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Abstract

Federated learning has become one of the most recent and widely researched areas of machine learning. Several machine-

learning frameworks, such as Tensorflow Federated and PySyft and others have gained momentum in recent past and continue

to evolve. Some of the frameworks involve techniques such as differential privacy, secure multi-party computation, gradient

descent calculation over the network to achieve privacy of underlying data in federated learning. While these frameworks serve

the need for a general-purpose federated learning model as per certain framework, in this paper we present a solution based

on distributed messaging with appropriate entitlements that enterprises can leverage in a managed and permissioned network.

The solution implements access controls on message source and destination in a decentralized network, which can implement

any given data science model in the federated network to facilitate secure federated learning.
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Abstract—Federated learning has become one of the most
recent and widely researched areas of machine learning. Several
machine-learning frameworks, such as Tensorflow Federated [1],
PySyft [2] and others have gained momentum in recent past and
continue to evolve. Some of these frameworks involve techniques
such as differential privacy [3], secure multi-party computation
[4], gradient descent [5] calculation over the network to achieve
privacy of underlying data in federated learning. While these
frameworks serve the need for a general-purpose federated learn-
ing model as per certain framework, in this paper we present
a solution based on distributed messaging with appropriate
entitlements that enterprises can leverage in a managed and
permissioned network. The solution implements access controls
on message source and destination in a decentralized network,
which can implement any given data science model in the
federated network to facilitate secure federated learning.

Index Terms—federated learning, machine learning, privacy,
distributed, decentralized, blockchain

I. INTRODUCTION

The size of data, growing exponentially year-on-year, has
created diversified opportunities to design complex artificial
intelligence systems for personal and business usage, at scale.
The idea of “big data” and “distributed computing” has
together formed the noble field of distributed machine learning
[6]. In the said method, the data from local devices are
generally sent over to powerful and high compute oriented
servers for combing through huge data, and deriving the global
results. The resultant models are sent back to the individual
devices [7]. This has made the low powered edge computers
and mobile devices to use machine learning for predictive
and classifying abilities, without worrying about the training
process. Even though distributed machine learning enables
a very efficient mode of computation with heterogeneous
devices, it comes with its own challenge of data privacy and
security. In the domain of finance, defence, government, health

care, enterprise and many more, where data privacy is of
utmost importance, distributed machine learning can’t be used,
where collaboration among the participants is expected, for the
improvement of models, but data can’t be shared.

With the advancement in computing resources across stor-
age, cloud and mobile devices, machine learning in decentral-
ized network is viable, along with improving the experience
in artificial intelligence, both in enterprise and personal lives.
Google first published a paper on the concept of “Federated
Learning” [8] [9] in the year 2017, a special scenario of “col-
laborative learning”, with multiple decentralized computing
devices holding local data samples, without exchanging data
for training. This satisfies the need for data privacy, which
was missing in the distributed machine learning arrangement
earlier.

In an operator managed, decentralized, peer-2-peer network,
various regulations and compliances mandate participant’s data
privacy, from both “other participants” and “the network”.
However, by the same regulations and compliances, the net-
work operator still is required to ensure the normal operation
of the network by identifying any malicious activity and actors
on the network. Further, the network participants want to learn
and benefit from other participants’ learning without knowing
about their data. This poses a challenge to the network operator
and diminishes the value for a participant to be part of such
a network.

One of the potential solutions to this is federated (machine)
learning, that allows for user data to be private and localized
to itself while still allowing the analytics to be done on
the individual data, without exposure. There are multiple
federated learning frameworks - such as Tensorflow Federated
[1], PySyft [2], etc. However, most of these frameworks are
still evolving and have been adopted in enterprise networks
and systems for their individual use-case, which is tightly



coupled, and needs a lot of re-engineering for accommodating
new machine learning models.

Federated learning works with both IID (independent and
identically distributed) and Non-IID (non-independent and
identically distributed) data [10]. Based on the data features,
federate learning can be broadly classified into two groups. If
the data across devices are consistent with the same feature
set, it would be horizontal federated learning. And if data’s
feature set is not the same across all the devices, it would
be vertical federated learning. We are proposing a generic
framework in this paper, where homogenous models across the
device are compatible for network-wide orchestration through
a distributed messaging pattern. We are going to discuss both
“Pub-Sub” and “Blockchain based private transaction” mecha-
nisms of communication, which will maintain anonymity and
secure distribution of models and messages. The mechanism is
based upon the entitlements on communication channels and
encryption of data in transit.

