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Abstract

The problem of selecting the modulation and coding scheme (MCS) that maximizes the system throughput, known as link

adaptation, has been investigated extensively, especially for IEEE 802.11 (WiFi) standards. Recently, deep learning has widely

been adopted as an efficient solution to this problem. However, in model failure cases, predicting a higher-rate MCS can result

in a failed transmission. In this case, retransmission is required, which largely degrades the system throughput. To address

this issue, we formulate the adaptive modulation and coding (AMC) problem as a multi-label multi-class classification problem.

The proposed formulation allows more control over what the model predicts in failure cases. In this context, we propose a

simple, yet powerful, loss function to reduce the number of retransmissions due to higher-rate MCS classification errors. Since

wireless channels change significantly due to the surrounding environment, a huge dataset is generated to cover all possible

propagation conditions. However, to reduce training complexity, we train the CNN model using part of the dataset. The effect

of different subdataset selection criteria on the classification accuracy is studied. It is shown that some criteria for dataset

selection consistently behave better than others. To confirm the performance, we applied the proposed model for adapting

the IEEE 802.11ax standard in outdoor propagation scenarios. The simulation results show that the proposed loss function

reduces up to 50% of retransmissions compared to traditional loss functions. Finally, we propose an optimal subdataset selection

criterion.
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Abstract—The problem of selecting the modulation and
coding scheme (MCS) that maximizes the system throughput,
known as link adaptation, has been investigated extensively,
especially for IEEE 802.11 (WiFi) standards. Recently, deep
learning has widely been adopted as an e�cient solution to
this problem. However, in model failure cases, predicting a
higher-rate MCS can result in a failed transmission. In this
case, retransmission is required, which largely degrades the
system throughput. To address this issue, we formulate the
adaptive modulation and coding (AMC) problem as a multi-
label multi-class classi�cation problem. The proposed for-
mulation allows more control over what the model predicts
in failure cases. In this context, we propose a simple, yet
powerful, loss function to reduce the number of retrans-
missions due to higher-rate MCS classi�cation errors. Since
wireless channels change signi�cantly due to the surround-
ing environment, a huge dataset is generated to cover all
possible propagation conditions. However, to reduce training
complexity, we train the CNN model using part of the dataset.
The e�ect of di�erent subdataset selection criteria on the
classi�cation accuracy is studied. It is shown that some
criteria for dataset selection consistently behave better than
others. To con�rm the performance, we applied the proposed
model for adapting the IEEE 802.11ax standard in outdoor
propagation scenarios. The simulation results show that the
proposed loss function reduces up to 50% of retransmissions
compared to traditional loss functions. Finally, we propose
an optimal subdataset selection criterion.

Index Terms—Link adaptation, IEEE 802.11ax, Machine
learning, Deep learning, WiFi 6

I. Introduction
To accommodate the ever-increasing growth in throughput

demand, developing high-performance wireless systems be-
came more essential. These wireless systems should consider
both: the unique features of the di�erent data services and the
dynamic and spatiotemporal characteristics of the wireless
channels. Therefore, techniques like dynamic resource allo-
cation and link adaptation are incorporated into the di�erent
wireless standards in order to support the quality of service
(QoS) requirements while serving the increased number of
users [1]. Link adaptation represents a key element in deter-
mining the system’s latency and throughput performance [2].
Fortunately, machine learning (ML) is anticipated to provide
viable solutions to the link adaptation challenges in wireless
systems [3], [4].

In the literature, the link adaptation problem is formulated
as a multiclass classi�cation problem where the class labels

represent di�erent modulation and coding scheme (MCS)
combinations [4]–[8]. According to this formulation, each
data point is allowed to belong to only one class and a
supervised ML model can be trained to select the ideal
MCS based on the training data. However, supervised models
generally, and neural networks (NN) speci�cally, have a
certain level of accuracy [9]. In this case, failing to predict
the ideal MSC has unpredictable implications on the system
throughput. In fact, predicting a higher-rate MCS will result
in a failed transmission and, consequently, a retransmission
is required which largely degrades the system throughput.
These problems come from the fact that formulating the
problem as multiclass classi�cation has no control over what
the model can predict in the failure cases. Now the question
is, if the model failed to predict the optimal MCS, why we
do not train it to predict a suboptimal one?

