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Abstract

The problem of selecting the modulation and coding scheme (MCS) that maximizes the system throughput, known as link

adaptation, has been investigated extensively, especially for IEEE 802.11 (WiFi) standards. Recently, deep learning has widely

been adopted as an efficient solution to this problem. However, in failure cases, predicting a higher-rate MCS can result in a

failed transmission. In this case, a retransmission is required, which largely degrades the system throughput. To address this

issue, we model the adaptive modulation and coding (AMC) problem as a multi-label multi-class classification problem. The

proposed modeling allows more control over what the model predicts in failure cases. We also design a simple, yet powerful, loss

function to reduce the number of retransmissions due to higher-rate MCS classification errors. Since wireless channels change

significantly due to the surrounding environment, a huge dataset has been generated to cover all possible propagation conditions.

However, to reduce training complexity, we train the CNN model using part of the dataset. The effect of different subdataset

selection criteria on the classification accuracy is studied. The proposed model adapts the IEEE 802.11ax communications

standard in outdoor scenarios. The simulation results show the proposed loss function reduces up to 50% of retransmissions

compared to traditional loss functions.
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Abstract—The problem of selecting the modulation and
coding scheme (MCS) that maximizes the system throughput,
known as link adaptation, has been investigated extensively,
especially for IEEE 802.11 (WiFi) standards. Recently, deep
learning has widely been adopted as an e�cient solution to
this problem. However, in failure cases, predicting a higher-
rate MCS can result in a failed transmission. In this case, a
retransmission is required, which largely degrades the system
throughput. To address this issue, we model the adaptive
modulation and coding (AMC) problem as a multi-label multi-
class classi�cation problem. The proposed modeling allows
more control over what the model predicts in failure cases.
We also design a simple, yet powerful, loss function to
reduce the number of retransmissions due to higher-rate
MCS classi�cation errors. Since wireless channels change
signi�cantly due to the surrounding environment, a huge
dataset has been generated to cover all possible propagation
conditions. However, to reduce training complexity, we train
the CNN model using part of the dataset. The e�ect of
di�erent subdataset selection criteria on the classi�cation
accuracy is studied. The proposed model adapts the IEEE
802.11ax communications standard in outdoor scenarios. The
simulation results show the proposed loss function reduces
up to 50% of retransmissions compared to traditional loss
functions.

Index Terms—Link adaptation, IEEE 802.11ax, Machine
learning, Deep learning, WiFi 6

I. Introduction
Nowadays, dynamic resource allocation and link adapta-

tion techniques have been incorporated into di�erent wire-
less standards to support the quality of service (QoS) require-
ments while serving the increased number of users [1]. Link
adaptation represents a key element in determining the sys-
tem’s latency and throughput performance [2]. Fortunately,
machine learning is anticipated to provide viable solutions to
the link adaptation challenges in wireless systems [3].

In the literature, the link adaptation problem has been
modeled either as a reinforcement learning problem [4], [5],
or as a multiclass classi�cation problem where the class labels
represent di�erent modulation and coding scheme (MCS)
combinations [6]–[10]. According to this modeling, each data
point can belong to a single class and a supervised machine
learning model can be trained to select the ideal MCS based
on the training data. However, supervised models, generally,
have a certain level of accuracy [11]. In this case, failing
to predict the ideal MCS has unpredictable implications

on the system throughput. In fact, predicting a higher-rate
MCS will result in a failed transmission and, consequently,
a retransmission is required which largely degrades the
system throughput. These problems come from the fact that
modeling the problem as a multiclass classi�cation has no
control over what the model can predict in failure cases. Now
the question is, if the model failed to predict the optimal MCS,
can we train it to predict a suboptimal one?