Federated computation is the crucial phase in the federated
learning cycle, where the aggregation takes place. Mathe-
matically, there are multiple ways of aggregating homoge-
nous models across the network. “Federated averaging” [8],
“Federated learning algorithm with periodic averaging and
quantization” [11], “Dynamic model averaging” [12], data
masking [18], noise addition [19] and many more are available
in terms of federated aggregation algorithms. In our paper,
we are going to propose a method to aggregate homogenous
models, independently and asynchronously. An important fact
is taken into consideration, the reliability of participants send-
ing models for centralized aggregation. Collaborator needs to
be aware of the ad-hoc scenarios and needs to adjust the
computation dynamically, as per the network.

II. DISTRIBUTED MESSAGING

The core of our system, the distributed messaging [13] com-
ponent, which serves as the communication and orchestration
channel among the participant nodes and collaborator node.
On the broader side, the nodes are classified as -
• Collaborator node - for aggregation role
• Participant node - participants in the network

To facilitate the communication between multiple nodes and
collaborator independently, we have implemented event-driven
architecture. The events are being listened to by an individual
threads/processes on the nodes, making it possible for non-
collusive message delivery.

We use Apache Kafka [14], a popular pub-sub system for
distributed messaging. Fig 1 depicts the communication topol-
ogy for the same. Since messaging is the core of the whole
service, high availability is achieved using a clustered setup
of Kafka. We used 3 nodes setup for Kafka and Zookeeper
cluster. “Topics” are the logical channels on Kafka, which
separates the message flow. Every topic has been assigned a set
of producers and consumers, based on the correct entitlements,
which is visible in figure 1. We used a total of four topics,
out of which two are used for plaintext messages and two
for encrypted messages. We also implemented communication

using blockchain, which allows the secure orchestration of
models in the network, using encrypted channels.

Fig. 1. Communication topology of the federated learning framework

A. Anonymous Computation

Using Kafka admin APIs, we set the role-based access
controls (ACLs) on the topics. This essentially defines the
which nodes can assume which role on the topics. Mes-
sage packets don’t contain any information about the source
of origin in it, hence the messages are anonymous. The
anonymity of message packets achieves the need for data
privacy, as a part of federated learning. No participant node
can consume messages from channels, on which participant
nodes are producing, thus making it impossible for participants
to read any other participating node’s data. Security protocols
based “Access Controls Lists” allows only valid participants to
exchange messages on the messaging system. This takes care
of data security. The messages exchanged on the network are
encrypted, but still can maintain anonymity, because only one
party’s RSA key pair (only for collaborator) is static, whereas
RSA key pairs generated by participants are rotating for every
message. Details of cryptographic implementation have been
explained in the subsequent section.



B. Secure Delivery

Along with the distributed message’s channel-level secu-
rity, through Kafka admin API [15] or through permissioned
blockchain’s channels, message level dynamic cryptography
provides a secure communication layer with the least key
exchange and setup overhead, making participation in the
network more fluid in practice.

In “dynamic message encryption-decryption”, there are two
kinds of nodes involved - collaborator and participant. For
both the sides, encryption and decryption functions are imple-
mented, which is a combination of RSA [16] and AES (CBC
mode) [17] algorithms. AES algorithm is used for encrypting
the model, and the RSA algorithm is used for encrypting the
key, being used for symmetric encryption.

In Fig-2, a standard “dynamic message encryption-
decryption” life cycle is depicted as DFA state diagram.

Description of the states are as follows -
• S1 : Algorithm 7 - participant node encrypts the message

with collaborator node’s public key.
• S2 : Algorithm 8 - Collaborator node decrypts the mes-

sage using private key of itself
• S3 : Algorithm 9 - Collaborator node encrypts the mes-

sage using participant node’s public key
• S4 : Algorithm 10 - Participant node decrypts the message

using the private key generated in the initial state

S2 S3 S4S1

Fig. 2. State diagram (Life-cycle) of “dynamic message encryption-
decryption”

Based on the cryptographic classification, channels are
classified as
• Broadcast Channel - Channels which are being used

to broadcast the plain message to all the nodes in the
network

• Encrypted Channel - Channels which are being used to
broadcast the message with encryption, hence only the
valid party can read, even if every consumer receives the
message

Based on the data flow direction, channels are classified as
• Collaborator−Participant Channel - Message flows from

collaborator to participant nodes only, through entitlement
• Participant−Collaborator Channel - Message flows from

participant to collaborator nodes only, through entitlement
Without the “dynamic message encryption-decryption”, the

total number of channels on the network would be defined by
equation 1

N = 2(P + 1) (1)

where N is the total number of channels and P is the
total number of participants. The multiplicand 2 signifies that
for every logical channel, two sets of physical channels are
defined. One for the direction participant node to collaborator

node, and other being from collaborator node to participant
node. 2 more channels are added which serves as the broadcast
channels (both the directions).

