
P
os
te
d
on

13
M
ar

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
33
00
96
1.
v
2
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Learning by Passing Tests, with Application to Neural Architecture

Search

Xuefeng Du 1, Pengtao Xie 1, and Haochen Zhang 1

1Affiliation not available

November 8, 2023

Abstract

Learning through tests is a broadly used methodology in human learning and shows great effectiveness in improving learning

outcome: a sequence of tests are made with increasing levels of difficulty; the learner takes these tests to identify his/her

weak points in learning and continuously addresses these weak points to successfully pass these tests. We are interested

in investigating whether this powerful learning technique can be borrowed from humans to improve the learning abilities of

machines. We propose a novel learning approach called learning by passing tests (LPT). In our approach, a tester model creates

increasingly more-difficult tests to evaluate a learner model. The learner tries to continuously improve its learning ability so

that it can successfully pass however difficult tests created by the tester. We propose a multi-level optimization framework to

formulate LPT, where the tester learns to create difficult and meaningful tests and the learner learns to pass these tests. We

develop an efficient algorithm to solve the LPT problem. Our method is applied for neural architecture search and achieves

significant improvement over state-of-the-art baselines on CIFAR-100, CIFAR-10, and ImageNet.

1

1–21

Learning by Passing Tests, with Application to Neural
Architecture Search

Xuefeng Du y xuefengdu1@gmail.com

Hao chen Zhang y zhc12345@mail.ustc.edu.cn

Pengtao Xie * p1xie@eng.ucsd.edu
UC San Diego

Abstract

Learning through tests is a broadly used methodology in human learning and shows great
e�ectiveness in improving learning outcome: a sequence of tests are made with increasing
levels of di�culty; the learner takes these tests to identify his/her weak points in learning
and continuously addresses these weak points to successfully pass these tests. We are
interested in investigating whether this powerful learning technique can be borrowed from
humans to improve the learning abilities of machines. We propose a novel learning approach
called learning by passing tests (LPT). In our approach, a tester model creates increasingly
more-di�cult tests to evaluate a learner model. The learner tries to continuously improve
its learning ability so that it can successfully pass however di�cult tests created by the
tester. We propose a multi-level optimization framework to formulate LPT, where the
tester learns to create di�cult and meaningful tests and the learner learns to pass these
tests. We develop an e�cient algorithm to solve the LPT problem. Our method is applied
for neural architecture search and achieves signi�cant improvement over state-of-the-art
baselines on CIFAR-100, CIFAR-10, and ImageNet.

1. Intro duction

In human learning, an e�ective and widely used methodology for improving learning out-
come is to let the learner take increasingly more-di�cult tests. To successfully pass a more
challenging test, the learner needs to gain better learning ability. By progressively pass-
ing tests that have increasing levels of di�culty, the learner strengthens his/her learning
capability gradually.

Inspired by this test-driven learning technique of humans, we are interested in inves-
tigating whether this methodology is helpful for improving machine learning as well. We
propose a novel machine learning framework called learning by passing tests (LPT). In this
framework, there is a \learner" model and a \tester" model. The tester creates a sequence
of \tests" with growing levels of di�culty. The learner tries to learn better so that it can
pass these increasingly more-challenging tests. Given a large collection of data examples
called \test bank", the tester creates a test T by selecting a subset of examples from the
test bank. The learner applies its intermediately-trained modelM to make predictions on

. † Equal contribution.

. ∗Corresponding author.

c© X. Du † , H. Zhang † & P. Xie * .

Harder tests

Better solutions

TesterLearner

Figure 1: Learning by passing tests. A tester model creates tests with increasing levels of
di�culty from a test bank to evaluate a learner model. The learner continuously
improves its learning ability to deliver better solutions for passing those di�cult
tests.

the examples in T . The prediction error rate R re
ects how di�cult this test is. If the
learner can make correct predictions onT , it means that T is not di�cult enough. In this
case, the tester will create a more challenging testT ′ by selecting a new set of examples
from the test bank such that the new error rate R′ achieved byM on T ′ is larger than R
achieved onT . Given this more demanding testT ′ , the learner re-learns its model to pass
T ′ , in a way that the newly-learned modelM ′ achieves a new error rateR′′ on T ′ whereR′′

is smaller than R′ . This process (as illustrated in Figure 1) iterates until convergence.
In our framework, both the learner and tester perform learning. The learner learns how

to best conduct a target taskJ1 and the tester learns how to create di�cult and meaningful
tests. To encourage a created testT to be meaningful, the tester trains a model using
T to perform a target task J2 . If the model performs well on J2 , it indicates that T is
meaningful. The learner has two sets of learnable parameters: neural architecture and
network weights. The tester has three learnable modules: data encoder, test creator, and
target-task executor. Learning is organized into three stages. In the �rst stage, the learner
trains its network weights on the training set of task J1 with the architecture �xed. In the
second stage, the tester trains its data encoder and target-task executor on a created test
to perform the target task J2 , with the test creator �xed. In the third stage, the learner
updates its model architecture by minimizing the predictive lossL on the test created by
the tester; the tester updates its test creator by maximizingL and minimizing the loss on
the validation set of J2 . The three stages are performed jointly end-to-end in a multi-level
optimization framework, where di�erent stages in
uence each other. We apply our method
for neural architecture search (Zoph and Le, 2017; Liu et al., 2019; Real et al., 2019) in
image classi�cation tasks on CIFAR-100, CIFAR-10, and ImageNet (Deng et al., 2009).
Our method achieves signi�cant improvement over state-of-the-art baselines.

The major contributions of this paper are as follows:

• Inspired by the test-driven learning technique of humans, we propose a novel ML
approach called learning by passing tests (LPT). In our approach, a tester model
creates increasingly more-di�cult tests to evaluate a learner model. The learner tries
to continuously improve its learning ability so that it can successfully pass however
di�cult tests created by the tester.

2

• We propose a multi-level optimization framework to formulate LPT where a learner
learns to pass tests and a tester learns to create di�cult and meaningful tests.

• We develop an e�cient algorithm to solve LPT.

• We apply our approach to neural architecture search and achieve signi�cant improve-
ment on CIFAR-100, CIFAR-10, and ImageNet.