To answer this question, we model the link adaptation
problem, for the �rst time, as a multi-label multi-class clas-
si�cation. In this modeling, a datapoint is allowed to belong
to more than one class at the same time (all the successful
MCS in AMC problem). Therefore, the model learns to
predict not only the optimal MCS, but also all suboptimal
ones. Such modeling approach gives more control to what
the model learns from the training phase and what it can
predict in the failure cases. However, we need to enforce
the model to avoid predicting higher-rate MCSs that may
produce retransmissions. To solve this issue, we propose
a new loss function that adds more penalization to such
cases. The proposed loss function reduces the number of
retransmissions compared to traditional crossentropy loss
function, which widely employed in the literature. Fig. 1
shows an overview for the proposed system.

As wireless channels vary signi�cantly according to the
surrounding environment, a huge dataset is required to cover
all possible channel variations. However, it is computationally
expensive to utilize all the samples for training. In this
work, we examine di�erent selection criteria for the training
dataset. The selection criteria are based on the domain-
knowledge and our understanding for the nature of wire-
less channels. For orthogonal frequency-division multiplex-
ing (OFDM)-based systems, we assume an interference-free,
noise-free, single-user, and single-input single-output setup.
In this case, the delay dispersion of the channel is the decisive
factor on the MCS selection. Hence, instead of randomly
selecting the training subdataset, we select the subdataset
that comprises a uniform (or as close as possible to a uniform)
distribution of the channels delay dispersion behaviors. Given
that the channel dispersion behavior is not easy to be fully
characterized, for such selection to take place, we employ
well-know criteria characterizing the delay dispersion such
as root-mean-square delay spread and window delay spread.
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Fig. 1: System Overview.

TABLE I: IEEE 802.11ax bitrate for di�erent single user TMs.

MCS Ns Modulation Coding 20MHz
0.8 GI 3.2 GI

0 1 BPSK 1/2 8.6 7.3
1 1 QPSK 1/2 17.2 14.6
2 1 QPSK 3/4 25.8 21.9
3 1 16-QAM 1/2 34.4 29.3
4 1 16-QAM 3/4 51.6 43.9
5 1 64-QAM 2/3 68.8 58.5
6 1 64-QAM 3/4 77.4 65.8
7 1 64-QAM 5/6 86 73.1
8 1 256-QAM 3/4 103.2 87.8
9 1 256-QAM 5/6 114.7 97.5
10 1 1024-QAM 3/4 129 109.7
11 1 1024-QAM 5/6 143.4 121.9

The contributions of this work can be summarized as
follows:
• We modeled the problem of AMC as a multi-label

multi-class classi�cation problem. The model trained to
predict all the possible labels for successful transmission
(including the optimal MCS and suboptimal ones).

• We employed a convolutional neural network (CNN)
with an innovative loss function. The proposed model
allows to control what transmission parameters com-
bination to predict when failing to predict the optimal
one.

• We studied the impact of training subdataset selection
criteria on AMC problem and highlighted the corre-
sponding e�ect in the classi�cation accuracy.

II. Problem Formulation, Dataset Generation, and
Training Subdataset Selection

A. Problem Formulation

Assume we have C di�erent combinations of MCS and
guard intervals, GI, each of them called a transmission mode,
(TM). The TMs are indexed as i ∈ I ⊂ N, where the
cardinality of I is the number of available combinations.
The index, i, thereafter referred to as the class distinctly
maps to a combination of MCS and GI. We adopt the IEEE

802.11ax standard for single-input single-output system at
0.8 and 3.2 guard intervals with a �xed bandwidth of 20
MHz as shown in table I. Therefore, in terms of multi-label
multi-class classi�cation, link adaptation is the problem of
selecting all the class labels, i, to which a certain channel
realization belongs. Thus, for a certain channel realization
chn, the classi�er selects all the labels, i, corresponding to
all valid transmission modes TMi. Then, we can express
the classi�er function as a function F that maps a channel
realization chn to a set of labels y ⊂ {1, 2, . . . , C} as:

F (chn) = y = {i : TX(chn, TMi) = 1}, (1)

where TX(chn, TMi) = 1 when transmitting a packet
through a channel given by chn with transmission con�gu-
ration given by TMi is successful, and zero otherwise. From
the predicted TMs, we select the TM corresponding to the
highest data rate. As shown in Fig. 1, a user station (STA)
sends the estimated channel state information (CSI) to the
access point (AP). The AP then uses the received CSI to adapt
the transmission parameters for the next transmission.