To answer this question, we model the link adaptation
problem, for the �rst time, as a multi-label multi-class
classi�cation. In this modeling, a datapoint is allowed to
belong to more than one class at the same time (all the
successful MCS in AMC problem). Bases on that, the model
learns to predict not only the optimal MCS, but also all
suboptimal ones. Such modeling approach gives more control
to what the model learns from the training phase and what
it can predict in the failure cases. However, we need to
enforce the model avoid predicting higher-rate MCs that
cause the retransmissions. To solve this issue, we propose
a new loss function that adds more penalization to these
cases. The proposed loss function reduces the number of
retransmissions compared to traditional crossentropy loss
function, which widely employed in the literature.

In the other hand, Wireless channels vary signi�cantly
according to the surrounding environment. To have realistic
results, a huge dataset is constructed to cover all possible
channel variations. However, it is computationally expensive
to utilize all the samples for training. To train the model,
a random selection for part of the dataset is an intuitive
method in order to guarantee fair representation for the full
spectrum of classi�ed/studied cases. In this work, we examine
alternative selection criteria other than the random selection.
We also compare the e�ect on the resulting classi�cation
accuracy.

The aforementioned selection criteria are based on the
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Fig. 1: System Overview.

domain-knowledge and the understanding for the na-
ture of the wireless channels. For orthogonal frequency-
division multiplexing (OFDM) based systems, we assume
an interference-free, noise-free, single-user, and single-input
single-output setup. In this case, the delay dispersion of the
channel is the decisive factor on the MCS selection. Hence,
instead of randomly selecting the training subdataset, we
select the subdataset that comprises a uniform (or as close as
possible to a uniform) distribution of the channels delay dis-
persion behaviors. Given that the channel dispersion behavior
is not easy to be fully characterized, for such selection to
take place, we employ well-know criteria characterizing the
delay dispersion such as root-mean-square delay spread and
window delay spread. We study the e�ect of the selection
criteria on the model accuracy, and the optimal selection
criteria is highlighted.

The contributions of this work can be summarized as
follows:
• Unlike the literature work, we formulate the problem of

AMC as multi-label multi-class classi�cation problem.
The model trained to predict all the possible labels for
successful transmission (including the optimal MCS and
suboptimal ones).

• We employ a convolutional neural network (CNN) with
an innovative loss function. The proposed model allows
to control what link parameters to use when failing to
select the optimal ones. Consequently, it outperforms a
CNN with traditional crossentropy function in terms of
the retransmission rate.

• We study the impact of training subdataset selection cri-
teria on AMC problem and highlight the corresponding
e�ect in the classi�cation accuracy.

II. Problem Formulation, Dataset Generation, and
Training Subdataset Selection

A. Problem Formulation

Assume we have C di�erent combinations of MCS and
guard intervals GI each of them called a transmission mode
(TM). The TMs are indexed as i ∈ I ⊂ N, where the
cardinality of I is the number of available combinations. The
index i, thereafter referred to as the class distinctly maps to

a combination of MCS and GI. We adopt the IEEE 802.11ax
standard for single-input single-output (SISO) system at 0.8
and 3.2 guard intervals with a �xed bandwidth of 20 MHz.
Therefore, in terms of multi-label multi-class classi�cation,
link adaptation is the problem of selecting all the class labels,
i, to which a certain channel realization belongs. Thus, for a
certain channel realization chn, the classi�er selects all the
labels, i, corresponding to all valid transmission modes TMi.
Then, we can express the classi�er function as a function
F that maps a channel realization chn to a set of labels
y ⊂ {1, 2, ..., c}, where c ≤ C , such that:

F (chn) = y = {i : TX(chn, TMi) = 1}, (1)

where TX(chn, TMi) = 1 when transmitting a packet
through channel chn and with transmission con�guration
given by TMi is successful and zero otherwise. From the
predicted TMs, we select the one corresponding to the higher
data rate. As shown in Fig. 1, a user station (STA) sends
the estimated channel state information (CSI) to the access
point (AP). The AP then use the received CSI to adapt the
transmission link parameters.

