Learning by Passing Tests, with Application to Neural Architecture Search

Xuefeng Du¹, Pengtao Xie¹, and Haochen Zhang¹

¹Affiliation not available

November 8, 2023

Abstract

Learning through tests is a broadly used methodology in human learning and shows great effectiveness in improving learning outcome: a sequence of tests are made with increasing levels of difficulty; the learner takes these tests to identify his/her weak points in learning and continuously addresses these weak points to successfully pass these tests. We are interested in investigating whether this powerful learning technique can be borrowed from humans to improve the learning abilities of machines. We propose a novel learning approach called learning by passing tests (LPT). In our approach, a tester model creates increasingly more-difficult tests to evaluate a learner model. The learner tries to continuously improve its learning ability so that it can successfully pass however difficult tests created by the tester. We propose a multi-level optimization framework to formulate LPT, where the tester learns to create difficult and meaningful tests and the learner learns to pass these tests. We develop an efficient algorithm to solve the LPT problem. Our method is applied for neural architecture search and achieves significant improvement over state-of-the-art baselines on CIFAR-100, CIFAR-10, and ImageNet.

Learning by Passing Tests, with Application to Neural Architecture Search

X f n D

n n n t X UC San Diego xuefengdu1@gmail.com zhc12345@mail.ustc.edu.cn p1xie@eng.ucsd.edu

Abstract

Learning through tests is a broadly used methodology in human learning and shows great e ectiveness in improving learning outcome: a sequence of tests are made with increasing levels of di culty; the learner takes these tests to identify his/her weak points in learning and continuously addresses these weak points to successfully pass these tests. We are interested in investigating whether this powerful learning technique can be borrowed from humans to improve the learning abilities of machines. We propose a novel learning approach called learning by passing tests (LPT). In our approach, a tester model creates increasingly more-di cult tests to evaluate a learner model. The learner tries to continuously improve its learning ability so that it can successfully pass however di cult tests created by the tester. We propose a multi-level optimization framework to formulate LPT, where the tester learns to create di cult and meaningful tests and the learner learns to pass these tests. We develop an e cient algorithm to solve the LPT problem. Our method is applied for neural architecture search and achieves signi cant improvement over state-of-the-art baselines on CIFAR-100, CIFAR-10, and ImageNet.

1. Introduction

In human learning, an e ective and widely used methodology for improving learning outcome is to let the learner take increasingly more-di cult tests. To successfully pass a more challenging test, the learner needs to gain better learning ability. By progressively passing tests that have increasing levels of di culty, the learner strengthens his/her learning capability gradually.

Inspired by this test-driven learning technique of humans, we are interested in investigating whether this methodology is helpful for improving machine learning as well. We propose a novel machine learning framework called learning by passing tests (LPT). In this framework, there is a \learner" model and a \tester" model. The tester creates a sequence of \tests" with growing levels of di culty. The learner tries to learn better so that it can pass these increasingly more-challenging tests. Given a large collection of data examples called \test bank", the tester creates a Testy selecting a subset of examples from the test bank. The learner applies its intermediately-trained modeb make predictions on

^{. &}lt;sup>†</sup>Equal contribution

^{. *}Corresponding author.

Figure 1: Learning by passing tests. A tester model creates tests with increasing levels of di culty from a test bank to evaluate a learner model. The learner continuously improves its learning ability to deliver better solutions for passing those di cult tests.

the examples in T. The prediction error rat R re ects how di cult this test is. If the learner can make correct predictions T_{0} int means that T is not di cult enough. In this case, the tester will create a more challenging T_{c} sy selecting a new set of examples from the test bank such that the new error R_{a} bechieved by M on T' is larger than R achieved on T. Given this more demanding test, the learner re-learns its model to pass T', in a way that the newly-learned molecular achieves a new error $ra R_{c}$ on T' where R' is smaller than R'. This process (as illustrated in Figure 1) iterates until convergence.

In our framework, both the learner and tester perform learning. The learner learns how to best conduct a target taskand the tester learns how to create di cult and meaningful tests. To encourage a created testo be meaningful, the tester trains a model using T to perform a target task. If the model performs well ab, it indicates that is meaningful. The learner has two sets of learnable parameters: neural architecture and network weights. The tester has three learnable modules: data encoder, test creator, and target-task executor. Learning is organized into three stages. In the rst stage, the learner trains its network weights on the training set of task the architecture xed. In the second stage, the tester trains its data encoder and target-task executor on a created test to perform the target task, with the test creator xed. In the third stage, the learner updates its model architecture by minimizing the predictiveLloss the test created by the tester; the tester updates its test creator by maximizing minimizing the loss on the validation set \mathbf{of}_2 . The three stages are performed jointly end-to-end in a multi-level optimization framework, where di erent stages in uence each other. We apply our method for neural architecture search (Zoph and Le, 2017; Liu et al., 2019; Real et al., 2019) in image classi cation tasks on CIFAR-100, CIFAR-10, and ImageNet (Deng et al., 2009). Our method achieves signi cant improvement over state-of-the-art baselines.

The major contributions of this paper are as follows:

• Inspired by the test-driven learning technique of humans, we propose a novel ML approach called learning by passing tests (LPT). In our approach, a tester model creates increasingly more-di cult tests to evaluate a learner model. The learner tries to continuously improve its learning ability so that it can successfully pass however di cult tests created by the tester.

- We propose a multi-level optimization framework to formulate LPT where a learner learns to pass tests and a tester learns to create di cult and meaningful tests.
- We develop an e cient algorithm to solve LPT.
- We apply our approach to neural architecture search and achieve signi cant improvement on CIFAR-100, CIFAR-10, and ImageNet.

2. Related Works

l At tSASNAS has achieved remarkable progress recently, which aims at searching for optimal architectures of neural networks to achieve the best predictive performance. In general, there are three paradigms of methods in NAS: reinforcement learning based approaches (Zoph and Le, 2017; Pham et al., 2018; Zoph et al., 2018), evolutionary algorithm based approaches (Liu et al., 2018b; Real et al., 2019), and di erentiable approaches (Liu et al., 2019; Cai et al., 2019; Xie et al., 2019). In RL-based approaches, a policy is learned to iteratively generate new architectures by maximizing a reward which is the accuracy on the validation set. Evolutionary learning approaches represent the architectures as individuals in a population. Individuals with high tness scores (validation accuracy) have the privilege to generate o spring, which replaces individuals with low tness scores. Di erentiable approaches adopt a network pruning strategy. On top of an over-parameterized network, the weights of connections between nodes are learned using gradient descent. Then weights close to zero are pruned later on. There have been many e orts devoted to improving di erentiable NAS methods. In P-DARTS (Chen et al., 2019), the depth of searched architectures is allowed to grow progressively during the training process. Search space approximation and regularization approaches are developed to reduce computational overheads and improve search stability. PC-DARTS (Xu et al., 2020) reduces the redundancy in exploring the search space by sampling a small portion of a super network. Operation search is performed in a subset of channels with the held-out part bypassed in a shortcut. Our proposed LPT framework is orthogonal to existing NAS approaches and can be applied to any di erentiable NAS methods.