B. Datasets Generation

We selected four scenarios with diverse delay dispersion
characteristics: urban micro-cell, suburban macro-cell, urban
macro-cell and rural macro-cell. Using the Matlab WINNER II
toolbox [12], for each scenario, 50,000 channels are generated.
For each channel, we use the Matlab IEEE 802.11ax toolbox
to simulate transmitting a packet using all available TMs. We
split the generated channels to 80% training and 20% testing.

C. Selection of Training Subdatasets using Di�erent Delay
Dispersion Criteria

The training subdatasets are constructed using two ap-
proaches: random selection criteria and di�erent delay-
spread-based selection criteria. Based on the random ap-
proach, Cases 1 & 2 are identi�ed, and based on the delay-
spread approach, Cases 3, 4, & 5 are identi�ed.
1) The random selection criteria (Cases 1 & 2): The random

approach is applied in the following two ways:
• Case 1, Random Full Dataset (RandomFD): all data points

(i.e., a total of 160,000 data points; 40,000 points from
each of the four scenarios) are used for training.

• Case 2, Random Partial Dataset (RandomPD): the train-
ing subdataset is composed of data points selected
randomly and equally from each scenario.

RandomFD represents a reference case where all data
points are used for training, and RandomPD is the typical
widely-used way of reducing the number of data points
through random selection.
2) The delay-spread-based criteria (Cases 3, 4, & 5): The

delay-spread-based selection approach is applied to select
di�erent training subdatasets each of which has the same
number of data points as RandomPD. Unlike RandomPD, the
data points of the built subdatasets are selected to represent
the full delay dispersion behaviour of RandomFD. Using this



approach, from the total 160,000 available data points, we
select the subdataset points such that the distribution of the
delay dispersion metric will be as close as possible to uniform.

Lets assume RandomFDi to be the ith data point in
the RandomFD dataset; S(RandomFDi) is its corresponding
delay dispersion evaluated based on a speci�c metric of
interest, S ; i = 1, 2, ..., I (where I is the total number
of data points in RandomFD), and minS(RandomFD)
& maxS(RandomFD) are the minimum and maximum
obtained delay dispersion values, respectively, among all
the data points of RandomFD. We assume the interval
[minS(RandomFD) , maxS(RandomFD)] to be divided
into Z equal disjoint sub-intervals. We de�ne the histogram
of S(RandomFD) as the function that counts the number
of delay-spread observations, nz , that fall into the zth sub-
interval, where z = 1, , 2, ..., Z , and nmin & nmax are the
minimum and maximum number of observations, respec-
tively, obtained per sub-interval using the full dataset i.e.,
RandomFD.

Our proposed delay-spread-based approach to select a
subdataset from RandomFD given a histogram, mz , is as
follows.

max
nmax≥x≥nmin

Z∑
z=1

mz

mz = min(x, nz)

s.t.
Z∑

z=1

mz ≤ T,

(2)

where T is the total number of data points in the selected
subdataset.

The value of x determines the maximum number of data
points at each of the Z intervals, which results in selecting
a subdataset with a histogram that exhibits a tendency
toward having a uniform distribution of the delay dispersion
behaviour over the [minFD,maxFD] range. The possibilty
of ending up with a perfect uniform distribution increases as
the number of data points in RandomFD increases.

Based on the applied delay-spread metric (i.e., S), which
is our design criterion, we can now de�ne the di�erences
among Case 3, Case 4, and Case 5 of the studied cases.
• Case 3, root-mean-square delay spread Partial Dataset

(rmsPD). In this case, the training dataset is selected
using the delay-spread metric de�ned as the normalized
second-order moment of the delay pro�le of the chan-
nels.