B. Datasets Generation

In this work, we selected four scenarios that have diverse
delay dispersion characteristics: urban micro-cell, suburban
macro-cell, urban macro-cell and rural macro-cell. Using the
Matlab WINNER II toolbox [10], for each scenario, 50,000
channels are generated. For each channel, using the Matlab
IEEE 802.11ax toolbox, we simulate transmitting a packet
using all TMs and, consequently, the corresponding labels
are obtained. We split the generated channels to 80% training
and 20% testing.

C. Selection of Training Subdatasets using Di�erent Delay
Dispersion Criteria

The training subdatasets will be constructed using two
approaches: random selection criteria and di�erent delay-
spread-based selection criteria. Based on the random ap-
proach, Cases 1 & 2 are identi�ed, and based on the delay-
spread approach, Cases 3, 4, & 5 are identi�ed.
1) The random selection criteria (Cases 1 & 2): The random

approach is applied in the following two ways:
• Case 1, Random Full Dataset (RandomFD): all data points

(i.e., a total of 160,000 data points; 40,000 data point
from each of the four scenarios) are used as the training
dataset.

• Case 2, Random Partial Dataset (RandomPD): the train-
ing subdataset is composed of data points selected
randomly and equally from each scenario.

RandomFD represents a reference case where all data
points are used for training, and RandomPD is the typical
widely-used way of reducing the number of data points
through random selection.



2) The delay-spread-based criteria (Cases 3, 4, & 5): The
delay-spread-based selection approach is applied to select
di�erent training subdatasets each of which has the same
number of data points as RandomPD. Instead of being se-
lected in a total random fashion as in the RandomPD, the
goal hear is to make the selection such that the data points
of the built subdatasets experience the full delay dispersion
behaviour of RandomFD in some sense. Using this approach,
from the total 160,000 available data points, we select the
subdataset points such that the distribution of the delay
dispersion metric will be as close as possible to uniform.

Lets assume RandomFDi to be the ith data point in
the RandomFD dataset; S(RandomFDi) is its corresponding
delay dispersion evaluated based on a speci�c metric of
interest, S ; i = 1, 2, ..., I (where I is the total number
of data points in RandomFD), and minS(RandomFD)
& maxS(RandomFD) are the minimum and maximum
obtained delay dispersion values, respectively, among all
the data points of RandomFD. We assume the interval
[minS(RandomFD) , maxS(RandomFD)] to be divided
into Z equal disjoint sub-intervals. We de�ne the histogram
of S(RandomFD) as the function that counts the number
of delay-spread observations, nz , that fall into the zth sub-
interval, where z = 1, , 2, ..., Z , and nmin & nmax are the
minimum and maximum number of observations, respec-
tively, obtained per sub-interval using the full dataset i.e.,
RandomFD.

Then, our proposed delay-spread-based selection approach
can be applied as follows. Select a subdataset from RandomFD
such that the selected subdataset has a histogram, mz ,
de�ned as follows.

max
nmax≥x≥nmin

Z∑
z=1

mz

mz = min(x, nz)

s.t.
Z∑

z=1

mz ≤ T,

(2)

where T is the total number of data points in the selected
subdataset.

The value of x determines the maximum number of data
points at each of the Z intervals, which results in selecting
a subdataset with a histogram that exhibits a tendency
toward having a uniform distribution of the delay dispersion
behaviour over the [minFD,maxFD] range. The possibilty
of ending up with a perfect uniform distribution increases as
the number of data points in RandomFD increases.

Based on the applied delay-spread metric (i.e., S), which
is our design criterion, we can now de�ne the di�erences
among Case 3, Case 4, and Case 5 of the studied cases.
• Case 3, root-mean-square delay spread Partial Dataset

(rmsPD). In this case, the training dataset is selected
using the delay-spread metric de�ned as the normalized
second-order moment of the delay pro�le of the chan-
nels.