Adsl Ln nOur formulation involves a min-max optimization problem, which is analogous to that in adversarial learning (Goodfellow et al., 2014a) for data generation (Goodfellow et al., 2014a; Yu et al., 2017), domain adaptation (Ganin and Lempitsky, 2015), adversarial attack and defence (Goodfellow et al., 2014b), etc. Adversarial learning (Goodfellow et al., 2014a) has been widely applied to 1) data generation (Goodfellow et al., 2014a; Yu et al., 2017) where a discriminator tries to distinguish between generated images and real images and a generator is trained to generate realistic data by making such a discrimination di cult to achieve; 2) domain adaptation (Ganin and Lempitsky, 2015) where a discriminator tries to di erentiate between source images and target images while the feature learner learns representations which make such a discrimination unachievable; 3) adversarial attack and defence (Goodfellow et al., 2014b) where an attacker adds small perturbations to the input data to alter the prediction outcome and the defender trains the model in a way that the prediction outcome remains the same given perturbed inputs. Di erent from these existing works, in our work, a tester aims to create harder tests to \fail" the learner while the learner learns to \pass" however hard tests created by the tester. Shu

Figure 2: Learning by passing tests. The solid arrows denote the process of making predictions and calculating losses. The dotted arrows denote the process of updating learnable parameters by minimizing corresponding losses.

et al. (2020) proposed to use an adversarial examiner to identify the weakness of a trained model. Our work di ers from this work in that we progressively re-train a learner model based on how it performs on the tests that are created dynamically by a tester model while the learner model in (Shu et al., 2020) is xed and not a ected by the examination results. Such et al. (2019) proposed to learn a generative adversarial network (Goodfellow et al., 2014a) to create synthetic examples which are used to train an NAS model. Our work di ers from this work in that we use selected validation examples to validate the model while Such et al. (2019) use synthesized example to train the model.

C l L n n Our work is also related to curriculum learning (CL) (Bengio et al., 2009; Kumar et al., 2010; Jiang et al., 2014; Matiisen et al., 2019). In CL, a sequence of training datasets with increasing levels of di culty is used for model training, from easy to di cult. Our work di ers from these previous works in that: our work dynamically selects more-di cult data examples for model evaluation while previous works select data examples for model training.

3. Methods

In this section, we propose a framework to perform learning by passing tests (LPT) (as shown in Figure 2) and develop an optimization algorithm for solving the LPT problem.

Table 1: No	otations in Learning by Passing Tests
Notation	Meaning
A	Architecture of the learner
W	Network weights of the learner
E	Data encoder of the tester
С	Test creator of the tester
Х	Target-task executor of the tester
D (tr) L n	Training data of the learner
$D { m tr} { m tr} { m t}$	Training data of the tester
$D { m (val) \atop tt}$	Validation data of the tester
D _b	Test bank

L n n b ss n sts

In our framework, there is a learner model and a tester model, where the learner studies how to perform a target task such as classi cation, regression, etc. The eventual goal is to make the learner achieve a better learning outcome with help from the tester. There is a collection of data examples called \test bank". The tester creates a test by selecting a subset of examples from the test bank. Given aTtette learner applies its intermediatelytrained modeM to make predictions on and measures the prediction error naterom the perspective of the testerindicates how di cult the test is. If R is small, it means that the learner can easily pass this test. Under such circumstances, the tester will create a more di cult testT' which renders the new error $r \Re extreme e$ on T' is larger than R. From the learner's perspectiv R' indicates how well the learner performs on the test. Given this more di cult tes \mathbf{t}' , the learner re nes its model to pass this new test. It aims to learn a new model ' such that the newer error rade achieved by M ' on T' is smaller than R'. This process iterates until an equilibrium is reached. In addition to being di cult, the created test should be meaningful as well. It is possible that the test bank contains poor-quality examples where the class labels may be incorrect or the input data instances are outliers. Using an unmeaningful test containing poor-quality examples to guide the learning of the learner may render the learner to over t these bad-quality examples and generalize poorly on unseen data. To address this problem, we encourage the tester to generate meaningful tests by leveraging the generated tests to perform a target task J₂. Speci cally, the tester uses examples in the test to train a model for performing J_2 . If the performance (e.g., accurady) achieved by this model in conductidg is high, the test is considered to be meaningful. The tester aims to create a test that can yield a high P.

In our framework, both the learner and the tester performs learning. The learner studies how to best ful II the target task The tester studies how to create tests that are di cult and meaningful. In the learner' model, there are two sets of learnable parameters: model architecture and network weights. The architecture and weights are both used to make predictions inJ₁. The tester's model performs two tasks simultaneously: creating tests and performing another target-task The model has three learnable modules: data encoder, test creator, and target-task executor, where the test creator performs the task of generating tests and the target-task executor conduction tests creator and target-task executor share the same data encoder. The data encoder takes a data example input and generates a latent representation for this example. Then the representation is fed into the test creator which determines wheelingerould be selected into the test. The representation is also fed into the target-task executor which performs prediction performing the target task.

In our framework, the learning of the learner and the tester is organized into three stages. In the rst stage, the learner learns its network weighby minimizing the training loss L(A; W; $D_{l,n}^{(tr)}$) de ned on the training data $\frac{dt}{l,n}$ in the task J_1 . The architecture is used to de ne the training loss, but it is not learned at this stageisflearned by minimizing this training loss, a trivial solution will be yielded where very large and complex that it can perfectly over t the training data but will generalize poorly on unseen data. Let $W^*(A)$ denotes the optimally learned at this stage. Note the M^* is a function of becauseW* is a function of the training loss and the training loss is a function of the second stage, the tester learns its data encodied target-task executority minimizing the training loss (E; X; $0_{tt}^{(tr)}$) + L(E; X; (C; E; 0_{b})) in the task J₂. The training loss consists of two parts. The rst par($t; X; D_{tt}^{(tr)}$) is de ned on the training datas $t_{tt}^{(tr)}$ in J₂. The second part (E; X; (C; E; D_b)) is de ned on the test (C; E; D_b) created by the test creator. To create a test, for each exachipile the test bank b, it is rst fed into the encoder, then into the test creator which outputs a binary value indicating whether d should be selected into the tes(C; E; D_{b}) is the collection of examples whose binary value is equal to 1. is a tradeo parameter between these two parts of losses. The creatorC is used to de ne the second-part loss, but it is not learned at this stage. Otherwise, a trivial solution will be yielded where lways sets the binary value to 0 for each test-bank example so that the second-part loss becomes $O^{*}(\Omega)$ that $X^{*}(C)$ denote the optimally trained and X at this stage. Note that they are both functions of since they are functions of the training loss and the training loss is a function the third stage, the learner learns its architecture by trying to pass the Ctest(C); \mathbb{D}_{h} created by the tester. Speci cally, the learner aims to minimize its predictive loss on the test:

$$L(A; W^{*}(A); (C; E^{*}(C); D_{b})) = \bigwedge_{d \in (C; E^{*}(C); D_{b})} (A; W^{*}(A); d; (1))$$

where d is an example in the test an $(A; W^*(A); d)$ is the loss de ned in this example. A smallerL(A; W*(A); (C; E*(C); D)) indicates that the learner performs well on this test.