• Case 4, window (40%) delay spread Partial Dataset
(W40%PD). In this case, we characterize the delay disper-
sion using the delay window parameter which is de�ned
as "the length of the middle portion of the power delay
pro�le containing a certain percentage of the total power
found in that impulse response" (p. 4, [13]). Here we use
the 40% as our design criterion.

• Case 5, window (70%) delay spread Partial Dataset
(W70%PD). In this case, we use the same de�nition of

the delay dispersion metric as in Case 4; however, here
we use the window that contains 70% of the power of
the delay pro�le.

III. Proposed Deep-Learning Approach for AMC

The convolutional neural networks (CNNs) have showed
superior performance in di�erent domains including com-
puter vision, natural language processing, speech synthesis,
etc [3]. One main advantage of CNNs is its proven capabil-
ities in processing raw data. This advantage eliminates the
burdens of data pre-processing. Inspired by this, we propose
a CNN-based approach for AMC in IEEE 802.11ax.

A. CNN Model

The proposed deep convolutional neural network (DCNN)
includes convolutional layers, average pooling layers, and
fully-connected layers. Typically, the �rst hidden layer is a
convolutional layer with 20 �lters. The second hidden layer
is a convolutional layer of 32 �lters, followed by an average
pooling layer with pool size of 4. Then, another convolutional
layer is added with 64 �lters followed by an average pooling
layer with pool size of 2. A convolutional layer consisting of
32 �lters is added, followed by an average pooling layer with
pool size of 2. For the all convolutional layers, every �lter
has a size of 10 × 2, with ReLU activation, F (x) = max(x, 0).
After the 4 convolutional layers, there are 2 fully-connected
layers. The fully-connected layers contain 50 and C neurons
respectively, where C is the number of available TMs. Since
one channel can belong to many classes at the same time, we
used Sigmoid activation function (3) in the output layer to
approximate the multinomial distribution of the class labels.
To relieve the e�ect of over�tting, an l2 regularizer is added
to the last two layers.

σ(x) =
1

1 + e−x
(3)

For training the model, an Adam optimizer [14] is adopted
along with our customized loss function (section IV). The
DCNN is trained for 1000 epochs with batch size of 128.
After training the DCNN, it is deployed for predicting the
appropriate TMs.

B. Dataset Description

Consider a labeled dataset consisting of pairs of x and y
where x represents di�erent CSI in di�erent selection cases
described in subsection II-C. The label vector y is a vector
in {0, 1}C where C is the number of the available TMs
(i.e., the number of classes). If the ith position in the label
vector of the jth data instance is set to one, this indicates
that a transmission over a channel with CSI equal to jth CSI
in the dataset using the ith transmission mode will result
in a successful transmission. In the same way, 0 indicates a
failed transmission. In our experiments, the label vector is
24th-dimensional vector representing the di�erent available
combinations of MCS and GI.



C. Evaluation Metrics

To evaluate the proposed model in the context of commu-
nication systems e�ciency, we applied two system-speci�c
evaluation metrics, namely, data-rate loss (DRL) and number
of retransmissions (NR). We de�ne δ as:

δ = R(TM i)−R(TMi), (4)

where R(·) is a function that maps a TM to the data rate
associated with this TM, TMi is the optimal TM given in
the dataset, and TM i is the predicted TM. A positive value
of δ means predicting TM with a rate higher than the optimal
one. This implicitly incurs a retransmission. The number of
retransmissions is given by NR metric. A negative value of δ
implies that the model predicts suboptimal TM, which leads
to a rate loss. The di�erence between the data rates of TMi

and TM i is given by DRL.

IV. Proposed Customized Loss
A. Why we need a customized loss

The traditional loss function used in multi-label multi-class
classi�cation problems is crossentropy (5).

CE(y, ŷ) = −
C∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi), (5)

where C is the total number of classes, which equals to
the dimension of y. We can see that the function in (5)
treats all wrong predictions equally which is not relevant
to the considered AMC problem. We can see that equation
(5) pushes the model toward learning the true distribution
of class labels. Although this is the ultimate goal of any
classi�er, in some cases we aim to emphasis on certain type
of errors (false positives or false negative).