2. R elate d Works

Neural Architecture Search (NA S) . NAS has achieved remarkable progress recently,
which aims at searching for optimal architectures of neural networks to achieve the best
predictive performance. In general, there are three paradigms of methods in NAS: rein-
forcement learning based approaches (Zoph and Le, 2017; Pham et al., 2018; Zoph et al.,
2018), evolutionary algorithm based approaches (Liu et al., 2018b; Real et al., 2019), and
di�erentiable approaches (Liu et al., 2019; Cai et al., 2019; Xie et al., 2019). In RL-based
approaches, a policy is learned to iteratively generate new architectures by maximizing
a reward which is the accuracy on the validation set. Evolutionary learning approaches
represent the architectures as individuals in a population. Individuals with high �tness
scores (validation accuracy) have the privilege to generate o�spring, which replaces individ-
uals with low �tness scores. Di�erentiable approaches adopt a network pruning strategy.
On top of an over-parameterized network, the weights of connections between nodes are
learned using gradient descent. Then weights close to zero are pruned later on. There have
been many e�orts devoted to improving di�erentiable NAS methods. In P-DARTS (Chen
et al., 2019), the depth of searched architectures is allowed to grow progressively during the
training process. Search space approximation and regularization approaches are developed
to reduce computational overheads and improve search stability. PC-DARTS (Xu et al.,
2020) reduces the redundancy in exploring the search space by sampling a small portion of
a super network. Operation search is performed in a subset of channels with the held-out
part bypassed in a shortcut. Our proposed LPT framework is orthogonal to existing NAS
approaches and can be applied to any di�erentiable NAS methods.

Adversarial Learning. Our formulation involves a min-max optimization problem, which
is analogous to that in adversarial learning (Goodfellow et al., 2014a) for data genera-
tion (Goodfellow et al., 2014a; Yu et al., 2017), domain adaptation (Ganin and Lempitsky,
2015), adversarial attack and defence (Goodfellow et al., 2014b), etc. Adversarial learn-
ing (Goodfellow et al., 2014a) has been widely applied to 1) data generation (Goodfellow
et al., 2014a; Yu et al., 2017) where a discriminator tries to distinguish between generated
images and real images and a generator is trained to generate realistic data by making such
a discrimination di�cult to achieve; 2) domain adaptation (Ganin and Lempitsky, 2015)
where a discriminator tries to di�erentiate between source images and target images while
the feature learner learns representations which make such a discrimination unachievable;
3) adversarial attack and defence (Goodfellow et al., 2014b) where an attacker adds small
perturbations to the input data to alter the prediction outcome and the defender trains
the model in a way that the prediction outcome remains the same given perturbed inputs.
Di�erent from these existing works, in our work, a tester aims to create harder tests to \fail"
the learner while the learner learns to \pass" however hard tests created by the tester. Shu

3

Data encoder

Target-task
executor

Test creator

Tester

Training data
of tester

Test bank

Test

Training loss
of tester

Validation data
of tester

Validation loss
of testerLearner

ArchitectureWeights

Training data
of learner

Training loss
of learner

Validation loss
of learner

Figure 2: Learning by passing tests. The solid arrows denote the process of making predic-
tions and calculating losses. The dotted arrows denote the process of updating
learnable parameters by minimizing corresponding losses.

et al. (2020) proposed to use an adversarial examiner to identify the weakness of a trained
model. Our work di�ers from this work in that we progressively re-train a learner model
based on how it performs on the tests that are created dynamically by a tester model while
the learner model in (Shu et al., 2020) is �xed and not a�ected by the examination results.
Such et al. (2019) proposed to learn a generative adversarial network (Goodfellow et al.,
2014a) to create synthetic examples which are used to train an NAS model. Our work
di�ers from this work in that we use selected validation examples to validate the model
while Such et al. (2019) use synthesized example to train the model.

Curriculum Learning. Our work is also related to curriculum learning (CL) (Bengio
et al., 2009; Kumar et al., 2010; Jiang et al., 2014; Matiisen et al., 2019). In CL, a sequence
of training datasets with increasing levels of di�culty is used for model training, from easy
to di�cult. Our work di�ers from these previous works in that: our work dynamically
selects more-di�cult data examples for model evaluation while previous works select data
examples for model training.

3. M etho ds

In this section, we propose a framework to perform learning by passing tests (LPT) (as
shown in Figure 2) and develop an optimization algorithm for solving the LPT problem.

4

Table 1: Notations in Learning by Passing Tests
Notation Meaning
A Architecture of the learner
W Network weights of the learner
E Data encoder of the tester
C Test creator of the tester
X Target-task executor of the tester
D (tr)

ln Training data of the learner
D (tr)

tt Training data of the tester
D (val)

tt Validation data of the tester
D b Test bank

3.1. Learning by Passing Tests

In our framework, there is a learner model and a tester model, where the learner studies
how to perform a target task J1 such as classi�cation, regression, etc. The eventual goal
is to make the learner achieve a better learning outcome with help from the tester. There
is a collection of data examples called \test bank". The tester creates a test by selecting a
subset of examples from the test bank. Given a testT , the learner applies its intermediately-
trained model M to make predictions onT and measures the prediction error rateR. From
the perspective of the tester,R indicates how di�cult the test T is. If R is small, it means
that the learner can easily pass this test. Under such circumstances, the tester will create
a more di�cult test T ′ which renders the new error rateR′ achieved byM on T ′ is larger
than R. From the learner’s perspective,R′ indicates how well the learner performs on the
test. Given this more di�cult test T ′ , the learner re�nes its model to pass this new test.
It aims to learn a new modelM ′ such that the newer error rateR′′ achieved byM ′ on T ′

is smaller than R′ . This process iterates until an equilibrium is reached. In addition to
being di�cult, the created test should be meaningful as well. It is possible that the test
bank contains poor-quality examples where the class labels may be incorrect or the input
data instances are outliers. Using an unmeaningful test containing poor-quality examples
to guide the learning of the learner may render the learner to over�t these bad-quality
examples and generalize poorly on unseen data. To address this problem, we encourage the
tester to generate meaningful tests by leveraging the generated tests to perform a target
task J2 . Speci�cally, the tester uses examples in the test to train a model for performing
J2 . If the performance (e.g., accuracy)P achieved by this model in conductingJ2 is high,
the test is considered to be meaningful. The tester aims to create a test that can yield a
high P .

In our framework, both the learner and the tester performs learning. The learner studies
how to best ful�ll the target task J1 . The tester studies how to create tests that are di�cult
and meaningful. In the learner’ model, there are two sets of learnable parameters: model
architecture and network weights. The architecture and weights are both used to make
predictions in J1 . The tester’s model performs two tasks simultaneously: creating tests and
performing another target-task J2 . The model has three learnable modules: data encoder,
test creator, and target-task executor, where the test creator performs the task of generating

5

tests and the target-task executor conductsJ2 . The test creator and target-task executor
share the same data encoder. The data encoder takes a data exampled as input and
generates a latent representation for this example. Then the representation is fed into the
test creator which determines whetherdshould be selected into the test. The representation
is also fed into the target-task executor which performs prediction ond during performing
the target task J2 .