Meanwhile, the tester learns its test creation a way that C can create a test with more di culty and meaningfulness. Di culty is measured by the learner's predictive lossL(A; W*(A); (C; E*(C); \mathbb{I}_b)) on the test. Given a modeA(W*(A)) of the learner and two tests of the same size (same number of examp($\mathbb{e}_{\mathbb{S}}$):E*(C₁); \mathbb{I}_b) created by C₁ and (C₂; E*(C₂); \mathbb{I}_b) created by C₂, if L(A; W*(A); (C₁; E*(C₁); \mathbb{I}_b)) > L(A; W*(A); (C₂; E*(C₂); \mathbb{I}_b)), it means that (C₁; E*(C₁); \mathbb{I}_b) is more challenging to pass than (C₂; E*(C₂); \mathbb{I}_b). Therefore, the tester can learn to create a more challenging to pass than (C; E*(C); \mathbb{I}_b)) is to enlarge the size of the test. But a larger size does not imply more di culty. To discourage this degenerated solution from happening, we

normalize the loss using the size of the test:

$$\frac{1}{|(C; E * (C); D_b)|} L(A; W^* (A); (C; E * (C); D_b));$$
(2)

where (C; E *(C); \mathbb{D}_{b}) is the cardinality of the set(C; E *(C); \mathbb{D}_{b}). To measure the meaningfulness of a test, we check how well the optimally-trained task exet(\mathbb{O}) band data encoder *(C) of the tester perform on the validation $da(\mathbb{V}^{al})$ of the target task, and the performance is measured by the validation $lb(\mathbb{S}:(C); X^*(C); \mathbb{D}^{(val)}_{tt})$. E *(C) and X*(C) are trained using the test generated bin the second stage. If the validation loss is small, it means that the created test is helpful in training the task executor and therefore is considered as being meaningful. To create a meaningful test, the tester learns C by minimizing L(E *(C); X*(C); $\mathbb{D}^{(val)}_{tt}$). In sum, C is learned by maximizing L(A; W*(A); (C; E *(C); \mathbb{D}_{b})=| (C; E *(C); \mathbb{D}_{b} |- L(E *(C); X*(C); $\mathbb{D}^{(val)}_{tt}$), where is a tradeo parameter between these two objectives.

The three stages are mutually depende $Mt^*(A)$ learned in the rst stage an $d^*(C)$ and $X^*(C)$ learned in the second stage are used to de ne the objective function in the third stage; the update and A in the third stage in turn change the objective functions in the rst and second stage, which subsequently re $Md^*(A)$, $E^*(C)$, and $X^*(C)$ to be changed. Putting these pieces together, we formulate LPT as the following multi-level optimization problem.

$$\max_{C} \min_{A} \frac{1}{| (C; E^{*}(C); D_{D}) |} L(A; W^{*}(A); (C; E^{*}(C); D_{b})) - L E^{*}(C); X^{*}(C); D^{(val)}_{tt} (Stage III) s: t: E^{*}(C); X^{*}(C) = \min_{E;X} L E; X; D^{(tr)}_{tt} + L(E; X; (C; E; D_{b})) (II) W^{*}(A) = \min_{W} L A; W; D^{(tr)}_{Ln} (Stage I)$$

$$(3)$$

This formulation nests three optimization problems. On the constraints of the outer optimization problem are two inner optimization problems corresponding to the rst and second learning stage. The objective function of the outer optimization problem corresponds to the third learning stage.

As of now, the test(C; E; \mathbb{D}_{b}) is represented as a subset, which is highly discrete and therefore di cult for optimization. To address this problem, we perform a continuous relaxation of (C; E; \mathbb{D}_{b}):

$$(C; E; D_{b}) = \{ (d; f(d; C; E)) | d \in D_{b} \};$$
(4)

where for each example in the test bank, the original binary value indicating whether should be selected is now relaxed to a continuous probability C; E) representing how likely d should be selected. Under this relaxation $(E; X; (C; E; D_b))$ can be computed as follows: χ

$$L(E; X; (C; E; D_b)) = \int_{d \in D_b}^{A} f(d; C; E)'(E; X; d);$$
(5)

where we calculate the loss X; d) on each test-bank example and weigh this loss using f(d; C; E). If f(d; C; E) is small, it means that is less likely to be selected into the test and

its corresponding loss should be down-weighted. Simila(Ay, W*(A); (C; E*(C); D_b)) is calculated as $_{d \in D_b} f(d; C; E^*(C))'(A; W^*(A); d$. And $| (C; E^*(C); D_b)|$ can be calculated as

$$| (C; E^{*}(C); D_{b})| = \int_{d \in D_{b}}^{A} f(d; C; E^{*}(C)):$$
(6)

Similar to (Liu et al., 2019), we represent the architec Auoe the learner in a di erentiable way. The search space Af is composed of a large number of building blocks. The output of each block is associated with a variable dicating how important this block is. After learning, blocks whose is among the largest are retained to form the nal architecture. In this end, architecture search amounts to optimizing the set of architecture variables $A = \{a\}$.

$$t$$
 t n Al t

In this section, we derive an optimization algorithm to solve the LPT problem. Inspired by (Liu et al., 2019), we approximate*(C) and X*(C) using one-step gradient descent update of and X with respect tb(E; X; $I_{tt}^{(tr)}$) + L(E; X; (C; E; I_{b})) and approximate W*(A) using one-step gradient descent update/of/ith respect tb(A; W; $I_{tn}^{(tr)}$). Then we plug these approximations into

$$L(A; W^{*}(A); (C; E^{*}(C); D_{b})) = | (C; E^{*}(C); D_{b})| - L(E^{*}(C); X^{*}(C); D_{tt}^{(val)}); (7)$$

and perform gradient-descent update $\widehat{\mathit{cafnd}}\,A$ with respect to this approximated objective. In the sequel, we us $\widehat{\mathit{ce}}_{Y;X}^2\,f(X;\,Y)$ to denote $\overset{@f(X;Y\,)}{@X@Y}$.