Since we are using “dynamic message encryption-
decryption”, all the messages are being consumed by all the
entitled consumers of a given channel. But only the valid
consumer, with the right set of RSA private key, can decrypt
and read data. With the implementation of secure delivery, the
problem of channel maintenance is also decreased to a certain
extent. The total number of channels is 4 (2 for broadcast
channels and 2 for the encrypted channel). Whenever a new
participant is joining the network, or an old participant leaving
the network, the only change needs to be performed from an
infrastructure point of view is the update in access controlled
lists for the channels. With the right set of entitlements, based
on roles, the only collaborator can consume from channels,
where participant nodes produce. This makes it impossible
for any other sibling participant to read any other sibling
participant’s data.

Algorithm 1 Generate RSA Key Pair
function GENERATERSAKEYPAIR

. . .
return (Kpub,Kpri) . Return value computed earlier in

function
end function

Algorithm 2 Generate AES Key
function GENERATEAESKEY

. . .
return KAES . Return value computed earlier in

function
end function

Algorithm 3 Encryption
function ENCRYPTION(plainText,key)

. . .
return cipherText . Return value computed earlier in

function
end function

Algorithm 4 Decryption
function DECRYPTION(cipherText,key)

. . .
return plainText . Return value computed earlier in

function
end function

III. FEDERATED LEARNING

In the previous sections, the process of model aggregation
orchestration, across the network with multiple (large) number
of participants is described. The current section describes
the federated aggregation of the proposed solution. In the



Algorithm 5 Persisting RSA Key Pairs
function STOREKEY(Kpub,Kpri)

. . .
return null . Persisting data

end function

Algorithm 6 Removing RSA Key Pairs
function REMOVEKEY(Kpub,Kpri)

. . .
return null . Removing data

end function

framework proposed, the federation protocol facilitates the
partial aggregation in the network [20] [21].

Equation 3 is the objective function, to be minimized on
collaborator node. Participants would keep communicating
their local models in the given frequency, and collaborator
would aggregate the models. Once g(w) converges after mul-
tiple aggregation cycles, collaborator node would optimize the
resource usage by pausing the global model update, until a
better minimization of the g(w) is observed.

g(w) =

N∑
c=1

pcGc(w), (2)

where 0 ≤ p ≤ 1,
∑N

c=1 pc = 1 and N denotes number
of participants.

Objective: min
w∈W

g(w) (3)

where W is the set of weight matrices in a given model, p is
the weight score assigned (statically or dynamically computed)

Algorithm 7 Encryption of message by participant node
Require: M ∈ {collaborator | cardinality of set is 1}
Require: N ∈ {participant | cardinality of set is ≥ 1}
Require: KM

pub; K : Key of RSA pair
Ensure: p′ 6= ∅; p′ : plaintext message

(KN
pub,K

N
pri)← GENERATERSAKEYPAIR

STOREKEY(KN
pub,K

N
pri)

K ′AES ← GENERATEAESKEY
c′AES ← ENCRYPTION(p′,K ′AES)
c′RSA ← ENCRYPTION(K ′AES ,K

M
pub)

return (KN
pub, c

′
AES , c

′
RSA)

Algorithm 8 Decryption of message by collaborator node
Require: M ∈ {collaborator | cardinality of set is 1}
Require: N ∈ {participant | cardinality of set is ≥ 1}
Require: KM

pri; K : Key of RSA pair
Ensure: KN

pub, c
′
AES , c

′
RSA

K ′AES ← DECRYPTION(c′RSA,K
M
Pri)

p′ ← DECRYPTION(c′AES ,K
′
AES)

return (KN
pub, p

′)