In our framework, the learning of the learner and the tester is organized into three stages.
In the �rst stage, the learner learns its network weights W by minimizing the training loss
L(A;W; D (tr)ln) de�ned on the training data D (tr)

ln in the task J1 . The architecture A is used
to de�ne the training loss, but it is not learned at this stage. If A is learned by minimizing
this training loss, a trivial solution will be yielded where A is very large and complex that
it can perfectly over�t the training data but will generalize poorly on unseen data. Let
W ∗ (A) denotes the optimally learned W at this stage. Note that W ∗ is a function of A
becauseW ∗ is a function of the training loss and the training loss is a function ofA . In the
second stage, the tester learns its data encoderE and target-task executorX by minimizing
the training loss L(E;X; D (tr)

tt) +
L(E;X; � (C; E; D b)) in the task J2 . The training loss
consists of two parts. The �rst part L(E;X; D (tr)

tt) is de�ned on the training dataset D (tr)
tt

in J2 . The second partL(E;X; � (C; E; D b)) is de�ned on the test � (C; E; D b) created by
the test creator. To create a test, for each exampled in the test bank D b, it is �rst fed
into the encoder E , then into the test creator C , which outputs a binary value indicating
whether d should be selected into the test.� (C; E; D b) is the collection of examples whose
binary value is equal to 1.
 is a tradeo� parameter between these two parts of losses.
The creator C is used to de�ne the second-part loss, but it is not learned at this stage.
Otherwise, a trivial solution will be yielded where C always sets the binary value to 0 for
each test-bank example so that the second-part loss becomes 0. LetE ∗ (C) and X ∗ (C)
denote the optimally trained E and X at this stage. Note that they are both functions of C
since they are functions of the training loss and the training loss is a function ofC . In the
third stage, the learner learns its architecture by trying to pass the test � (C; E ∗ (C); D b)
created by the tester. Speci�cally, the learner aims to minimize its predictive loss on the
test:

L(A;W ∗ (A); �(C; E ∗ (C); D b)) =
X

d ∈ � (C;E∗(C) ;D b)

‘(A;W ∗ (A);d); (1)

whered is an example in the test and‘(A;W ∗ (A);d) is the loss de�ned in this example. A
smaller L(A;W ∗ (A); �(C; E ∗ (C); D b)) indicates that the learner performs well on this test.

Meanwhile, the tester learns its test creator C in a way that C can create a test
with more di�culty and meaningfulness. Di�culty is measured by the learner’s predic-
tive loss L(A;W ∗ (A); �(C; E ∗ (C); D b)) on the test. Given a model (A;W ∗ (A)) of the
learner and two tests of the same size (same number of examples):� (C 1 ; E ∗ (C 1); D b)
created by C 1 and � (C 2 ; E ∗ (C 2); D b) created by C 2 , if L(A;W ∗ (A); �(C 1 ; E ∗ (C 1); D b)) >
L(A;W ∗ (A); �(C 2 ; E ∗ (C 2); D b)), it means that � (C 1 ; E ∗ (C 1); D b) is more challenging to
pass than � (C 2 ; E ∗ (C 2); D b). Therefore, the tester can learn to create a more challeng-
ing test by maximizing L(A;W ∗ (A); �(C; E ∗ (C); D b)). A trivial solution of increasing
L(A;W ∗ (A); �(C; E ∗ (C); D b)) is to enlarge the size of the test. But a larger size does
not imply more di�culty. To discourage this degenerated solution from happening, we

6

normalize the loss using the size of the test:

1
| � (C; E ∗ (C); D b) |

L(A;W ∗ (A) ; � (C; E ∗ (C); D b)) ; (2)

where | � (C; E ∗ (C); D b) | is the cardinality of the set � (C; E ∗ (C); D b). To measure the mean-
ingfulness of a test, we check how well the optimally-trained task executorX ∗ (C) and data
encoder E ∗ (C) of the tester perform on the validation data D (val)

tt of the target task J2 ,
and the performance is measured by the validation loss:L(E ∗ (C);X∗ (C); D (val)

tt). E ∗ (C)
and X ∗ (C) are trained using the test generated byC in the second stage. If the valida-
tion loss is small, it means that the created test is helpful in training the task executor
and therefore is considered as being meaningful. To create a meaningful test, the tester
learns C by minimizing L(E ∗ (C);X∗ (C); D (val)

tt). In sum, C is learned by maximizing
L(A;W ∗ (A); �(C; E ∗ (C); D b))=| � (C; E ∗ (C); D b) | − �L(E ∗ (C);X∗ (C); D (val)

tt), where � is a
tradeo� parameter between these two objectives.

The three stages are mutually dependent:W ∗ (A) learned in the �rst stage and E ∗ (C)
and X ∗ (C) learned in the second stage are used to de�ne the objective function in the third
stage; the updatedC and A in the third stage in turn change the objective functions in the
�rst and second stage, which subsequently renderW ∗ (A), E ∗ (C), and X ∗ (C) to be changed.
Putting these pieces together, we formulate LPT as the following multi-level optimization
problem.

maxC minA
1

| � (C;E∗(C) ;D b) | L(A;W ∗ (A) ; � (C; E ∗ (C); D b))

−�L
�
E ∗ (C);X∗ (C); D (val)

tt

�
(Stage III)

s:t: E ∗ (C);X∗ (C) = min E;X L
�
E;X; D (tr)

tt

�
+
L(E;X; � (C; E; D b)) (II)

W ∗ (A) = min W L
�
A;W; D (tr)ln

�
(Stage I)

(3)

This formulation nests three optimization problems. On the constraints of the outer opti-
mization problem are two inner optimization problems corresponding to the �rst and second
learning stage. The objective function of the outer optimization problem corresponds to
the third learning stage.

As of now, the test � (C; E; D b) is represented as a subset, which is highly discrete
and therefore di�cult for optimization. To address this problem, we perform a continuous
relaxation of � (C; E; D b):

� (C; E; D b) = { (d;f(d;C; E)) | d ∈ D b } ; (4)

where for each exampled in the test bank, the original binary value indicating whether d
should be selected is now relaxed to a continuous probabilityf(d;C; E) representing how
likely d should be selected. Under this relaxation,L(E;X; � (C; E; D b)) can be computed
as follows:

L(E;X; � (C; E; D b)) =
X

d ∈ D b

f(d;C; E)‘(E;X;d); (5)

where we calculate the loss‘(E;X;d) on each test-bank example and weigh this loss using
f(d;C; E). If f(d;C; E) is small, it means that d is less likely to be selected into the test and

7

its corresponding loss should be down-weighted. Similarly,L(A;W ∗ (A); �(C; E ∗ (C); D b)) is
calculated as

P
d ∈ D b

f(d;C; E ∗ (C))‘(A;W ∗ (A);d). And | � (C; E ∗ (C); D b) | can be calculated
as

| � (C; E ∗ (C); D b) | =
X

d ∈ D b

f(d;C; E ∗ (C)): (6)

Similar to (Liu et al., 2019), we represent the architectureA of the learner in a di�erentiable
way. The search space ofA is composed of a large number of building blocks. The output
of each block is associated with a variableaindicating how important this block is. After
learning, blocks whoseais among the largest are retained to form the �nal architecture.
In this end, architecture search amounts to optimizing the set of architecture variables
A = { a} .