Approximating W*(A) using W' = $W - \frac{1}{1} \nabla_W L(A; W; D_{ln}^{(tr)})$ where $\frac{1}{1} n$ is a learning rate and simplifying the notation of (C; E*(C); D_b) as , we can calculate the approximated gradient of L(A; W*(A);) w.r.tA as:

$$\nabla_{A} L(A; W^{*}(A);) \approx \nabla_{A} L(A; W^{*}(A);) = \nabla_{A} L(A; W';) - \prod_{n} \nabla_{W} L(A; W; D_{Ln}^{(tr)};) = \nabla_{A} L(A; W';) - \prod_{n} \nabla_{A;W}^{2} L(A; W; D_{Ln}^{(tr)}, \nabla_{W'} L(A; W';))$$
(8)

The second term in the third line involves expensive matrix-vector product, whose computational complexity can be reduced by a nite di erence approximation:

$$\nabla_{A;W}^{2} \ L \ A; \ W; \ \mathbb{D}_{In}^{(\mathrm{tr})} \ \nabla_{W'} \ L (A; \ W'; \) \approx \frac{1}{2_{In}} \ \nabla_{A} \ L \ A; \ W^{+}; \ \mathbb{D}_{In}^{(\mathrm{tr})} \ -\nabla_{A} \ L \ A; \ W^{-}; \ \mathbb{D}_{In}^{(\mathrm{tr})} ;$$

$$(9)$$

where $W^{\pm} = W_{\pm 1} \nabla_{W'} L(A; W';)$ and $|_1 n$ is a small scalar that equal $\Omega = |\nabla_{W'} L(A; W';))|_2$. We approximate *(C) and $X^*(C)$ using the following one-step gradient descent update of E and C respectively:

$$E' = E - E \nabla_E [L(E; X; D_{tt}^{(tr)}) + L(E; X; (C; E; D_{b}))]$$

$$X' = X - X \nabla_X [L(E; X; D_{tt}^{(tr)}) + L(E; X; (C; E; D_{b}))]$$
(10)

/. \

where $_{\rm E}$ and $_{\rm X}$ are learning rates. Plugging these approximations into the objective function in Eq.(7), we can lear 6 by maximizing the following objective using gradient methods:

$$L(A; W'; (C; E'; D_b)) = | (C; E'; D_b)| - L(E'; X'; D_{tt}^{(val)})$$
(11)

The derivative of the second term in this objective with respectao be calculated as:

$$\nabla_{\mathsf{C}} \mathsf{L}(\mathsf{E}'; \mathsf{X}'; \mathsf{D}_{\mathsf{tt}}^{(\mathrm{val})}) = \frac{\mathscr{Q}\mathsf{E}'}{\mathscr{Q}\mathsf{C}} \nabla_{\mathsf{E}'} \mathsf{L}(\mathsf{E}'; \mathsf{X}'; \mathsf{D}_{\mathsf{tt}}^{(\mathrm{val})}) + \frac{\mathscr{Q}\mathsf{X}'}{\mathscr{Q}\mathsf{C}} \nabla_{\mathsf{X}'} \mathsf{L}(\mathsf{E}'; \mathsf{X}'; \mathsf{D}_{\mathsf{tt}}^{(\mathrm{val})})$$
(12)

where

$$\begin{array}{l} \frac{\mathscr{O}E'}{\mathscr{O}C} = & - E \quad \nabla_{C;E}^2 \, \mathsf{L}(\mathsf{E}; \, \mathsf{X}; \quad (\mathsf{C}; \, \mathsf{E}; \, \mathsf{D}_{\mathsf{b}})) \\ \frac{\mathscr{O}X'}{\mathscr{O}C} = & - X \quad \nabla_{C;X}^2 \, \mathsf{L}(\mathsf{E}; \, \mathsf{X}; \quad (\mathsf{C}; \, \mathsf{E}; \, \mathsf{D}_{\mathsf{b}})) \end{array}$$
(13)

Similar to Eq.(9), using nite di erence approximation to calculate: L(E; X; (C; E; D b)) $\nabla_{E'}L(E'; X'; D_{tt}^{(val)})$ and $\nabla_{C;X}^2 L(E; X; (C; E; D b)) \nabla_{X'}L(E'; X'; D_{tt}^{(val)})$, we have:

$$\nabla_{C} L(E'; X'; \mathbb{D}_{tt}^{(val)}) = - E \frac{\nabla_{C} L(E^{+};X; (C;E^{+};D_{b})) - \nabla_{C} L(E^{-};X; (C;E^{-};D_{b}))}{2_{E}} - X \frac{\nabla_{C} L(E;X^{+}; (C;E;D_{b})) - \nabla_{C} L(E;X^{-}; (C;E;D_{b}))}{2_{X}} - (14)$$

where $f^{\pm} = f_{\pm} = \nabla_{E'} L(f'; X'; D_{tt}^{(val)})$ and $X^{\pm} = X \pm \sqrt{\nabla_{X'} L(f'; X'; D_{tt}^{(val)})}$. For the rst term L(A; W'; (C; F'; D_b))=| (C; F'; D_b)| in the objective, we can use chain rule to calculate its derivative w.rCt, which involves calculating the derivative df; W'; (C; F'; D_b)) and | (C; F'; D_b)| w.r.t toC. The derivative of L(A; W'; (C; F'; D_b)) w.r.t C can be calculated as:

$$\nabla_{\mathbf{C}} \mathsf{L}(\mathsf{A}; \mathsf{W}'; (\mathsf{C}; \mathsf{E}'; \mathsf{D}_{\mathsf{b}})) = \frac{@\mathsf{E}'}{@\mathsf{C}} \nabla_{\mathsf{E}'} \mathsf{L}(\mathsf{A}; \mathsf{W}'; (\mathsf{C}; \mathsf{E}'; \mathsf{D}_{\mathsf{b}})); \tag{15}$$

where $\underline{\overset{@E'}{@C}}$ is given in Eq.(13) and $\nabla^2_{C;E} L(E; X; (C; E; \mathbb{J}_b)) \otimes_{E'} L(A; W'; (C; E'; \mathbb{J}_b))$ can be approximated with $\underline{h}_{E}^1 (\nabla_C L(E^+; X; (C; E^+; \mathbb{J}_b)) - \nabla_C L(E^-; X; (C; E^-; \mathbb{J}_b)))$, where $\underline{h}_{E} = \nabla_{E'} L(A; W'; (C; E'; \mathbb{J}_b))$. The derivative of $(C; E'; \mathbb{J}_b) = \int_{d \in D_b} f(d; C; E')$ w.r.tC can be calculated as

$$\overset{\chi}{\underset{d \in D_{b}}{\nabla_{C} f(d; C; E')}} = \frac{\overset{@E'}{@E'} \nabla_{E'} f(d; C; E')$$
(16)

where $\frac{@E'}{@C}$ is given in Eq.(13). The algorithm for solving LPT is summarized in Algorithm 1.

