
are not automatically included in the standard model. The recent
extension of the standard model to dynamics does describe
velocities, but still assumes negligible actuator insertion velocity
and acceleration [7]. Further, while the torque required to rotate
the tubes is computable from the solution boundary values
and the constitutive law, the standard model does not include
information about actuator insertion forces. This section will
extend the proposed PVS model for CTR to include the input
motions as generalized coordinates and overcome the standard
model’s above limitations.

Before that, we establish a general result for the differential
kinematics of rod’s sections with a variable domain. Consider a
rod section with material abscissa X ∈ [a(t), b(t)] and g(a) =
I . The tip of the section g(b) can be formally represented by
the integration of the linear time-varying differential equation
(4) through its state-transition matrix g(b) = Φ(b, a). Then,
the derivative of g(b) with respect to time has to include the
variation of the domain boundaries in addition to the variation
of the shape. This can be calculated as follows.

∂Φ(b, a)

∂a

da

dt
= −ξ̂(a)g(b)ȧ, and

∂Φ(b, a)

∂b

db

dt
= g(b)ξ̂(b)ḃ,

(36)
where the first can be considered a ”growing from the base”
term and the second a ”growing from the tip” term. Note that
internal cross-sections g(X) will vary only due to the proximal
boundary a, while they are indifferent to the distal boundary
b. Finally, the total velocity twist becomes:

η(b) = Ad−1g(b)

∫ b

a

Adgξ̇dX + ξ(b)ḃ−Ad−1g(b)ξ(a)ȧ , (37)

Observe the differences with equation (7) and (10) used so far.
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To keep track of the potentially varying boundaries, in the
following, we replace the notation g(b) with g([a, b]).

A. Complete CTR system with actuation forces and torques
Let us consider, without loss of generality, two non-

overlapping concentric tubes constrained to be straight before
the insertion orifice, as shown in Figure 3. We removed the
reference strain discontinuity here for simplicity, reducing the
number of required sections to four. First, we define two
material abscissas respectively for the outer tube X1 = [0, L1],
and the inner tube X2 = [0, L2]. Overlapping cross-sections
are then related by:

X1(∆D) = X2 −∆D , (38)

where D1 and D2 are generalized coordinates now. In this
example, the full set of generalized coordinates is q =(
D1, D2, α1, α2, pθ21 , p12 , pθ22 , p13 , pθ23 , p24

)
.

Contrary to section III-C, we fix the spatial frame on the
insertion orifice. Then, the tubes’ sections’ kinematics can be
expressed with equation (32) after being pre-multiplied by a
translational homogeneous matrix gt, which depends on the
insertions D1 and D2. Let us focus on the overlapping section
immediately after the insertion orifice. The kinematics can be
written as:

g1s(X1 ≥ D1) = gt([0,−D1])g12([0, D1])g13([D1, X1])

g2s(X2 ≥ D2) = gt([0,−D1])g12([0, D1])g13([D1, X1(∆D)])

gθ21 ([0,∆D])gθ22 ([∆D,D2])gθ23 ([D2, X2], X1(∆D)) ,
(39)

where, for the inner tube, X1 is given by (38). The last
term gθ23 ([D2, X2], X1(∆D)) indicates the relative rotation
between X1(∆D) of the outer tube and X2 of the inner tube
accumulated in the last section starting from D2.

Using the general formula (37) and the discretizations (19),
and (20), we obtain the differential kinematics of the section.

η1s(X1) = Ad−1g13 (X1)

[
Bαα̇1 − ξ̄k1(D1)Ḋ1 + S12(D1)ṗ12

]
+

J13(X1)ṗ13

η2s(X2) = Ad−1gθ2s (X2)
η1s(X1) +Bαα̇2 + Jθ21 (∆D)ṗθ21 +

Jθ22 (D2)ṗθ22 + Jθ23 (X2)ṗθ23 − ξ̄k2(X2)∆Ḋ ,
(40)

where Bα = [1 0 0 0 0 0]T , and ξ̄k1,2 =
[0 (k1,2)y (k1,2)z 1 0 0]T . Note that the variable upper
boundary of gθ23 is due to X1(∆D). Thus, its variation has
to be taken with X2 fixed.

Equation (40) provides the additional Jacobians correspond-
ing to the input motions. Similar equations can be obtained
for the other three sections. Projecting the differential equation
(13) by d’Alembert’s principle using these additional Jacobians
yields the equilibrium equations for the insertion and rotation

input forces τD1
, τD2

, and torques τα1
, τα2

.

τD1 = EJ1

[
ξTk1 (ξk1 − ξ∗k1)

(
D+

1

)]
+ EJ2

[
1

2
ξTk1ξk1

(
D+

2

)
+∫ L1+∆D

D2

(
ξ′k1 + adξ1 ξ̄k1

)T
Adgθ2s

ξ∗k2dX+

ξTk1

(
1

2
ξk1 − Adgθ2s

ξ∗k2

)(
L1 + ∆D−

)
−

ξTk2 (ξk2 − ξ∗k2)
(
L1 + ∆D+)]

τD2 = EJ2

[
ξTk1

(
1

2
ξk1 − Adgθ2s

ξ∗k2

)(
D+

2

)
−∫ L1+∆D

D2

(
ξ′k1 + adξ1 ξ̄k1

)T
Adgθ2s

ξ∗k2dX−

ξTk1

(
1

2
ξk1 − Adgθ2s

ξ∗k2

)(
L1 + ∆D−

)
+

ξTk2 (ξk2 − ξ∗k2)
(
L1 + ∆D+)]

τα1 = −τα2

τα2 = −BT
α

∫ L1+∆D

D2

ad∗ξ1Ad∗gθ2s
F i2dX

(41)
where ξk = [0 (k)y (k)z 0 0 0]T . To obtain (41) we have
also used the following boundary conditions.