3.2. Optimization Algorithm

In this section, we derive an optimization algorithm to solve the LPT problem. Inspired
by (Liu et al., 2019), we approximate E ∗ (C) and X ∗ (C) using one-step gradient descent
update of E and X with respect to L(E;X; D (tr)

tt)+
L(E;X; � (C; E; D b)) and approximate
W ∗ (A) using one-step gradient descent update ofW with respect to L(A;W; D (tr)ln). Then
we plug these approximations into

L(A;W ∗ (A); �(C; E ∗ (C); D b))=| � (C; E ∗ (C); D b) | − �L(E ∗ (C);X∗ (C); D (val)
tt); (7)

and perform gradient-descent update ofC and A with respect to this approximated objec-
tive. In the sequel, we use∇ 2

Y;X f(X;Y) to denote @f(X;Y)
@X@Y .

Approximating W ∗ (A) usingW ′ = W−�ln∇ W L(A;W; D (tr)ln) where�lnis a learning rate
and simplifying the notation of � (C; E ∗ (C); D b) as � , we can calculate the approximated
gradient of L(A;W ∗ (A) ; �) w.r.t A as:

∇ AL(A;W ∗ (A) ; �) ≈
∇ AL

�
A;W − �ln∇ W L

�
A;W; D (tr)ln

�
; �

�
=

∇ AL(A;W ′ ; �) − �ln∇ 2
A;W L

�
A;W; D (tr)ln

�
∇ W ′L(A;W ′ ; �) :

(8)

The second term in the third line involves expensive matrix-vector product, whose compu-
tational complexity can be reduced by a �nite di�erence approximation:

∇ 2
A;W L

�
A;W; D (tr)ln

�
∇ W ′L(A;W ′ ; �) ≈ 1

2 � ln

�
∇ AL

�
A;W + ; D (tr)

ln

�
− ∇ AL

�
A;W− ; D (tr)

ln

��
;

(9)
whereW ± = W ± �ln∇ W ′L(A;W ′ ; �) and �lnis a small scalar that equals 0:01= ‖∇ W ′L(A;W ′ ; �)) ‖ 2 .
We approximate E ∗ (C) and X ∗ (C) using the following one-step gradient descent update of
E and C respectively:

E ′ = E − �E ∇ E [L(E;X; D (tr)
tt) +
L(E;X; � (C; E; D b))]

X ′ = X − �X ∇ X [L(E;X; D (tr)
tt) +
L(E;X; � (C; E; D b))]

(10)

8

where �E and �X are learning rates. Plugging these approximations into the objective
function in Eq.(7), we can learn C by maximizing the following objective using gradient
methods:

L(A;W ′ ; �(C; E ′ ; D b))=| � (C; E ′ ; D b) | − �L(E ′ ;X′ ; D (val)
tt) (11)

The derivative of the second term in this objective with respect toC can be calculated as:

∇ CL(E ′ ;X′ ; D (val)
tt) = @E′

@C ∇ E′L(E ′ ;X′ ; D (val)
tt) + @X′

@C ∇ X ′L(E ′ ;X′ ; D (val)
tt) (12)

where
@E′
@C = −�E
∇ 2

C;EL(E;X; � (C; E; D b))
@X′
@C = −�X
∇ 2

C;X L(E;X; � (C; E; D b))
(13)

Similar to Eq.(9), using �nite di�erence approximation to calculate ∇ 2
C;EL(E;X; � (C; E; D b))

∇ E′L(E ′ ;X′ ; D (val)
tt) and ∇ 2

C;X L(E;X; � (C; E; D b)) ∇ X ′L(E ′ ;X′ ; D (val)
tt), we have:

∇ CL(E ′ ;X′ ; D (val)
tt) =

−
�E ∇ C L(E + ;X;� (C;E + ;D b)) −∇ C L(E − ;X;� (C;E − ;D b))
2 � E

−
�X
∇ C L(E;X + ;� (C;E;D b)) −∇ C L(E;X − ;� (C;E;D b))

2 �X
(14)

where E ± = E ± �E ∇ E′L(E ′ ;X′ ; D (val)
tt) and X ± = X ± �X ∇ X ′L(E ′ ;X′ ; D (val)

tt). For the
�rst term L(A;W ′ ; �(C; E ′ ; D b))=| � (C; E ′ ; D b) | in the objective, we can use chain rule to cal-
culate its derivative w.r.t C , which involves calculating the derivative ofL(A;W ′ ; �(C; E ′ ; D b))
and | � (C; E ′ ; D b) | w.r.t to C . The derivative of L(A;W ′ ; �(C; E ′ ; D b)) w.r.t C can be cal-
culated as:

∇ CL(A;W ′ ; �(C; E ′ ; D b)) = @E′
@C ∇ E′L(A;W ′ ; �(C; E ′ ; D b)); (15)

where @E′
@C is given in Eq.(13) and ∇ 2

C;EL(E;X; � (C; E; D b)) ×∇ E′L(A;W ′ ; �(C; E ′ ; D b))
can be approximated with 1

2 � E
(∇ CL(E + ;X; �(C; E + ; D b)) − ∇ CL(E − ;X; �(C; E − ; D b))),

whereE ± is E ± �E ∇ E′L(A;W ′ ; �(C; E ′ ; D b)). The derivative of | � (C; E ′ ; D b) | =
P

d ∈ D b
f(d;C; E ′)

w.r.t C can be calculated as
X

d ∈ D b

∇ Cf(d;C; E ′) +
@E ′

@C
∇ E′f(d;C; E ′) (16)

where @E′
@C is given in Eq.(13). The algorithm for solving LPT is summarized in Algorithm 1.

Algorithm 1 Optimization algorithm for learning by passing tests
while not converged do

1. Update the architecture of the learner by descending the gradient calculated in Eq.(8)
2. Update the test creator of the tester by ascending the gradient calculated in Eq.(12-
16)
3. Update the data encoder and target-task executor of the tester using Eq.(10)
4. Update the network weights of the learner by descending∇ W L(A;W; D (tr)ln)

end

9

4. E xp eriments

We apply LPT for neural architecture search in image classi�cation. Following (Liu et al.,
2019), we �rst perform architecture search which �nds an optimal cell, then perform archi-
tecture evaluation which composes multiple copies of the searched cell into a large network,
trains it from scratch, and evaluates the trained model on a test set. We let the target tasks
of the learner and that of the tester be the same. Please refer to the supplements for more
hyperparameter settings, additional results, and signi�cance tests of results.