Al t Optimization algorithm for learning by passing tests

l not converged d

1. Update the architecture of the learner by descending the gradient calculated in Eq.(8)

2. Update the test creator of the tester by ascending the gradient calculated in Eq.(12-16)

3. Update the data encoder and target-task executor of the tester using Eq.(10)

4. Update the network weights of the learner by descention $(A; W; D_{l,n}^{(tr)})$

nd

4. Experiments

We apply LPT for neural architecture search in image classi cation. Following (Liu et al., 2019), we rst perform architecture search which nds an optimal cell, then perform architecture evaluation which composes multiple copies of the searched cell into a large network, trains it from scratch, and evaluates the trained model on a test set. We let the target tasks of the learner and that of the tester be the same. Please refer to the supplements for more hyperparameter settings, additional results, and signi cance tests of results.

$D \ t \ s \ ts$

We used three datasets in the experiments: CIFAR-10, CIFAR-100, and ImageNet (Deng et al., 2009). The CIFAR-10 dataset contains 50K training images and 10K testing images, from 10 classes (the number of images in each class is equal). We split the original 50K training set into a 25K training set and a 25K validation set. In the sequel, when we mention \training set", it always refers to the new 25K training set. During architecture search, the training set is used $als_{1n}^{(tr)}$ of the learner and $t_t^{(tr)}$ of the tester. The validation set is used as the test balk and the validation data $t_t^{(val)}$ of the tester. Under such a setting, the data encoder and target-task executor of the tester are trained on a subset (which is a test) of $t_t^{(val)}$ and validated on the entire set $lot_t^{(val)}$. The interpretation of doing this is: we select a subset of examples $\operatorname{flr}(\mathfrak{m}^{n})$ to train a model so that it performs the best on the entire tt. During architecture evaluation, the combination of the training data and validation data is used to train a large network stacking multiple copies of the searched cell. The CIFAR-100 dataset contains 50K training images and 10K testing images, from 100 classes (the number of images in each class is equal). Similar to CIFAR-10, the 50K training images are split into a 25K training set and a 25K validation set. The usage of these subsets is the same as that for CIFAR-10. The ImageNet dataset contains a training set of 1.3M images and a validation set of 50K images, from 1000 object classes. The validation set is used as a test set for architecture evaluation. During architecture search, following (Xu et al., 2020), 10% of the 1.3M training images are randomly sampled to form a new training set and another 2.5% of the 1.3M training images are randomly sampled to form a new architecture validation set. The usage of the new training set and architecture validation set is the same as that in CIFAR-10. During architecture evaluation, all of the 1.3M training images are used for model training. In addition to searching architectures directly on ImageNet data, following (Liu et al., 2019), we also evaluate the architectures searched using CIFAR-10 and CIFAR-100 on ImageNet: given a cell searched using CIFAR-10 and CIFAR-100, multiple copies of it compose a large network, which is then trained on the 1.3M training data of ImageNet and evaluated on the 50K test data.

E nt l S tt n s

Our framework is a general one that can be used together with any di erentiable search method. Speci cally, we apply our framework to the following NAS methods: 1) DARTS (Liu et al., 2019), 2) P-DARTS (Chen et al., 2019), 3) DARTS ⁺ (Liang et al., 2019b), 4) DARTS ⁻ (Chu et al., 2020a), 5) PC-DARTS (Xu et al., 2020). The search space in these

methods are similar. The candidate operations include: $33 \text{ and } 5 \times 5$ separable convolutions, 3×3 and 5×5 dilated separable convolutions $\times 33$ max pooling, 3×3 average pooling, identity, and zero. In LPT, the network of the learner is a stack of multiple cells, each consisting of 7 nodes. For the data encoder of the tester, we tried ResNet-18 and ResNet-50 (He et al., 2016b). For the test creator and target-task executor, they are set to one feed-forward layer and are tuned using a 5k held-out dataset{0n1;05;1;2;3}. In most experiments, and are set to 1 except for P-DARTS and PC-DARTS. For P-DARTS, ; are set to 0;1 for CIFAR-10 and 1;0.5 for CIFAR-100. For PC-DARTS, we use = 3; = 1 and = 0:1; = 1 for CIFAR-10 and CIFAR-100, respectively.

For CIFAR-10 and CIFAR-100, during architecture search, the learner's network is a stack of 8 cells, with the initial channel number set to 16. The search is performed for 50 epochs, with a batch size of 64. The hyperparameters for the learner's architecture and weights are set in the same way as DARTS, P-DARTS, DARTS⁺, and DARTS⁻. The data encoder and target-task executor of the tester are optimized using SGD with a momentum of 0.9 and a weight decay of 3e-4. The initial learning rate is set to 0.025 with a cosine decay scheduler. The test creator is optimized with the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 3e-4 and a weight decay of 1e-3. During architecture evaluation, 20 copies of the searched cell are stacked to form the learner's network, with the initial channel number set to 36. The network is trained for 600 epochs with a batch size of 96 (for both CIFAR-10 and CIFAR-100). The experiments are performed on a single Tesla v100. For ImageNet, following (Liu et al., 2019), we take the architecture searched on CIFAR-10 and evaluate it on ImageNet. We stack 14 cells (searched on CIFAR-10) to form a large network. and set the initial channel number as 48. The network is trained for 250 epochs with a batch size of 1024 on 8 Tesla v100s. Each experiment on LPT is repeated for ten times with the random seed to be from 1 to 10. We report the mean and standard deviation of results obtained from the 10 runs.

s~lts

Table 2 shows the classi cation error (%), number of weight parameters (millions), and search cost (GPU days) of di erent NAS methods on CIFAR-100. From this table, we make the following observations. st, when our method LPT is applied to di erent NAS baselines including DARTS-1st (rst order approximation), DARTS-2nd (second order approximation), DARTS - (our run), DARTS +, PC-DARTS, and P-DARTS, the classi cation errors of these baselines can be signi cantly reduced. For example, applying our method to P-DARTS, the error reduces from 17.49% to 16.28%. Applying our method to DARTS-2nd, the error reduces from 20.58% to 18.40%. This demonstrates the e ectiveness of our method in searching for a better architecture. In our method, the learner continuously improves its architecture by passing the tests created by the tester with increasing levels of di culty. These tests can help the learner to identify the weakness of its architecture and provide guidance on how to improve it. Our method creates a new test on the y based on how the learner performs in the previous round. From the test bank, the tester selects a subset of di cult examples to evaluate the learner. This new test poses a greater challenge to the learner and encourages the learner to improve its architecture so that it can overcome the new challenge. In contrast, in baseline NAS approaches, a single xed

