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Abstract

This paper shows that as the dimensionality of a noninteger dimensional falls below 2, the potential becomes constant irrespective

of separation between objects and the force between them disappears, which represents a new paradigm of asymptotic freedom.

Since asymptotic freedom is at the basis of many applications such as those of strange metals, unconventional superconductors,

and fractional quantum Hall states, the new paradigm presented here can potentially have new and unexpected applications.

It also is of relevance to the study of anomalous mechanical effects that are important in metamaterials.
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Abstract. This paper shows that as the dimensionality of a noninteger dimensional falls 
below 2, the potential becomes constant irrespective of separation between objects 
and the force between them disappears, which represents a new paradigm of 
asymptotic freedom. Since asymptotic freedom is at the basis of many applications such 
as those of strange metals, unconventional superconductors, and fractional quantum 
Hall states, the new paradigm presented here can potentially have new and unexpected 
applications. It also is of relevance to the study of anomalous mechanical effects that 
are important in metamaterials. 

Introduction  
Asymptotic freedom [1,2,3] is a counterintuitive phenomenon [4] that plays a role in 
novel states of matter that include strange metals, unconventional superconductors 
[5,6], and fractional quantum Hall states [7,8,9].  It describes the anomalous idea of 
strong interaction at large distances and much weaker interaction at short distances, 
which is associated with the behavior of quarks and gluons. As a property of some gauge 
theories, asymptotic freedom offers a mechanism for confinement at large distance by 
invoking properties of the mathematical structures used to describe these interactions. 
 
Other counterintuitive phenomena are associated with negative differential response, 
and they are to be found not only in physics but also in chemistry and biological 
processes [10]. In materials that exhibit negative linear compressibility, there is 
expansion in one or more directions during the process of uniform compression 
[11,12,13] and this anomalous mechanical behavior has found applications in the design 
of pressure sensors, artificial muscles and actuators [14,15,16]. 
 
The counterintuitive nature of many quantum phenomena is understood through the 
lens of the complementarity principle [17], which provides a way to view seemingly 
inconsistent descriptions as two sides of the same reality.  Although, the principle arose 
originally in quantum theory, it has been argued that it should apply much more broadly 
to different fields of science [18], including biological phenomena [19].  
Complementarity is the description of the same phenomenon in distinct, categorically 
different ways that cannot be done in the same spatial, temporal, or situational context.  
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Since the notion of dimension applies to physical reality at all conceivable scales, one 
must also consider anomalous mechanical properties of materials that emerges from 
compressing three-dimensional volumes into lower dimensions [20,21,22], which may 
be seen as an example of increasing the energy scale, with prospective applications to 
superconductivity, ferroelectricity, information communication, sensing and detection 
[23,24,25].  
 
Some of the inconsistencies in the interpretation of phenomena could be the 
consequence of different ways space is considered in the theory. As stressed by 
Landauer {26], information is physical and, therefore, information-theoretic ideas must 
play a key role in the understanding of the above-mentioned anomalous phenomena. 
 
I have recently shown [27,28] that from the perspective of information theory, the 
optimum number of dimensions is the noninteger (and irrational) number e and since 
Nature chooses optimality, this should be the dimensionality of physical space; it was 
also shown that the inverse square law itself may be seen as a consequence of 

noninteger dimensionality. The information efficiency per dimension is 𝐸(𝑑) = &'(
(

  

(Figure 1 shows the efficiency rise from zero for d =1, with peak at e) and the intrinsic 
dimensionality of data is also e [29,30,31]. Since dimensionality and information are 
basic concepts, these ideas ought to be of relevance in the analysis of counterintuitive 
phenomena listed above. 
 
 

 
 
Figure 1. Dimensional efficiency is maximum at d = e 

 
In this paper, rather than examining the application of noninteger dimensionality to any 
of the above phenomena directly, we show that a novel version of asymptotic freedom 

            dimension, d à 
       e 
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is associated with noninteger dimensionality. This represents a new framework with 
potential applications similar to those of anomalous mechanical properties of materials.  
Also, gauge transformations relate to the very nature of space, and so dimensionality 
may be of relevance to gauge theories.  
 
Dependence on d 
We can visualize a given noninteger space sitting within the container of the ceiling 
integer space (e.g. 1.7-dimensional space sits within the 2-dimensional space). It may 
be argued that a fundamental characteristic of a noninteger space is that of a continual 
shrinking of the metrical relationships between objects [27,28]. This is seen most clearly 
when we visualize a 2-dimensional space obtained from a 3-dimensional space which 
will cause all the points in the third dimension to collapse to the extant two dimensions.  
 