Algorithm 9 Encryption of message by collaborator node
Require: M ∈ {collaborator | cardinality of set is 1}
Require: N ∈ {participant | cardinality of set is ≥ 1}
Require: KN

pub; K : Key of RSA pair
Ensure: p′′ 6= ∅; p′′ : plaintext message
K ′′AES ← GENERATEAESKEY
c′′AES ← ENCRYPTION(p′′,K ′′AES)
c′′RSA ← ENCRYPTION(K ′′AES ,K

N
pub)

return (KN
pub, c

′′
AES , c

′′
RSA)

Algorithm 10 Decryption of message by participant node
Require: M ∈ {collaborator | cardinality of set is 1}
Require: N ∈ {participant | cardinality of set is ≥ 1}
Require: KN

pri; K : Key of RSA pair
Ensure: KN

pub, c
′′
AES , c

′′
RSA

if KN
pub not present on current system then
. . . do nothing
return null

else
K ′′AES ← DECRYPTION(c′′RSA,K

N
Pri)

p′′ ← DECRYPTION(c′′AES ,K
′′
AES)

REMOVEKEY(KN
pub,K

N
pri)

return p′′

to the participant. G(w) is the loss function [22] [23] of the
given model, used for federated aggregation. If a subset of
participants is unable to send the local model to the federated
node, then the weight of that participant would be set to 0.

Weight of the participant plays an important role in feder-
ated learning environment [24] [25]. There are various ways
to decide weight (priorities) of the participants, depending on
the network setup like

• Number of data points in the local data sample
• Logical prioritization based on network and business use

case
• Reliability of local data
• Frequency of participant’s participation in the aggregation

cycle

Federated aggregation, as described in equation 5 gives a
more generalized way of aggregation in case of artificial neural
network/machine learning models. The framework proposed,
supports various federated functions and their respective loss
functions, as the aggregation for each machine learning model
is independent of each other. The loss function used in the
framework, as of now, given in equation 7 and equation 8,
are “stochastic gradient descent” [26] and “adam” [27] loss
functions respectively. The generic nature and flexibility of the
framework supports the inclusion of heterogeneous machine
learning models and loss functions, which can be extended,
whenever required.

W c = {wc
1,w

c
2, . . . ,w

c
K} (4)



wG
k =

N∑
c=1

pcw
c
k, k → kth layer of model (5)

where 0 ≤ p ≤ 1,
∑N

c=1 pc = 1.

WG = {wG
1 ,w

G
2 , . . . ,w

G
K} (6)

where p is the scalar, priority value and w is the weight
matrix, W c denotes the set of weights of all the layers of a
given model in participant c, WG

k denotes aggregated, global
weight of layer k, of the model and WG is the set of all the
aggregated, global weight layers of the given model.

SGD: wt = wt−1 − α
N∑
i=1

‖ŷi − yi‖2, t ∈ R≥0 (7)

where wt denotes weight matrix calculated through SGD
optimizer for current time cycle. wt−1 denotes weight matrix
of previous time cycle, α is the learning rate [26], ŷi and yi are
computed hypothesis and training target vectors respectively.

Adam: wt = wt−1 −
η

2
∇we(wt−1)), t ∈ R≥0 (8)

where wt denotes weight matrix calculated through Adam
optimizer for current time cycle, wt−1 denotes weight matrix
of the previous time cycle. η ∈ R≥0 is the step size and e(x)
is the error function [27] [28].

IV. EVALUATION

A. Experimental Setup

For validating the proposed solution and it’s hypothesis
in achieving the acceptable accuracy score in the federated
network, we did set up the experimental environment. In the
given set-up, we used two kinds of data -

1) Synthetic data generated in a controlled environment, in
real-time manner

2) MNIST data [29]
We created a network with 5 participant nodes and 1 collab-

orator node, installed Apache Kafka with 4 topics, entitlements
applied on the users and groups level. The Kafka is run in
single-node mode for the simplicity of experimentation. We
installed the Quorum permissioned blockchain network for
private transactions. Needless to say, both Kafka and Quorum
solve the same purpose, provisioning a secure and anonymized
channel, hence we used both in separate experiment observa-
tions. Each node has RHEL 7.6 OS installed with Python 3.8
installed, along with all the supporting libraries like Kafka-
python, Tensorflow 2.0, Web3Py, etc. The services are de-
signed to run as a self-sufficient daemon in the node, which can
run the analysis on real-time data. The pipelines are created for
data ingestion, pre-processing, deep learning computations and
finally visualization through dashboards. Each participant node
has 4GB RAM with 2 core processor, whereas collaborator
node has 16 GB RAM with 8 core processor. Figure 3 depicts

the complete asynchronous network level architecture diagram
of the setup, which accommodates the generalized (large
number of ) participant nodes setup. The architecture can be
logically thought of a star topology [30], which is depicted in
figure 4.