Table 2: Results on CIFAR-100, including classi cation error (%) on the test set, number of parameters (millions) in the searched architecture, and search cost (GPU days). LPT-R18-DARTS-1st denotes that our method LPT is applied to the search space of DARTS. Similar meanings hold for other notations in such a format. R18 and R50 denote that the data encoder of the tester in LPT is set to ResNet-18 and ResNet-50 respectively. DARTS-1st and DARTS-2nd denotes that rst order and second order approximation is used in DARTS. * means the results are taken from DARTS ⁻ (Chu et al., 2020a).† means we re-ran this method for 10 times. means the algorithm ran for 600 epochs instead of 2000 epochs in the architecture evaluation stage, to ensure a fair comparison with other methods (where the epoch number is 600). The search cost is measured by GPU days on a Tesla v100.

Method	Error(%)	Param(M)	Cost
*ResNet (He et al., 2016a)	22.10	1.7	-
*DenseNet (Huang et al., 2017)	17.18	25.6	-
*PNAS (Liu et al., 2018a)	19.53	3.2	150
*ENAS (Pham et al., 2018)	19.43	4.6	0.5
*AmoebaNet (Real et al., 2019)	18.93	3.1	3150
*GDAS (Dong and Yang, 2019)	18.38	3.4	0.2
*R-DARTS (Zela et al., 2020)	18.01±0.26	-	1.6
*DropNAS (Hong et al., 2020)	16.39	4.4	0.7
[†] DARTS-1st (Liu et al., 2019)	20.52±0.31	1.8	0.4
LPT-R18-DARTS-1st (ours)	±0.11	2.1	0.6
*DARTS-2nd (Liu et al., 2019)	20.58±0.44	1.8	1.5
LPT-R18-DARTS-2nd (ours)	19.47±0.20	2.1	1.8
LPT-R50-DARTS-2nd (ours)	±0.16	2.5	2.0
*DARTS ⁻ (Chu et al., 2020a)	17.51±0.25	3.3	0.4
[†] DARTS [–] (Chu et al., 2020a)	18.97±0.16	3.1	O.4
LPT-R18-DARTS [–] (ours)	18.28±0.14	3.4	0.6
Δ DARTS + (Liang et al., 2019a)	17.11±0.43	3.8	0.2
LPT-R18-DARTS + (ours)	±0.19	3.7	0.3
†PC-DARTS (Xu et al., 2020)	17.96±0.15	3.9	0.1
LPT-R18-PC-DARTS (ours)	17.04±0.05	3.6	0.1
LPT-R50-PC-DARTS (ours)	±0.21	4.0	0.1
*P-DARTS (Chen et al., 2019)	17.49	3.6	0.3
LPT-R18-P-DARTS (ours)	±	3.8	0.5
LPT-R50-P-DARTS (ours)	16.38±0.07	3.6	0.5

validation set is used to evaluate the learner. The learner can achieve a good performance via \cheating": focusing on performing well on the majority of easy examples and ignoring the minority of di cult examples. As a result, the learner's architecture does not have the ability to deal with challenging cases in the unseen data. nd, LPT-R5O-DARTS-2nd

Table 3: Results on CIFAR-10. * means the results are taken from DARTS(Chu et al., 2020a), NoisyDARTS (Chu et al., 2020b), and DrNAS (Chen et al., 2020). The rest notations are the same as those in Table 2.

Method	Error(%)	Param(M)	Cost
*DenseNet (Huang et al., 2017)	3.46	25.6	-
*HierEvol (Liu et al., 2018b)	3.75±0.12	15.7	300
*NAONet-WS (Luo et al., 2018)	3.53	3.1	0.4
*PNAS (Liu et al., 2018a)	3.41±0.09	3.2	225
*ENAS (Pham et al., 2018)	2.89	4.6	0.5
*NASNet-A (Zoph et al., 2018)	2.65	3.3	1800
*AmoebaNet-B (Real et al., 2019)	$2.55 {\pm} 0.05$	2.8	3150
*R-DARTS (Zela et al., 2020)	2.95±0.21	-	1.6
*GDAS (Dong and Yang, 2019)	2.93	3.4	0.2
*GTN (Such et al., 2019)	2.92±0.06	8.2	0.67
*SNAS (Xie et al., 2019)	2.85	2.8	1.5
*BayesNAS (Zhou et al., 2019)	2.81±0.04	3.4	0.2
*MergeNAS (Wang et al., 2020)	2.73±0.02	2.9	0.2
*NoisyDARTS (Chu et al., 2020b)	2.70±0.23	3.3	0.4
*ASAP (Noy et al., 2020)	2.68±0.11	2.5	0.2
*SDARTS (Chen and Hsieh, 2020)	2.61±0.02	3.3	1.3
*DropNAS (Hong et al., 2020)	2.58 ± 0.14	4.1	0.6
*FairDARTS (Chu et al., 2019)	2.54	3.3	0.4
*DrNAS (Chen et al., 2020)	2.54±0.03	4.0	0.4
*DARTS-1st (Liu et al., 2019)	3.0 0 ±0.14	3.3	0.4
LPT-R18-DARTS-1st (ours)	±0.09	2.7	0.6
*DARTS-2nd (Liu et al., 2019)	2.76±0.09	3.3	1.5
LPT-R18-DARTS-2nd (ours)	2.72±0.07	3.4	1.8
LPT-R50-DARTS-2nd (ours)	±0.02	3.4	2.0
*DARTS - (Chu et al., 2020a)	2.59±0.08	3.5	0.4
[†] DARTS [–] (Chu et al., 2020a)	2.97±0.04	3.3	0.4
LPT-R18-DARTS [–] (ours)	$2.74{\pm}0.07$	3.4	0.6
$^{\Delta}$ DARTS + (Liang et al., 2019a)	2.83±0.05	3.7	0.4
LPT-R18-DARTS ⁺ (ours)	±0.05	3.6	0.5
*PC-DARTS (Xu et al., 2020)	±0.07	3.6	0.1
LPT-R18-PC-DARTS (ours)	2.65±0.17	3.7	0.1
*P-DARTS (Chen et al., 2019)	2.50	3.4	0.3
LPT-R18-P-DARTS (ours)	2.58±0.14	3.3	O.5

outperforms LPT-R18-DARTS-2nd, where the former uses ResNet-50 as the data encoder in the tester while the latter uses ResNet-18. ResNet-50 has a better ability of learning representations than ResNet-18 since it is \deeper": 50 layers versus 18 layers. This shows Table 4: Results on ImageNet, including top-1 and top-5 classi cation errors on the test set, number of weight parameters (millions), and search cost (GPU days). * means the results are taken from DARTS (Chu et al., 2020a) and DrNAS (Chen et al., 2020). The rest notations are the same as those in Table 2 in the main paper. The rst row block shows networks designed by human manually. The second row block shows non-gradient based search methods. The third block shows gradient-based methods‡ means the results following the hyperparameters selected for CIFAR10/100. The hyperparameter for CIFAR10O is used when directly searching on ImageNet.