ξ̄TF i1(0) = −τD1
, BT

αF i1(0) = −τα1

ξ̄TF i2(0) = −τD2
, BT

αF i2(0) = −τα2

(42)

According to the Newton law of conservation of momentum,
the input forces’ and torques’ sums have to be zero. It is an
excellent verification to check if equation (41) satisfies these
conditions. For the input torques, the third equation of (41)
ensures that the actuation torques are equal and opposite. For
what concerns the input forces, we have:

τD1 + τD2 = EJ1
[
ξTk1
(
ξk1 − ξ∗k1

) (
D+

1

)]
+

EJ2

[
ξTk1

(
ξk1 −Adgθ2s

ξ∗k2

) (
D+

2

)]
,

τD1
+ τD2

= ξTk1

(
F i1

(
D+

1

)
+ Ad∗gθ2s

F i2

(
D+

2

))
= 0

(43)

where the last identity, which states that the internal stress
is null on the cross-section immediately after the orifice, is
justified by the fact that no external forces act on the system
from that point onward. Thus, also the input forces are equal
and opposite as required.

B. Simulation tests
Some simulation tests are presented in this section to explore

the behavior of the actuation forces and torques. We consider
six configurations (three planar and three out-of-plane) of two
concentric tubes with physical properties as for Table I. In all
the cases, we consider linear non-homogeneous (or constant)
pre-curvatures. The linear and non-homogeneous pre-curvature
coefficients are varied to study the effect on the actuation forces
and torques. In the out-of-plane cases, the inner tube is rotated
by 90◦ with respect to the outer tube. Table II reports the exact
values of the non-homogeneous and linear coefficients and the
calculated values of the actuation inputs.

The following observations can be made. For case a), the
insertion motions D1 and D2 do not influence the actuation
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TABLE II: Sliding-rod test results

Outer tube Inner tube Actuation
α2 constant linear constant linear τD2 τα2

[rad/m] [rad/m2] [rad/m] [rad/m2] [N] [Nm]
a) 0◦ 10 0 30 0 0 0
b) 0◦ 30 -80 30 0 3.65 0
c) 0◦ 30 0 50 80 6.71 0
d) 90◦ 20 0 10 0 0.28 0.118
e) 90◦ 20 40 10 0 -1.45 0.122
f) 90◦ 20 0 10 40 1.89 0.129

inputs value. In case b), while the insertion of the inner tube D2

is still irrelevant, the force input absolute value |τD| increase
with the outer tube’s insertion and curvature. In c), the force
input absolute value |τD| increase with the insertion of the outer
tube and the retraction of the inner tube. For the out-of-plane
cases, in general, the absolute value |τD| increases with the
rotation angle α2 up to 90◦, and it is symmetric with respect
to clockwise or counterclockwise rotations. In particular, the
linear coefficients of e) and f) have an opposite contribution
to the actuation force τD2

. In case e), τD2
decreases with the

increment of the linear coefficient until it becomes negative,
as reported in Table II. In case f), the opposite applies.

C. Benefits of the sliding-rod PVS model for CTR
The sliding-rod PVS model presented here proposes a

growing (non-material) approach, which allows extending the
PVS model to include the tubes’ sliding motion without the
need of calculating the unknown interaction forces. This new
model may be used to control the CTR motion through the
actuation force and torques instead of the insertion and rotation
kinematics. Torque-controlled CTR can provide a new way to
enhance elastic stability and improve interaction forces’ control
at the end-effector, currently a major concern in the design of
CTR [23]. In the present form, the base force equations (41)
can also be used to improve the fast kinematic controllers of
[24], which is based on actuation load sensing.

V. CONCLUSIONS

In this paper, the recently proposed piecewise variable-
strain approach for modeling highly deformable rods has been
adjusted and applied to the case of concentric tube robots.
The performances of the new approach have been compared
with analytic, simulated, and experimental data available in
the literature. Furthermore, the PVS approach has been further
extended to include the tubes’ insertion motion for the first
time, which opens new unexplored possibilities for controlling
these kinds of systems.

Future works include experimental validations of the sliding-
rod PVS model, the addition of external forces, and the
extension to dynamics.

APPENDIX A
ADJOINT REPRESENTATIONS

Adg =

(
R 03×3
r̃R R

)
, Ad∗g =

(
R r̃R

03×3 R

)
,

adξ,η =

(
k̃, w̃ 03×3

ũ, ṽ k̃, w̃

)
,ad∗ξ,η =

(
k̃, w̃ ũ, ṽ

03×3 k̃, w̃

)
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