4.1. Datasets

We used three datasets in the experiments: CIFAR-10, CIFAR-100, and ImageNet (Deng
et al., 2009). The CIFAR-10 dataset contains 50K training images and 10K testing images,
from 10 classes (the number of images in each class is equal). We split the original 50K
training set into a 25K training set and a 25K validation set. In the sequel, when we mention
\training set", it always refers to the new 25K training set. During architecture search, the
training set is used asD (tr)

ln of the learner and D (tr)
tt of the tester. The validation set is

used as the test bankD b and the validation data D (val)
tt of the tester. Under such a setting,

the data encoder and target-task executor of the tester are trained on a subset (which is
a test) of D (val)

tt and validated on the entire set of D (val)
tt . The interpretation of doing this

is: we select a subset of examples fromD (val)
tt to train a model so that it performs the best

on the entire D (val)
tt . During architecture evaluation, the combination of the training data

and validation data is used to train a large network stacking multiple copies of the searched
cell. The CIFAR-100 dataset contains 50K training images and 10K testing images, from
100 classes (the number of images in each class is equal). Similar to CIFAR-10, the 50K
training images are split into a 25K training set and a 25K validation set. The usage of
these subsets is the same as that for CIFAR-10. The ImageNet dataset contains a training
set of 1.3M images and a validation set of 50K images, from 1000 object classes. The
validation set is used as a test set for architecture evaluation. During architecture search,
following (Xu et al., 2020), 10% of the 1.3M training images are randomly sampled to form
a new training set and another 2.5% of the 1.3M training images are randomly sampled to
form a new architecture validation set. The usage of the new training set and architecture
validation set is the same as that in CIFAR-10. During architecture evaluation, all of the
1.3M training images are used for model training. In addition to searching architectures
directly on ImageNet data, following (Liu et al., 2019), we also evaluate the architectures
searched using CIFAR-10 and CIFAR-100 on ImageNet: given a cell searched using CIFAR-
10 and CIFAR-100, multiple copies of it compose a large network, which is then trained on
the 1.3M training data of ImageNet and evaluated on the 50K test data.

4.2. Exp erimental Settings

Our framework is a general one that can be used together with any di�erentiable search
method. Speci�cally, we apply our framework to the following NAS methods: 1) DARTS (Liu
et al., 2019), 2) P-DARTS (Chen et al., 2019), 3) DARTS+ (Liang et al., 2019b), 4)
DARTS - (Chu et al., 2020a), 5) PC-DARTS (Xu et al., 2020). The search space in these

10

methods are similar. The candidate operations include: 3× 3 and 5 × 5 separable convo-
lutions, 3 × 3 and 5 × 5 dilated separable convolutions, 3× 3 max pooling, 3 × 3 average
pooling, identity, and zero. In LPT, the network of the learner is a stack of multiple cells,
each consisting of 7 nodes. For the data encoder of the tester, we tried ResNet-18 and
ResNet-50 (He et al., 2016b). For the test creator and target-task executor, they are set to
one feed-forward layer.� and
 are tuned using a 5k held-out dataset in{ 0:1;0:5;1;2;3} .
In most experiments, � and
 are set to 1 except for P-DARTS and PC-DARTS. For P-
DARTS, �;
are set to 0:5;1 for CIFAR-10 and 1;0:5 for CIFAR-100. For PC-DARTS, we
use� = 3;
= 1 and � = 0:1;
= 1 for CIFAR-10 and CIFAR-100, respectively.

For CIFAR-10 and CIFAR-100, during architecture search, the learner’s network is a
stack of 8 cells, with the initial channel number set to 16. The search is performed for 50
epochs, with a batch size of 64. The hyperparameters for the learner’s architecture and
weights are set in the same way as DARTS, P-DARTS, DARTS+ , and DARTS - . The data
encoder and target-task executor of the tester are optimized using SGD with a momentum
of 0.9 and a weight decay of 3e-4. The initial learning rate is set to 0.025 with a cosine decay
scheduler. The test creator is optimized with the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 3e-4 and a weight decay of 1e-3. During architecture evaluation, 20
copies of the searched cell are stacked to form the learner’s network, with the initial channel
number set to 36. The network is trained for 600 epochs with a batch size of 96 (for both
CIFAR-10 and CIFAR-100). The experiments are performed on a single Tesla v100. For
ImageNet, following (Liu et al., 2019), we take the architecture searched on CIFAR-10 and
evaluate it on ImageNet. We stack 14 cells (searched on CIFAR-10) to form a large network
and set the initial channel number as 48. The network is trained for 250 epochs with a
batch size of 1024 on 8 Tesla v100s. Each experiment on LPT is repeated for ten times
with the random seed to be from 1 to 10. We report the mean and standard deviation of
results obtained from the 10 runs.

4.3. Results

Table 2 shows the classi�cation error (%), number of weight parameters (millions), and
search cost (GPU days) of di�erent NAS methods on CIFAR-100. From this table, we
make the following observations. First , when our method LPT is applied to di�erent NAS
baselines including DARTS-1st (�rst order approximation), DARTS-2nd (second order ap-
proximation), DARTS − (our run), DARTS + , PC-DARTS, and P-DARTS, the classi�cation
errors of these baselines can be signi�cantly reduced. For example, applying our method
to P-DARTS, the error reduces from 17.49% to 16.28%. Applying our method to DARTS-
2nd, the error reduces from 20.58% to 18.40%. This demonstrates the e�ectiveness of our
method in searching for a better architecture. In our method, the learner continuously
improves its architecture by passing the tests created by the tester with increasing levels
of di�culty. These tests can help the learner to identify the weakness of its architecture
and provide guidance on how to improve it. Our method creates a new test on the
y
based on how the learner performs in the previous round. From the test bank, the tester
selects a subset of di�cult examples to evaluate the learner. This new test poses a greater
challenge to the learner and encourages the learner to improve its architecture so that it
can overcome the new challenge. In contrast, in baseline NAS approaches, a single �xed

11

Table 2: Results on CIFAR-100, including classi�cation error (%) on the test set, number
of parameters (millions) in the searched architecture, and search cost (GPU days).
LPT-R18-DARTS-1st denotes that our method LPT is applied to the search space
of DARTS. Similar meanings hold for other notations in such a format. R18 and
R50 denote that the data encoder of the tester in LPT is set to ResNet-18 and
ResNet-50 respectively. DARTS-1st and DARTS-2nd denotes that �rst order and
second order approximation is used in DARTS. * means the results are taken from
DARTS − (Chu et al., 2020a). † means we re-ran this method for 10 times. �
means the algorithm ran for 600 epochs instead of 2000 epochs in the architecture
evaluation stage, to ensure a fair comparison with other methods (where the epoch
number is 600). The search cost is measured by GPU days on a Tesla v100.