Method	Top-1 Error (%)	Top-5 Error (%)	Param (M)	Cost (GPU days)
*Inception-v1 (Szegedy et al., 2015)	30.2	10.1	6.6	-
*MobileNet (Howard et al., 2017)	29.4	10.5	4.2	-
*Shu eNet 2 \times (v1) (Zhang et al., 2018)	26.4	10.2	5.4	-
*Shu eNet 2 × (v2) (Ma et al., 2018)	25.1	7.6	7.4	-
*NASNet-A (Zoph et al., 2018)	26.0	8.4	5.3	1800
*PNAS (Liu et al., 2018a)	25.8	8.1	5.1	225
*MnasNet-92 (Tan et al., 2019)	25.2	8.0	4.4	1667
*AmoebaNet-C (Real et al., 2019)	24.3	7.6	6.4	3150
*SNAS-CIFAR10 (Xie et al., 2019)	27.3	9.2	4.3	1.5
*BayesNAS-CIFAR10 (Zhou et al., 2019)	26.5	8.9	3.9	0.2
*PARSEC-CIFAR10 (Casale et al., 2019)	26.0	8.4	5.6	1.0
*GDAS-CIFAR10 (Dong and Yang, 2019)	26.0	8.5	5.3	0.2
*DSNAS-ImageNet (Hu et al., 2020)	25.7	8.1	-	-
*SDARTS-ADV-CIFAR10 (Chen and Hsieh, 2020)	25.2	7.8	5.4	1.3
*PC-DARTS-CIFAR10 (Xu et al., 2020)	25.1	7.8	5.3	0.1
*ProxylessNAS-ImageNet (Cai et al., 2019)	24.9	7.5	7.1	8.3
*FairDARTS-CIFAR10 (Chu et al., 2019)	24.9	7.5	4.8	O.4
*FairDARTS-ImageNet (Chu et al., 2019)	24.4	7.4	4.3	3.0
*DrNAS-ImageNet (Chen et al., 2020)	24.2	7.3	5.2	3.9
*DARTS +-ImageNet (Liang et al., 2019a)	23.9	7.4	5.1	6.8
*DARTS [–] -ImageNet (Chu et al., 2020a)	23.8	7.0	4.9	4.5
*DARTS +-CIFAR100 (Liang et al., 2019a)	23.7	7.2	5.1	0.2
*DARTS-2nd-CIFAR10 (Liu et al., 2019)	26.7	8.7	4.7	1.5
LPT-R18-DARTS-2nd-CIFAR10 (ours)	25.3	7.9	4.7	1.8
*P-DARTS (CIFAR10) (Chen et al., 2019)	24.4	7.4	4.9	0.3
<pre>‡LPT-R18-P-DARTS-CIFAR10 (ours)</pre>	24.2	7.3	4.9	O.5
*P-DARTS (CIFAR100) (Chen et al., 2019)	24.7	7.5	5.1	0.3
<pre>‡LPT-R18-P-DARTS-CIFAR100 (ours)</pre>	24.0	7.1	5.3	O.5
*PC-DARTS-ImageNet (Xu et al., 2020)	24.2	7.3	5.3	3.8
<pre>‡LPT-R18-PC-DARTS-ImageNet (ours)</pre>			5.7	4.O

that a \stronger" tester can help the learner to learn better. With a more powerful data encoder, the tester can better understand examples in the test bank and can make better decisions in creating di cult and meaningful tests. Tests with better quality can evaluate

the learner more e ectively and help to improve the learner's learning capability. When our method is applied to PC-DARTS and P-DARTS, the performance di erence resulting from ResNet-18 and ResNet-50 is not statistically signi cant. *d* , our method LPT-R18-P-DARTS achieves the best performance among all methods, which further demonstrates the e ectiveness of LPT in driving the frontiers of neural architecture search forward., the number of weight parameters and search costs corresponding to our methods are on par with those in di erentiable NAS baselines. This shows that LPT is able to search better-performing architectures without signi cantly increasing network size and search cost. A few additional remarks: 1) On CIFAR-100, DARTS-2nd with second-order approximation in the optimization algorithm is not advantageous compared with DARTS-1st which uses rst-order approximation; 2) In our run of DARTS, we were not able to achieve the performance reported in (Chu et al., 2020a); 3) In our run of DARTS are done and the architecture evaluation stage, we set the number of epochs to 600 instead of 2000 as in (Liang et al., 2019a), to ensure a fair comparison with other methods (where the epoch number is 600).

Table 3 shows the classi cation error (%), number of weight parameters (millions), and search cost (GPU days) of di erent NAS methods on CIFAR-10. As can be seen, applying our proposed LPT to DARTS-1st, DARTS-2nd, DARTS ⁻ (our run), and DARTS ⁺ signi cantly reduces the errors of these baselines. For example, with the usage of LPT, the error of DARTS-2nd is reduced from 2.76% to 2.68%. This further demonstrates the e cacy of our method in searching better-performing architectures, by creating tests with increasing levels of di culty and improving the learner through taking these tests. On PC-DARTS and P-DARTS, applying our method does not yield better performance.

Table 4 shows the results on ImageNet, including top-1 and top-5 classi cation errors on the test set. In our proposed LPT-R18-PC-DARTS-ImageNet, the architecture is searched on ImageNet, where our method performs much better than PC-DARTS-ImageNet and achieves the lowest error (23.4% top-1 error and 6.8% top-5 error) among all methods in Table 4. In our methods including LPT-R18-P-DARTS-CIFAR1OO, LPT-R18-P-DARTS-CIFAR1O, and LPT-R18-DARTS-2nd-CIFAR1O, the architectures are searched on CIFAR-10 or CIFAR-100 and evaluated on ImageNet, where these methods outperform their corresponding baselines P-DARTS-CIFAR1OO, P-DARTS-CIFAR1O, and DARTS-2nd-CIFAR1O. These results further demonstrate the e ectiveness of our method.