De�nition 1. The label vector of a data instance i denoted
as yi. The set of positive indices in yi denoted as y+i = {j :
yi(j) = 1}, the set of negative indices denoted as y−i = {j :
yi(j) = 0} where yi(j) is the jth index in the vector yi and
j ∈ {1, 2, . . . , C}.

De�nition 2. The predicted label vector for a data instance
i is ŷi. The set of predicted positive indices in ŷi is denoted
by ŷ+i = {j : ŷi(j) = 1}, and the set of predicted negative
indices is ŷ−i = {j : ŷi(j) = 0} where ŷi(j) is the jth index
in the vector ŷi and j ∈ {1, 2, . . . , C}.

De�nition 3. Given a classi�er f , the false positive, and
false negative are de�ned as:

fp(f) =
∑
j∈ŷ+

i

1 : j ∈ y−i

fn(f) =
∑
j∈ŷ−

i

1 : j ∈ y+i

In the problem under consideration, a false positive in a
higher-rate MCS may lead to a retransmission, which is very

costly in terms of bandwidth resources. However, a false
negative indicates selecting a lower-rate TM , which can be
tolerated than a retransmission. For this reason, we aim to
design a loss function that emphasis on false positives more
than false negatives.

B. Proposed Loss
We propose a new customized loss function that adds

more penalization on false positive predictions. Since the
proposed loss function emphasis on false positives, we named
it Crossentropy+, CE+. The new loss given by:

CE+ (y, ŷ) = CE (y, ŷ) + φ (y, ŷ) , (6)

where CE (y, ȳ) is the traditional crossentropy given in (5)
and φ (y, ŷ) is an extra penalization term for false positive
predictions given by:

φ (y, ŷ) = β ×
C∑
i=1

(yi − 1)2 × ŷi, (7)

where C is the total number of classes and β is a weight
term added to control the credit assigned for the traditional
crossentropy term and the newly added term. Setting β to a
large value may lead the model to predict ŷ = {0}C vector
which minimizes the second term and completely ignores the
�rst term. In the other hand, if we set β ≤ 1, the model may
ignore it and learns parameters that minimize only the �rst
term of (6). We set β = 1.3 for all the experiments in this
work. However, in the future, we can learn a value for β to
meet di�erent QoS requirements (may be di�erent for a WiFi
public network than for a 5G URLLC network).

V. Experimental Results
We organize this section into two subsections: the predic-

tion results of the DCNN model using the di�erent proposed
delay-spread-based subdataset selection criteria, and the im-
proved prediction results achieved by adapting the proposed
loss function.

A. Results of AMC using DCNN Model
To evaluate the e�ect of the training set size, we trained the

model with varying set size, namely, 10K, 20K, 30K, 40K, and
50K channels, for each selection criterion. We also consider
a larger RandomFD dataset. For each training set, we test
the model using three di�erent scenarios, namely, suburban
macro-cell (C1), urban macro-cell (C2) and rural macro-cell
(D1).

Fig. 2 shows the percentage of retransmissions to the total
data points in each test scenario. We can see that, among
the di�erent selection criteria, W40%PD obtained the best
performance in all the test scenarios. Also note that for
all criteria, scenario D1 obtained higher retransmission rate
compared to both C1, and C2. This �gure also shows that
RandomPD and rmsPD training subdatasets always obtain
higher retransmission percentage compared to W40%PD and
W70%PD. We observe that the performance is largely im-
proved with increasing the size of training dataset. However,



Fig. 2: The percentage of retransmissions in each test-
scenario.

a little or no improvement has been recorded when the
size increases from 40K to 50K. According to VC-dimension
theorem [15], this saturation happens when the number of
training data points reaches a threshold, Nvc, after which
adding more data points does not improve the learning
anymore.