Method Error(%) Param(M) Cost

*ResNet (He et al., 2016a) 22.10 1.7 -
*DenseNet (Huang et al., 2017) 17.18 25.6 -
*PNAS (Liu et al., 2018a) 19.53 3.2 150
*ENAS (Pham et al., 2018) 19.43 4.6 0.5
*AmoebaNet (Real et al., 2019) 18.93 3.1 3150
*GDAS (Dong and Yang, 2019) 18.38 3.4 0.2
*R-DARTS (Zela et al., 2020) 18.01± 0.26 - 1.6
*DropNAS (Hong et al., 2020) 16.39 4.4 0.7
† DARTS-1st (Liu et al., 2019) 20.52± 0.31 1.8 0.4
LPT-R18-DARTS-1st (ours) 19.11 ± 0.11 2.1 0.6

*DARTS-2nd (Liu et al., 2019) 20.58± 0.44 1.8 1.5
LPT-R18-DARTS-2nd (ours) 19.47± 0.20 2.1 1.8
LPT-R50-DARTS-2nd (ours) 18.40 ± 0.16 2.5 2.0

*DARTS − (Chu et al., 2020a) 17.51± 0.25 3.3 0.4
† DARTS − (Chu et al., 2020a) 18.97± 0.16 3.1 0.4
LPT-R18-DARTS − (ours) 18.28± 0.14 3.4 0.6

∆ DARTS + (Liang et al., 2019a) 17.11± 0.43 3.8 0.2
LPT-R18-DARTS + (ours) 16.58 ± 0.19 3.7 0.3

† PC-DARTS (Xu et al., 2020) 17.96± 0.15 3.9 0.1
LPT-R18-PC-DARTS (ours) 17.04± 0.05 3.6 0.1
LPT-R50-PC-DARTS (ours) 16.97 ± 0.21 4.0 0.1

*P-DARTS (Chen et al., 2019) 17.49 3.6 0.3
LPT-R18-P-DARTS (ours) 16.28 ± 0.10 3.8 0.5
LPT-R50-P-DARTS (ours) 16.38± 0.07 3.6 0.5

validation set is used to evaluate the learner. The learner can achieve a good performance
via \cheating": focusing on performing well on the majority of easy examples and ignoring
the minority of di�cult examples. As a result, the learner’s architecture does not have the
ability to deal with challenging cases in the unseen data. Second , LPT-R50-DARTS-2nd

12

Table 3: Results on CIFAR-10. * means the results are taken from DARTS− (Chu et al.,
2020a), NoisyDARTS (Chu et al., 2020b), and DrNAS (Chen et al., 2020). The
rest notations are the same as those in Table 2.

Method Error(%) Param(M) Cost

*DenseNet (Huang et al., 2017) 3.46 25.6 -
*HierEvol (Liu et al., 2018b) 3.75± 0.12 15.7 300
*NAONet-WS (Luo et al., 2018) 3.53 3.1 0.4
*PNAS (Liu et al., 2018a) 3.41± 0.09 3.2 225
*ENAS (Pham et al., 2018) 2.89 4.6 0.5
*NASNet-A (Zoph et al., 2018) 2.65 3.3 1800
*AmoebaNet-B (Real et al., 2019) 2.55± 0.05 2.8 3150
*R-DARTS (Zela et al., 2020) 2.95± 0.21 - 1.6
*GDAS (Dong and Yang, 2019) 2.93 3.4 0.2
*GTN (Such et al., 2019) 2.92± 0.06 8.2 0.67
*SNAS (Xie et al., 2019) 2.85 2.8 1.5
*BayesNAS (Zhou et al., 2019) 2.81± 0.04 3.4 0.2
*MergeNAS (Wang et al., 2020) 2.73± 0.02 2.9 0.2
*NoisyDARTS (Chu et al., 2020b) 2.70± 0.23 3.3 0.4
*ASAP (Noy et al., 2020) 2.68± 0.11 2.5 0.2
*SDARTS (Chen and Hsieh, 2020) 2.61± 0.02 3.3 1.3
*DropNAS (Hong et al., 2020) 2.58± 0.14 4.1 0.6
*FairDARTS (Chu et al., 2019) 2.54 3.3 0.4
*DrNAS (Chen et al., 2020) 2.54± 0.03 4.0 0.4
*DARTS-1st (Liu et al., 2019) 3.00± 0.14 3.3 0.4
LPT-R18-DARTS-1st (ours) 2.85 ± 0.09 2.7 0.6

*DARTS-2nd (Liu et al., 2019) 2.76± 0.09 3.3 1.5
LPT-R18-DARTS-2nd (ours) 2.72± 0.07 3.4 1.8
LPT-R50-DARTS-2nd (ours) 2.68 ± 0.02 3.4 2.0

*DARTS − (Chu et al., 2020a) 2.59± 0.08 3.5 0.4
† DARTS − (Chu et al., 2020a) 2.97± 0.04 3.3 0.4
LPT-R18-DARTS − (ours) 2.74± 0.07 3.4 0.6

∆ DARTS + (Liang et al., 2019a) 2.83± 0.05 3.7 0.4
LPT-R18-DARTS + (ours) 2.69 ± 0.05 3.6 0.5

*PC-DARTS (Xu et al., 2020) 2.57 ± 0.07 3.6 0.1
LPT-R18-PC-DARTS (ours) 2.65± 0.17 3.7 0.1

*P-DARTS (Chen et al., 2019) 2.50 3.4 0.3
LPT-R18-P-DARTS (ours) 2.58± 0.14 3.3 0.5

outperforms LPT-R18-DARTS-2nd, where the former uses ResNet-50 as the data encoder
in the tester while the latter uses ResNet-18. ResNet-50 has a better ability of learning
representations than ResNet-18 since it is \deeper": 50 layers versus 18 layers. This shows

13

Table 4: Results on ImageNet, including top-1 and top-5 classi�cation errors on the test
set, number of weight parameters (millions), and search cost (GPU days). * means
the results are taken from DARTS− (Chu et al., 2020a) and DrNAS (Chen et al.,
2020). The rest notations are the same as those in Table 2 in the main paper.
The �rst row block shows networks designed by human manually. The second row
block shows non-gradient based search methods. The third block shows gradient-
based methods. ‡ means the results following the hyperparameters selected for
CIFAR10/100. The hyperparameter for CIFAR100 is used when directly searching
on ImageNet.