Abl t n St d s

In order to evaluate the e ectiveness of individual modules in LPT, we compare the full LPT framework with the following ablation settings.

• Abl t n s tt n . In this setting, the tester creates tests solely by maximizing their level of di culty, without considering their meaningfulness. Accordingly, the second stage in LPT where the tester learns to perform a target-task by leveraging the created tests is removed. The tester directly learns a selection $sc(tb) r \in [0, 1]$ for each example in the test bank without going through a data encoder or test creator. The corresponding formulation is:

Table 5: Results for ablation setting 1. \Di cult only" denotes that the tester creates tests solely by maximizing their level of di culty, without considering their meaning-fulness, i.e., the tester does not use the tests for learning to perform the target task. \Di cult + meaningful" denotes the full LPT framework where the tester creates tests by maximizing both di culty and meaningfulness.

Method	Error (%)
Di cult only (DARTS-2nd, CIFAR-100)	20.38±0.17
Di cult + meaningful (DARTS-2nd, CIFAR-100)	±0.20
Di cult only (P-DARTS, CIFAR-100)	18.12±0.11
Di cult + meaningful (P-DARTS, CIFAR-100)	±0.10
Di cult only (DARTS-2nd, CIFAR-10)	2.79±0.06
Di cult + meaningful (DARTS-2nd, CIFAR-10)	±0.07

where $s = \{s(d) | d \in D_b\}$. In this study, and are both set to 1. The data encoder of the tester is ResNet-18. For CIFAR-100, LPT is applied to P-DARTS and DARTS-2nd. For CIFAR-10, LPT is applied to DARTS-2nd.

• Abl t $n \ s \ tt \ n$. In this setting, in the second stage of LPT, the tester is trained solely based on the created test, without using the training data of the target task. The corresponding formulation is:

$$\max_{C} \min_{A} \frac{1}{|(C;E^{*}(C);D_{b})|} L(A; W^{*}(A); (C; E^{*}(C); D_{b})) - L E^{*}(C); X^{*}(C); D^{(val)}_{tt} s: t: E^{*}(C); X^{*}(C) = \min_{E;X} L(E; X; (C; E; D_{b})) W^{*}(A) = \min_{W} L A; W; D^{(tr)}_{Ln}$$

$$(18)$$

In this study, and are both set to 1. The data encoder of the tester is ResNet-18. For CIFAR-100, LPT is applied to P-DARTS and DARTS-2nd. For CIFAR-10, LPT is applied to DARTS-2nd.

- Ablation study on . We are interested in how the learner's performance varies as the tradeo parameter in Eq.(3) increases. In this study, the other tradeo parameter in Eq.(3) is set to 1. For both CIFAR-100 and CIFAR-10, we randomly sample 5K data from the 25K training and 25K validation data, and use it as a test set to report performance in this ablation study. The rest 45K data is used as before. Tester's data encoder is ResNe-18. LPT is applied to P-DARTS.
- Ablation study on . We investigate how the learner's performance varies as c increases. In this study, the other tradeo parameteis set to 1. Similar to the ablation study on , on 5K randomly-sampled test data, we report performance of architectures searched under di erent values of. Tester's data encoder is ResNe-18. LPT is applied to P-DARTS.

Table 6: Results for ablation setting 2. \Test only" denotes that the tester is trained only using the created test to perform the target task. \Test + training" denotes that the tester is trained using both the test and the training data of the target task.

Method	Error (%)
Test only (DARTS-2nd, CIFAR-100)	19.81±0.06
Test + training (DARTS-2nd, CIFAR-100)	±0.20
Test only (P-DARTS, CIFAR-100)	17.54±0.07
Test + training (P-DARTS, CIFAR-100)	±0.10
Test only (DARTS-2nd, CIFAR-10)	2.75±0.03
Test + training (DARTS-2nd, CIFAR-10)	±0.07

Figure 3: How errors change asincreases.

Table 5 shows the results for ablation setting 1. As can be seen, on both CIFAR-10 and CIFAR-100, creating tests that are both di cult and meaningful is better than creating tests solely by maximizing di culty. The reason is that a di cult test could be composed of bad-quality examples such as outliers and incorrectly-labeled examples. Even a highly-accurate model cannot achieve good performance on such erratic examples. To address this problem, it is necessary to make the created tests meaningful. LPT achieves meaningfulness of the tests by making the tester leverage the created tests to perform the target task. The results demonstrate that this is an e ective way of improving meaningfulness.

Table 6 shows the results for ablation setting 2. As can be seen, for both CIFAR-100 and CIFAR-10, using both the created test and the training data of the target task to train the tester performs better than using the test only. By leveraging the training data, the data encoder can be better trained. And a better encoder can help to create higher-quality tests.

Figure 3 shows how classi cation errors changeiasreases. As can be seen, on both CIFAR-100 and CIFAR-10, when increases from 0 to 0.5, the error decreases. However, further increasing renders the error to increase. From the tester's perspeceivelores a tradeo between di culty and meaningfulness of the tests. Increasing ourages the tester to create tests that are more meaningful. Tests with more meaningfulness can more reliably evaluate the learner. However, if is too large, the tests are biased to be more meaningful but less di cult. Lacking enough di culty, the tests may not be compelling

Figure 4: How errors change as increases.

enough to drive the learner for improvement. Such a tradeo e ect is observed in the results on CIFAR-10 as well.

Figure 4 shows how classi cation errors change as increases. As can be seen, on both CIFAR-100 and CIFAR-10, when increases from 0 to 0.5, the error decreases. However, further increasing renders the error to increase. Under a larger, the created test plays a larger role in training the tester to perform the target task. This implicitly encourages the test creator to generate tests that are more meaningful. However, if is too large, training is dominated by the created test which incurs the following risk: if the test is not meaningful, it will result in a poor-quality data-encoder which degrades the quality of created tests.

5. Conclusions

In this paper, we propose a new machine learning approach { learning by passing tests (LPT), inspired by the test-driven learning technique of humans. In LPT, a tester model creates a sequence of tests with growing levels of di culty. A learner model continuously improves its learning ability by striving to pass these increasingly more-challenging tests. We propose a multi-level optimization framework to formalize LPT where the tester learns to select hard validation examples that render the learner to make large prediction errors and the learner re nes its model to rectify these prediction errors. Our framework is applied for neural architecture search and achieves signi cant improvement on CIFAR-100, CIFAR-10, and ImageNet.

References

- Yoshua Bengio, Jerôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings of the 26th annual international conference on machine learning pages 41{48, 2009.
- Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task and hardware. In ICLR, 2019.

Francesco Paolo Casale, Jonathan Gordon, and Nicob Fusi. Probabilistic neural architecture search. CoRR, abs/1902.05116, 2019.