Fig. 3 shows the percentage of data rate loss obtained
using the DCNN-model with di�erent training subdataset
selection criteria. As explained in section IV, a data rate
loss happens when the model predicts a false negative in
the index of the ideal TM. The �gure shows an inverse
trend between the retransmission rate and the data rate loss.
However, it is worth noting that since the overall system
performance is decided by both: rate loss and retransmis-
sion rate, it is more likely to tolerate a reasonable rate
loss rather than repeated retransmissions. We can see that
W40%PD, which results in the best performance in terms
of retransmissions, obtained around -3.1% rate loss in the
worst case (scenario C2). Based on these observations, we
can conclude that training a model based on W40%PD gives
the best performance in the retransmission with acceptable
rate loss. Also the proposed DCNN approach obtained near-
optimal TM selection. However, we can further improve the

Fig. 3: The percentage of data-rate loss in each test-scenario.

model performance by introducing the proposed loss function
as described in the next subsection.

B. The Performance of the Proposed Loss-Function

To evaluate the performance of the proposed loss function,
we trained a model with traditional crossentropy and our
proposed loss functions. To obtain fair comparison, we used
the same model capacity in the two cases. We also �xed
all other hyperparameters (e.g., the same number of epochs,
initialization, activation, regularizer, optimizer, and learning-
rate).

The results of training the model using the two loss
functions are shown in Table II. The table shows the number
of retransmissions in scenario C2. We selected this test
scenario since it has the largest percentage of retransmissions
compared to other scenarios, as shown in Fig. 2. We can
see that the proposed loss function has largely reduced
the number of retransmissions under all selection criteria
and dataset sizes. The proposes loss function obtained more
than 50% improvement over traditional crossentropy in some
cases.

Table II shows the percentage of rate loss for each training
set size. We can see that the rate loss using our proposed loss
function is larger than that of traditional crossentropy. Given



Fig. 4: The percentage of retransmissions and rate loss for
W40%PD in scenario C2 for models trained with traditional
crossentropy and our proposed loss function (6).

TABLE II: Percentage of retransmission and rate loss for
models trained with classical crossentropy loss function (CE)
and the proposed loss function (PLoss).

Percentage of Retransmission
RandomPD rmsPD W40%PD W70%PD

CE PLoss CE PLoss CE Ploss CE Ploss
10K 14.00 14.00 11.48 10.93 7.42 5.84 11.52 9.26
20K 7.51 6.74 10.79 7.47 5.43 3.75 7.05 6.36
30K 6.50 3.72 9.77 9.06 5.95 3.80 5.85 4.40
40K 3.38 3.03 5.24 5.26 2.33 1.76 4.28 3.88
50K 6.63 3.47 9.70 3.57 2.20 1.62 3.98 3.64

Percentage of Rate Loss
10K 0.0 0.0 0.48 0.52 4.29 6.40 1.12 2.82
20K 5.38 6.91 0.51 1.20 6.49 7.68 3.63 4.46
30K 4.76 6.39 0.75 1.06 5.52 7.76 4.69 6.71
40K 7.61 8.81 4.38 4.03 12.46 14.94 7.91 5.75
50K 3.42 5.21 1.01 5.60 15.88 16.46 7.60 8.75

that the model capacity is the same, this can be explained
by the fact that reducing the false positives may result
in increased false negatives. However, depending on the
speci�cations of the used communication system (speci�cally
the cost of retransmissions compared to rate loss), varying
the value of β in (7) provides a wide range of �ne-tuning to
meet di�erent performance requirements.

VI. Conclusion

A convolutional neural network framework for adaptive
modulation and coding (AMC) in IEEE 802.11ax has been
presented. We modeled the problem of AMC as a multi-label
multi-class problem. The results showed that traditional loss
functions are limited in solving such problem. We proposed
a new loss function that increases the reliability of the

adaptation framework. The proposed loss function proved
to outperform the traditional crossentropy function. We also
studied the impact of subdataset selection on the model
performance. Empirically, we concluded that window delay
40% subdataset selection criterion along with the proposed
loss function give the best throughput/reliability compromise.
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