Method Top-1 Top-5 Param Cost
Error (%) Error (%) (M) (GPU days)

*Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 -
*MobileNet (Howard et al., 2017) 29.4 10.5 4.2 -
*Shu�eNet 2 × (v1) (Zhang et al., 2018) 26.4 10.2 5.4 -
*Shu�eNet 2 × (v2) (Ma et al., 2018) 25.1 7.6 7.4 -
*NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 1800
*PNAS (Liu et al., 2018a) 25.8 8.1 5.1 225
*MnasNet-92 (Tan et al., 2019) 25.2 8.0 4.4 1667
*AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 3150
*SNAS-CIFAR10 (Xie et al., 2019) 27.3 9.2 4.3 1.5
*BayesNAS-CIFAR10 (Zhou et al., 2019) 26.5 8.9 3.9 0.2
*PARSEC-CIFAR10 (Casale et al., 2019) 26.0 8.4 5.6 1.0
*GDAS-CIFAR10 (Dong and Yang, 2019) 26.0 8.5 5.3 0.2
*DSNAS-ImageNet (Hu et al., 2020) 25.7 8.1 - -
*SDARTS-ADV-CIFAR10 (Chen and Hsieh, 2020) 25.2 7.8 5.4 1.3
*PC-DARTS-CIFAR10 (Xu et al., 2020) 25.1 7.8 5.3 0.1
*ProxylessNAS-ImageNet (Cai et al., 2019) 24.9 7.5 7.1 8.3
*FairDARTS-CIFAR10 (Chu et al., 2019) 24.9 7.5 4.8 0.4
*FairDARTS-ImageNet (Chu et al., 2019) 24.4 7.4 4.3 3.0
*DrNAS-ImageNet (Chen et al., 2020) 24.2 7.3 5.2 3.9
*DARTS + -ImageNet (Liang et al., 2019a) 23.9 7.4 5.1 6.8
*DARTS − -ImageNet (Chu et al., 2020a) 23.8 7.0 4.9 4.5
*DARTS + -CIFAR100 (Liang et al., 2019a) 23.7 7.2 5.1 0.2
*DARTS-2nd-CIFAR10 (Liu et al., 2019) 26.7 8.7 4.7 1.5
LPT-R18-DARTS-2nd-CIFAR10 (ours) 25.3 7.9 4.7 1.8

*P-DARTS (CIFAR10) (Chen et al., 2019) 24.4 7.4 4.9 0.3
‡ LPT-R18-P-DARTS-CIFAR10 (ours) 24.2 7.3 4.9 0.5
*P-DARTS (CIFAR100) (Chen et al., 2019) 24.7 7.5 5.1 0.3
‡ LPT-R18-P-DARTS-CIFAR100 (ours) 24.0 7.1 5.3 0.5
*PC-DARTS-ImageNet (Xu et al., 2020) 24.2 7.3 5.3 3.8
‡ LPT-R18-PC-DARTS-ImageNet (ours) 23.4 6.8 5.7 4.0

that a \stronger" tester can help the learner to learn better. With a more powerful data
encoder, the tester can better understand examples in the test bank and can make better
decisions in creating di�cult and meaningful tests. Tests with better quality can evaluate

14

the learner more e�ectively and help to improve the learner’s learning capability. When our
method is applied to PC-DARTS and P-DARTS, the performance di�erence resulting from
ResNet-18 and ResNet-50 is not statistically signi�cant. Third , our method LPT-R18-P-
DARTS achieves the best performance among all methods, which further demonstrates the
e�ectiveness of LPT in driving the frontiers of neural architecture search forward. Fourth ,
the number of weight parameters and search costs corresponding to our methods are on par
with those in di�erentiable NAS baselines. This shows that LPT is able to search better-
performing architectures without signi�cantly increasing network size and search cost. A
few additional remarks: 1) On CIFAR-100, DARTS-2nd with second-order approximation
in the optimization algorithm is not advantageous compared with DARTS-1st which uses
�rst-order approximation; 2) In our run of DARTS − , we were not able to achieve the per-
formance reported in (Chu et al., 2020a); 3) In our run of DARTS+ , in the architecture
evaluation stage, we set the number of epochs to 600 instead of 2000 as in (Liang et al.,
2019a), to ensure a fair comparison with other methods (where the epoch number is 600).

Table 3 shows the classi�cation error (%), number of weight parameters (millions),
and search cost (GPU days) of di�erent NAS methods on CIFAR-10. As can be seen,
applying our proposed LPT to DARTS-1st, DARTS-2nd, DARTS − (our run), and DARTS +

signi�cantly reduces the errors of these baselines. For example, with the usage of LPT, the
error of DARTS-2nd is reduced from 2.76% to 2.68%. This further demonstrates the e�cacy
of our method in searching better-performing architectures, by creating tests with increasing
levels of di�culty and improving the learner through taking these tests. On PC-DARTS
and P-DARTS, applying our method does not yield better performance.

Table 4 shows the results on ImageNet, including top-1 and top-5 classi�cation errors on
the test set. In our proposed LPT-R18-PC-DARTS-ImageNet, the architecture is searched
on ImageNet, where our method performs much better than PC-DARTS-ImageNet and
achieves the lowest error (23.4% top-1 error and 6.8% top-5 error) among all methods in
Table 4. In our methods including LPT-R18-P-DARTS-CIFAR100, LPT-R18-P-DARTS-
CIFAR10, and LPT-R18-DARTS-2nd-CIFAR10, the architectures are searched on CIFAR-
10 or CIFAR-100 and evaluated on ImageNet, where these methods outperform their corre-
sponding baselines P-DARTS-CIFAR100, P-DARTS-CIFAR10, and DARTS-2nd-CIFAR10.
These results further demonstrate the e�ectiveness of our method.

4.4. Ablation Studies

In order to evaluate the e�ectiveness of individual modules in LPT, we compare the full
LPT framework with the following ablation settings.

• Ablation setting 1 . In this setting, the tester creates tests solely by maximizing their
level of di�culty, without considering their meaningfulness. Accordingly, the second stage
in LPT where the tester learns to perform a target-task by leveraging the created tests is
removed. The tester directly learns a selection scalars (d) ∈ [0;1] for each exampled in
the test bank without going through a data encoder or test creator. The corresponding
formulation is:

maxS minA
1P

d ∈D b
s (d)

P
d ∈ D b

s (d)‘(A;W ∗ (A);d)

s:t: W∗ (A) = min W L
�
A;W; D (tr)ln

� (17)

15

Table 5: Results for ablation setting 1. \Di�cult only" denotes that the tester creates tests
solely by maximizing their level of di�culty, without considering their meaning-
fulness, i.e., the tester does not use the tests for learning to perform the target
task. \Di�cult + meaningful" denotes the full LPT framework where the tester
creates tests by maximizing both di�culty and meaningfulness.