• Case 4, window (40%) delay spread Partial Dataset
(W40%PD). In this case, we characterize the delay disper-
sion using the delay window parameter which is de�ned
as "the length of the middle portion of the power delay
pro�le containing a certain percentage of the total power
found in that impulse response" (p. 4, [11]). Here we use
the 40% as our design criterion.

• Case 5, window (70%) delay spread Partial Dataset
(W70%PD). In this case, we use the same de�nition of
the delay dispersion metric as in Case 4; however, here
we use the window that contains 70% of the power of
the delay pro�le.

III. Proposed Deep-Learning Approach for AMC
The convolutional neural networks (CNNs) have showed

superior performance in di�erent domains including com-
puter vision, natural language processing, speech synthesis,
etc [12]. One main advantage of CNNs is its proven capabil-
ities in processing raw data. This advantage eliminates the
burdens of data pre-processing. Inspired by this, we propose
a CNN-based approach for AMC in IEEE 802.11ax. While
all the work in the literature treated the problem as multi-
class classi�cation [13], this is the �rst work to tackle the
problem as a multi-label multi-class classi�cation. In this case,
each channel realization can belongs to more than one class
which means that a packet is successfully transmitted via this
channel with more than one TM con�gurations.

A. CNN Model

The proposed deep convolutional neural network (DCNN)
includes convolutional layers, average pooling layers, and
fully connected layers. Particularly, the �rst hidden layer
is a convolutional layer with 20 �lters. The second hidden
layer is a convolutional layer of 32 �lters. The following
layer is an average pooling layer with pool size of 4. Then,
another convolutional layer is added with 64 �lters. After
that, an average pooling layer with pool size 2 is utilized.
The fourth convolutional layer consists of 32 �lters. Then,
an average pooling layer with pool size 2 is utilized. For
the all convolutional layers, every �lter has a size of 10
× 2, with ReLU activation, F (x) = max(x, 0). After the
4 convolutional layers, there are 2 fully connected layers.
The �rst fully connected layer contains 50 and C neurons
respectively where C is the number of available TMs. Since
one CSI can belong to many classes at the same time, we
use Sigmoid activation function (3) in the output layer to
approximate the multinomial distribution of the class labels.
To relieve the e�ect of over�tting, an l2 regularizer is added
to the last two layers.

σ(x) =
1

1 + e−x
(3)

Adam optimizer [14] is adopted to train the model along
with our customized loss function (section IV). The DCNN is
trained for 1000 epochs with batch size of 128. After training
the DCNN, it is deployed for predicting the appropriate TM.



B. Dataset Description

Consider a labeled dataset consisting of pairs of x and y.
In this case, x represents di�erent CSI in di�erent selection
cases described in subsection II-C. The label vector y is a
vector in {0, 1}C where C is the number of the available
TMs (i.e., the same as the number of the available classes).
If the ith position in the label vector of the jth data instance
is set to one, this indicates that a transmission over a channel
with CSI equal to jth CSI in the dataset using the ith

transmission mode will result in a successful transmission.
In the same way, 0 indicates a failed transmission. In our
experiments, the label vector is 24th dimensional vector
representing the di�erent available combinations of MCS and
GI.

C. Evaluation Metrics

To evaluate the proposed model in the context of commu-
nication systems e�ciency, we applied two system-speci�c
evaluation metrics, namely, data-rate loss (DRL) and number
of retransmissions (NR). We de�ne δ as:

δ = R(TM i)−R(TMi), (4)

where R(·) is a function that maps a TM to the data rate
associated with this TM, TMi is the optimal TM given in
the dataset, and TM i is the predicted TM. For positive
values of δ this means that the model predicts higher-
index TM than the optimal one. This implicitly incurs a
retransmission. The number of retransmissions is given by
NR metric. While negative values of δ implies that the model
predicts suboptimal TM, which leads to a rate loss. The
di�erence between the data rates of TMi and TM i is given
by DRL.

IV. Proposed Customized Loss
A. Why we need a customized loss

The traditional loss function used in multi-label multi-class
classi�cation problems is crossentropy (5).