Consider the example of a noninteger space with dimension d, which we shall compare 
with its ceiling function ⌈𝑑⌉, the smallest integer greater than it. Since dimensionality is 
an additive property, we can distribute the fractional part along any direction. Thus d = 
1.8 would imply a dimension of 0.9 along the one-dimensional infinite line in any 
direction.  
 
The view of the noninteger dimension that there are gaps in the space is 
complementary to the view  that relative measures on the line tend to shrink in 
proportion to the value of dimensionality, and the tendency to do so is a function of the 

ratio (⌈(⌉,()⌈(⌉
= -

⌈(⌉
𝑓(⌈𝑑⌉ − 𝑑),	 where ⌈𝑑⌉ is the ceiling function of d, and	𝑓(⌈𝑑⌉ − 𝑑)	 

represents the functional relationship with respect to the departure of the dimension 
value from its ceiling integer. For the example of d = 1.8, the shrinking is a function of 
-
1
𝑓(0.2). 

 
The tendency for space to contract constitutes a potential, making points associated 
with events that the observer witnesses to tend to come closer to each other. This 
potential leads to dynamics that emerge thus from the very nature of space. This 
potential is not assumed to have an a priori existence, independent of dimensions, and 
therefore it represents a view different from the current understanding.  
 
Since d characterizes the space, the potential between two objects with unit measures 
must also be inversely related to the separation so that objects that are further apart 
have less influence on each other than those that are near. Points on a 1-dimensional 
infinite space stay where they are, whereas those on a 0.8-dimensional infinite space 
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will have a potential to come closer by the 0.8 measure. Consider two objects with unit 
measures with a separation of r, and let the potential be defined by 𝑝⌈(⌉(𝑑, 𝑟),  
 
The sphere representing the equipotential surfaces at a distance of r has surface equal 

to 𝑆⌈(⌉(𝑑, 𝑟), but the distance r should be modified to (	8⌈(⌉ because the density of the 

space along any line is smaller by the fraction (
⌈(⌉
. Therefore, the potential will be 

proportional to 
 

𝑝⌈(⌉(𝑑, 𝑟) =
9(⌈(⌉,()	(	8

⌈(⌉:
	× -

<⌈=⌉((,8)	
= 9(⌈(⌉,()	(	8

⌈(⌉:	<⌈=⌉((,8)
           (1) 

 
The value of 𝑆(  for 3- and 2- and 1-dimensional worlds is 4𝜋𝑟1, 2𝜋𝑟, and 0, respectively, 
and these are the surface area of a sphere, the circumference of a circle, and the length 
of a point. Corrected for reduced density, the expression for 𝑆@(𝑑, 𝑟), and 𝑆1(𝑑, 𝑟) 
becomes: 
 

𝑆@(𝑑, 𝑟) =
A
B
𝜋𝑟1𝑑1;			 𝑆1(𝑑, 𝑟) =

1D8(
1

= 𝜋𝑟𝑑    (2) 

   
The potentials for the ranges 2 < 𝑑 < 3 and 1 < 𝑑 < 2, that is 𝑝@(𝑑, 𝑟) and 𝑝1(𝑑, 𝑟), 
will be: 
 

𝑝@(𝑑, 𝑟) =
9(@,()
AD8(

 ;   𝑝1(𝑑, 𝑟) =
9(1,()
AD

    (3) 

 
Note that 𝑝1(𝑑, 𝑟) is independent of r. 
 
The forces corresponding to these potentials will be the derivative of the expression (3). 
For a fixed d, over the range 2 < 𝑑 < 3 , the potential is proportional to 1/r and 

therefore the forces between objects in such a space will be proportional to  1 𝑟1H . This 

is the origin of the inverse square law [27,28].  
 
The potentials as functions of dimensionality alone (in which case we simply drop r as a 
variable) are: 
 

𝑝@(𝑑) =
9(@,()
AD(

 ;   𝑝1(𝑑) =
9(1,()
AD

    (4) 

 
We need a theoretical framework to find these functions. In what follows, we use 
mathematical constraints to propose some candidates for these functions. 
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The function 𝒑𝟑(𝒅) 
Some further constraints are needed to find plausible candidates for 𝑓(3 − 𝑑). This 
function should be zero for the values just outside the interval 2 < 𝑑 < 3 at d = 2 and 
3. The functions should be universal for unconstrained systems (as in cosmology), but 
would depend on external constraints for an engineered system.  
 
A matched distribution. If physical structures are compared to the optimal filter 
corresponding to natural distribution, then the use of optimum signal theory [32] will 
require that the potentials be matched to the efficiencies associated with the d-values.  
 