Method Error (%)
Di�cult only (DARTS-2nd, CIFAR-100) 20.38± 0.17
Di�cult + meaningful (DARTS-2nd, CIFAR-100) 19.47 ± 0.20
Di�cult only (P-DARTS, CIFAR-100) 18.12± 0.11
Di�cult + meaningful (P-DARTS, CIFAR-100) 16.28 ± 0.10
Di�cult only (DARTS-2nd, CIFAR-10) 2.79± 0.06
Di�cult + meaningful (DARTS-2nd, CIFAR-10) 2.72 ± 0.07

where S = { s (d) | d ∈ D b } . In this study, � and
 are both set to 1. The data encoder of
the tester is ResNet-18. For CIFAR-100, LPT is applied to P-DARTS and DARTS-2nd.
For CIFAR-10, LPT is applied to DARTS-2nd.

• Ablation sett ing 2 . In this setting, in the second stage of LPT, the tester is trained
solely based on the created test, without using the training data of the target task. The
corresponding formulation is:

maxC minA
1

| � (C;E∗(C) ;D b) | L(A;W ∗ (A) ; � (C; E ∗ (C); D b))

−�L
�
E ∗ (C);X∗ (C); D (val)

tt

�

s:t: E ∗ (C);X∗ (C) = min E;X L(E;X; � (C; E; D b))
W ∗ (A) = min W L

�
A;W; D (tr)ln

�
(18)

In this study, � and
 are both set to 1. The data encoder of the tester is ResNet-18.
For CIFAR-100, LPT is applied to P-DARTS and DARTS-2nd. For CIFAR-10, LPT is
applied to DARTS-2nd.

• Ablation study on �. We are interested in how the learner’s performance varies as the
tradeo� parameter � in Eq.(3) increases. In this study, the other tradeo� parameter

 in Eq.(3) is set to 1. For both CIFAR-100 and CIFAR-10, we randomly sample 5K
data from the 25K training and 25K validation data, and use it as a test set to report
performance in this ablation study. The rest 45K data is used as before. Tester’s data
encoder is ResNe-18. LPT is applied to P-DARTS.

• Ablation study on
. We investigate how the learner’s performance varies as c increases.
In this study, the other tradeo� parameter � is set to 1. Similar to the ablation study on
�, on 5K randomly-sampled test data, we report performance of architectures searched
under di�erent values of
. Tester’s data encoder is ResNe-18. LPT is applied to P-
DARTS.

16

Table 6: Results for ablation setting 2. \Test only" denotes that the tester is trained only
using the created test to perform the target task. \Test + training" denotes that
the tester is trained using both the test and the training data of the target task.

Method Error (%)
Test only (DARTS-2nd, CIFAR-100) 19.81± 0.06
Test + training (DARTS-2nd, CIFAR-100) 19.47 ± 0.20
Test only (P-DARTS, CIFAR-100) 17.54± 0.07
Test + training (P-DARTS, CIFAR-100) 16.28 ± 0.10
Test only (DARTS-2nd, CIFAR-10) 2.75± 0.03
Test + training (DARTS-2nd, CIFAR-10) 2.72 ± 0.07

0
0.5
2

100 10
23.01 4.69
21.68 4.34
22.62 4.8

23.01

21.68

22.62

21

22

23

24

0 0.5 2

Er
ro
r(
%
)

Lambda

CIFAR-100

4.69

4.34

4.8

4
4.2
4.4
4.6
4.8
5

0 0.5 2

Er
ro
r(
%
)

Lambda

CIFAR-10

0
0.5
2

100 10
23.01 4.69
21.68 4.34
22.62 4.8

23.01

21.68

22.62

21

22

23

24

0 0.5 2

Er
ro
r(
%
)

Lambda

CIFAR-100

4.69

4.34

4.8

4
4.2
4.4
4.6
4.8
5

0 0.5 2

Er
ro
r(
%
)

Lambda

CIFAR-10

Figure 3: How errors change as� increases.

Table 5 shows the results for ablation setting 1. As can be seen, on both CIFAR-10 and
CIFAR-100, creating tests that are both di�cult and meaningful is better than creating
tests solely by maximizing di�culty. The reason is that a di�cult test could be composed
of bad-quality examples such as outliers and incorrectly-labeled examples. Even a highly-
accurate model cannot achieve good performance on such erratic examples. To address this
problem, it is necessary to make the created tests meaningful. LPT achieves meaningfulness
of the tests by making the tester leverage the created tests to perform the target task. The
results demonstrate that this is an e�ective way of improving meaningfulness.

Table 6 shows the results for ablation setting 2. As can be seen, for both CIFAR-100
and CIFAR-10, using both the created test and the training data of the target task to train
the tester performs better than using the test only. By leveraging the training data, the
data encoder can be better trained. And a better encoder can help to create higher-quality
tests.

Figure 3 shows how classi�cation errors change as� increases. As can be seen, on both
CIFAR-100 and CIFAR-10, when � increases from 0 to 0.5, the error decreases. However,
further increasing � renders the error to increase. From the tester’s perspective,� explores
a tradeo� between di�culty and meaningfulness of the tests. Increasing � encourages the
tester to create tests that are more meaningful. Tests with more meaningfulness can more
reliably evaluate the learner. However, if� is too large, the tests are biased to be more
meaningful but less di�cult. Lacking enough di�culty, the tests may not be compelling

17

Figure 4: How errors change as
 increases.

enough to drive the learner for improvement. Such a tradeo� e�ect is observed in the results
on CIFAR-10 as well.

Figure 4 shows how classi�cation errors change as
 increases. As can be seen, on both
CIFAR-100 and CIFAR-10, when
 increases from 0 to 0.5, the error decreases. However,
further increasing
 renders the error to increase. Under a larger
 , the created test plays a
larger role in training the tester to perform the target task. This implicitly encourages the
test creator to generate tests that are more meaningful. However, if
 is too large, training is
dominated by the created test which incurs the following risk: if the test is not meaningful,
it will result in a poor-quality data-encoder which degrades the quality of created tests.

5. Conclusions

In this paper, we propose a new machine learning approach { learning by passing tests
(LPT), inspired by the test-driven learning technique of humans. In LPT, a tester model
creates a sequence of tests with growing levels of di�culty. A learner model continuously
improves its learning ability by striving to pass these increasingly more-challenging tests.
We propose a multi-level optimization framework to formalize LPT where the tester learns
to select hard validation examples that render the learner to make large prediction errors and
the learner re�nes its model to rectify these prediction errors. Our framework is applied for
neural architecture search and achieves signi�cant improvement on CIFAR-100, CIFAR-10,
and ImageNet.

References

Yoshua Bengio, J�erôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learn-
ing. In Proceedings of the 26th annual international conference on machine learning,
pages 41{48, 2009.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on
target task and hardware. In ICLR , 2019.

Francesco Paolo Casale, Jonathan Gordon, and Nicol�o Fusi. Probabilistic neural architec-
ture search. CoRR, abs/1902.05116, 2019.

18

	Introduction
	Related Works
	Methods
	Learning by Passing Tests
	Optimization Algorithm

	Experiments
	Datasets
	Experimental Settings
	Results
	Ablation Studies

	Conclusions