CE(y, ŷ) = −
C∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi), (5)

where C is the total number of classes, which equals to
the dimension of y. We can see that the function in (5)
treats all wrong predictions equally which is not relevant
to the considered AMC problem. We can see that equation
(5) pushes the model toward learning the true distribution
of class labels. Although this is the ultimate goal of any
classi�cation problem, in some cases we aim to stress on
certain type of errors (false positives or false negative).

De�nition .1. The labels of a class i denoted as Yi. The
positive instances of Yi denoted as Y +

i and the negative
instances as Y −i . Also, the predicted labels for a class i is Ȳi.
The positive instances of Ȳi denoted as Ȳ +

i and the negative
instances as Ȳ −i .

De�nition .2. Given a classi�er f , the false positive, and
false negative are de�ned as:

fp(f) =

|Ȳ+|∑
j=0

1 : j ∈ Y−

fn(f) =

|Ȳ−|∑
j=0

1 : j ∈ Y+

In the problem under consideration, a false positives in
higher-rate MCS may lead to a retransmission, which is very
costly in terms of bandwidth utilization. However, a false
negative indicates selecting a lower TM , which it can be
tolerated more than a retransmissions. For this reason, we
aim to design a loss function that emphasis on the false
positive errors more than false negatives.

B. Proposed Loss

We propose a new customized loss function that adds
more penalization to false positive predictions. Since the
proposed loss function emphasis on false positives, we named
it Crossentropy+, CE+. The new loss given by:

CE+ (y, ŷ) = CE (y, ŷ) + φ (y, ŷ) , (6)

where CE (y, ȳ) is the traditional crossentropy given in (5)
and φ (y, ŷ) is an extra penalization term for the false positive
predictions given by:

φ (y, ŷ) = β ×
C∑
i=0

(yi − 1)2 × ŷi, (7)

where C is the total number of classes and β is a weight
term added to control the credit assigned for the traditional
crossentropy term and the newly added term. Setting β to a
high value may lead the model to predict ŷ = {0}C vector
which minimizes the second term and completely ignores the
�rst term. In the other hand, if we set β ≤ 1, the model may
ignore it and learns parameters that minimize only the �rst
term of (6). We set β = 1.3 for all the experiments in this
work. However, in the future, we can learn a value for β to
meet di�erent QoS requirements (may be di�erent for a WiFi
public network or for a 5G URLLC network).

V. Simulation Results
We organize this section into two subsections: the predic-

tion results of the CNN model using the di�erent proposed
delay-spread-based subdataset selection criteria, and the im-
proved prediction results achieved when incorporating the
proposed loss function.

A. Results of AMC using CNN

To �gure out the e�ect of the training set size, we trained
the model with varying set size, namely, 10K, 20K, 30K,
40K, and 50K channels, for each selection criterion. We also
consider a larger RandomFD dataset. For each training set,
we test the model using three di�erent scenarios, namely,



Fig. 2: The percentage of retransmissions in each test-
scenario.

suburban macro-cell (C1), urban macro-cell (C2) and rural
macro-cell (D1). The urban micro-cell is not included in the
analysis because all studied algorithms achieve almost the
same results.

Fig. 2 shows the percentage of retransmissions to the total
data points in each test scenario. We can notice that, in
terms of the di�erent selection criteria, W40%PD obtains the
best performance in all the test scenarios. Also note that
for all criteria, scenario D1 obtained higher retransmission
rate compared to both C1, and C2. Also, this �gure shows
that RandomPD and rmsPD training subdatasets always ob-
tain higher retransmission percentage compared to W40%PD
and W70%PD. We can also notice that the performance is
greatly improves with increasing the size of training dataset.
However, a little or no improvement has been recorded with
increasing the size from 40K to 50K. Vapnik–Chervonenkis
(VC) dimension theorem [15] can explain this saturation
behavior. According to VC-dimension theorem, a model keep
learning better with more training data points, up to certain
number, Nvc, after which the model capacity reached a sat-
uration point and adding more data points does not improve
the learning anymore.