One can associate a pdf with the dimension d and call it the DED (dimensional efficiency 
distribution) 𝑓(𝑑) with the range from 1 to the maximum of N: 
 

𝑓(𝑑) = 	 1
(&'L):

&'(
(
,				1 ≤ 𝑑 ≤ 𝑁     (5) 

 

where the factor 1
(&'L):

 is to ensure that the area under it is 1. Its expectation is 𝐸(𝐷) =
1

(PQ L):
	(𝑁 ln𝑁 − 𝑁 + 1), and its variance is  𝑉𝐴𝑅(𝐷) = 	 1

(PQ L):
X&'L

1
	𝑁1 − L:

A
+ -

A
Y −

𝐸(𝑁)1. 
 
The value of N that is of interest to those looking at physical dimensions is 3. For such a 

case 1
(PQ L):

≅ 1.658 and 𝐸(𝐷) ≅ 2.148 and 𝑉𝐴𝑅(𝐷) ≅ 0.267. Although the optimal 

value of dimensionality is e, the expected value of dimension is substantially less at 
2.148 with a variance of 0.267.  
 
If N = e, 𝐸(𝐷) = 2 and 𝑉𝐴𝑅(𝐷) ≅ 0.195. One can define a generalization of the DED as 

follows: 𝑓 aQ(𝑎, 𝑑) =
1c

(&'	dL):
&' c(
(
,				1 ≤ 𝑑 ≤ 𝑁, with the discrete version 𝑝(𝑛) =

-
f
&'cQ
Q
,				1 ≤ 𝑛 ≤ 𝑁 where 𝐾 = ∑ ln(𝑖𝑎)-/kL

kl- .     

 
To return to the idea of the d-dimensional space acting as a matched filter, one may 
choose the following function: 
 

𝑓m(3 − 𝑑) = (𝑑 − 2)(3 − 𝑑) &' (
(

 

 

with 𝑝@,mm(𝑑) 	∝ (𝑑 − 2)(3 − 𝑑) 
PQ	 (
(:

, which is shown in Figure 2. 
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Figure 2. Potential 𝑝@,o(𝑑) with peak at 2.455 
 

Now we consider two ad hoc functions that satisfy the above constraints. The first of 
these is linear with respect to the constraints at 2 and 3 (which are multiplied); the 
second is linear with respect to 2 and exponential with respect to 3 with exponent of 
0.25.  
 

𝑓p(3 − 𝑑) = (𝑑 − 2)(3 − 𝑑)      (6) 
 

𝑓o(3 − 𝑑) = (𝑑 − 2)(𝑒(@,() 	− 1)-/A    (7) 
 
The potential function will then have the following characteristics: 
 

𝑝@,p(𝑑) =
((,1)(@,()

AD(
       (8) 

 

𝑝@,o(𝑑) =
((,1)(a(rs=)	,-)t/u

AD(
      (9) 

 

 
Figure 3. Potential with respect to dimensionality. Blue line 
𝑝@,p(𝑑), and Red line 𝑝@,o(𝑑) 
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The peak for the blue curve (equation 8) is at d = 2.4495, whereas the peak for the red 
curve (equation 9) is at d = 2.7195. This latter maximum is quite close to the optimal 
value of e. 

 
Asymptotic freedom for 1<d<2 
The continuing reduction of dimensionality may be seen as injection of energy into the 

system as is done for engineered applications. The potential function   𝑝1(𝑑, 𝑟) =
9(1,()
AD

 

being independent of r implies that objects in such a space will experience the same 
potential and, therefore, will behave as if in a bag, and experience no force that varies 
with the separation. There will be a dependence on d, that can be put to use in 
engineering applications. 
 
Since there is no dependence with respect to separation, this case represents 
emergence of freedom arrived at by squeezing the dimensionality of space. 
 
Although there is no noninteger space generated intrinsic dynamics for the case of 
1<d<2, there could be dynamics as a consequence of externally applied forces. 
 
Conclusions 
This paper explored properties of noninteger dimensionality and examined how 
interaction potentials across objects vary. It was shown that as the dimensionality falls 
below 2, the potential becomes constant, irrespective of separation, and the force 
between objects disappears, which represents a case of asymptotic freedom. We have 
shown that objects in a 2-dimensional space will not interact with each other, but as 
the dimensions increase beyond 2, the interactions will become strong. Systems could 
be engineered where the difference in these regimes is exploited to perform specific 
signal processing or anomalous mechanical function. 
 
The work in this paper provides a dimensionality-based explanation of interactions 
becoming weaker as energy scales increase. Whether this phenomenon based on 
dimensionality of space has any connection with other models of asymptotic freedom 
remains to be investigated.  
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