Fig. 3 shows the percentage of data rate loss due to
deploying the CNN-model with di�erent training subdataset

Fig. 3: The percentage of data-rate loss in each test-scenario.

selection criteria. Recall from section IV that a data rate
loss happens when the model predicts a false negative in
the index of the ideal TM. The �gure shows an inverse
trend between the retransmission rate and the data rate loss.
However, it is worth to note that since the overall system
performance is decided by both: rate loss and retransmission
rate, then it is more likely to tolerate a reasonable rate
loss rather than repeated retransmissions. We can see that
W40%PD, which results in the best performance in terms
of retransmissions, obtained around -3.1% rate loss in the
worst case (scenario C2). Based on these observations, we can
conclude that training a model based on W40%PD gives the
best performance in the retransmission with acceptable rate
loss. Also the proposed CNN approach obtained near-optimal
TM selection. However, we still can improve the performance
of the proposed model by adapting the loss function as we
will see in the next subsection.

B. The Performance of the Proposed Loss-Function

To evaluate the performance of the proposed loss function,
we trained a model with traditional crossentropy and our
proposed loss functions. To obtain fair comparison, we used
the same model capacity in the two cases. We also �xed
all other hyperparameters (e.g., the same number of epochs,
initialization, or optimizer).



Fig. 4: The percentage of retransmissions and rate loss for
W40%PD in scenario C2 for models trained with traditional
crossentropy and our proposed loss function (6).

TABLE I: Percentage of retransmission and rate loss for
models trained with classical crossentropy loss function (CE)
and the proposed loss function (PLoss).

Percentage of Retransmission
RandomPD rmsPD W40%PD W70%PD

CE PLoss CE PLoss CE Ploss CE Ploss
10K 14.00 14.00 11.48 10.93 7.42 5.84 11.52 9.26
20K 7.51 6.74 10.79 7.47 5.43 3.75 7.05 6.36
30K 6.50 3.72 9.77 9.06 5.95 3.80 5.85 4.40
40K 3.38 3.03 5.24 5.26 2.33 1.76 4.28 3.88
50K 6.63 3.47 9.70 3.57 2.20 1.62 3.98 3.64

Percentage of Rate Loss
10K 0.0 0.0 0.48 0.52 4.29 6.40 1.12 2.82
20K 5.38 6.91 0.51 1.20 6.49 7.68 3.63 4.46
30K 4.76 6.39 0.75 1.06 5.52 7.76 4.69 6.71
40K 7.61 8.81 4.38 4.03 12.46 14.94 7.91 5.75
50K 3.42 5.21 1.01 5.60 15.88 16.46 7.60 8.75

The results of training the model using the two loss
functions are shown in Table I. This table shows the number
of retransmissions in scenario C2. We selected this test
scenario since it has the largest percentage of retransmissions
compared with the other scenarios as shown in Fig. 2. We
can see that the proposed loss function has largely reduced
the number of retransmissions under all selection criteria
and dataset sizes. The proposes loss function was capable
of obtaining more than 50% proposed improvement over
traditional crossentropy in some cases.

Table I also shows the percentage of rate loss for each
training set size. We can see that the rate loss using our pro-
posed loss function is larger than using traditional crossen-
tropy. Given that the model capacity is constant, this can be
explained by the fact that reducing the false positives may
result in increasing the false negatives. However, depending

on the speci�cations of the used communication system
(speci�cally the cost of retransmission compared to rate loss),
varying the value of β in (7) provides a wide range of trade-
o� for performance selection.

VI. Conclusion
A convolutional neural network framework for adaptive

modulation and coding (AMC) is presented. The proposed
framework is validated for adapting IEEE 802.11ax in outdoor
scenarios. We model the problem of AMC, for the �rst time,
as a multi-label multi-class problem to predict the best avail-
able transmission modes. We showed that traditional loss
functions are limited in solving such problem. We proposed a
new loss function that reduces the number of retransmissions
while increasing the likelihood of selecting the ideal modu-
lation and coding scheme (MCS). The proposed loss function
proved to outperform the traditional crossentropy function.
Empirically, we showed that best throughput is obtained by
applying a window delay 40% subdataset selection criterion.
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