Fig. 3. Physical infrastructure architecture diagram with multiple nodes and
collaborator node setup

Fig. 4. Logical communication network topology of the setup



B. Federated Learning on Synthetic Data

For testing framework’s performance on various real-time
data, we came up with a synthetic data generator, a simple
python script to generate numeric data with given dimension
and sample size. The synthetic data generated follows the
gaussian distribution [31]. The data is continuously generated
with a frequency of 1 min on each node. Since the data has
time component in it, we treated it as time series analysis
and implemented unsupervised anomaly detection using “Long
Short-term Memory” deep neural network [32]. Anomaly
detection’s scores were then fed into the machine learning
pipeline for supervised binary classification between true
positives and false positives values. For binary classification,
we used “Logistic regression based classification” technique
[33].

Deep learning based anomaly detection is run every
5 minutes on the real-time data generated, and the result,
of numeric data type, is passed on to the next stage in the
pipeline. The anomaly detection model is not included in the
federated learning, because it is of unsupervised nature. The
model architecture for LSTM network we used is described in
figure 5. The anomaly scores are calculated based on equation
9.

Logistic regression model is the one which participates in
federated learning. A participant sends it’s local model when
the request is made by the collaborator. Once the aggregation,
based on equation 5 is completed, the new updated global
model is requested by the individual participant. Communica-
tion is secured through the set of RSA keys and entitlements
based on encrypted channels.

Loss MSE =
1

n

n∑
i=1

‖ŷi − yi‖2 (9)

Fig. 5. LSTM Network used for anomaly detection in stage 1 of time series
analysis pipeline for synthetic data

For visual analysis of the data and anomalies generated,
figure 6 depicts one of the features, which plays the primary
roles in synthetic anomaly injection. Figure 7 shows the
anomalies generated by secondary features in the data. In
figure 8, we can see the anomalies generated and true vs
false positives decision prediction, which is computed through
logistic regression model, using federated learning framework.
Figure 9 depicts a common representation of 3 nodes’ anomaly

loss and logistic classifier’s decision (0 being false-positive and
1 being true-positive)

Fig. 6. The “magenta” colour regions in the graph are time regions where
anomalies are synthetically generated. Spike in line graph shows the anomalies
generated for “feature 1”, depicted as “value1”

Fig. 7. The “magenta” colour regions in the graph are time regions where
anomalies are synthetically generated. Spike in line graph shows the anomalies
generated for “feature 2”, “feature 3”, and “feature 4”, depicted as “value2”,
“value3” and “value4”

Fig. 8. The “magenta” colour regions in the graph are time regions where
anomalies are synthetically generated. Green peaks show the decision of
anomalies detected being true positive, through federated learning (logistic
regression classifier)

C. Federated learning on MNIST data

In this section, we are describing the methodology of veri-
fying our proposition on standard MNIST data [29]. We have
used the same setup, described earlier, added artificial neural



Fig. 9. Network level visualization of multiple nodes’ anomaly detection’s
decision. First row shows the anomaly scores per node. Second row shows
anomaly decision, which is the result of logistic regression model through
federated learning

network machine learning model in the federated framework.
The neural network being used has one input layer, with 128
input neurons, one hidden layer of 2096 neurons and one
output layer with 10 neurons. Figure 10 depicts the model
graphically.

Fig. 10. Architecture diagram of neural network model for hand-written digit
recognition used on MNIST data

During experimentation, we studied loss’ dependence on
learning rate of adam’s optimizer, by changing the value of
learning rate, as depicted in figure 11. We also studied accu-
racy and it’s dependence on learning rate, as shown in figure
12. Table I represents loss and accuracy of all models in the
federated setup. Table infers that using federated computation,
we achieved better accuracy over time.

TABLE I
LOSS AND ACCURACY OF LOCAL AND GLOBAL MODEL OVER NETWORK

Node Loss Accuracy (in %)
Global Model - Initial 2.9559 91.12

Participant 1 1.8994 94.83
Participant 2 1.6606 94.58
Participant 3 1.8350 94.91
Participant 4 1.8994 94.52
Participant 5 1.6724 94.82

Global Model - Aggregated 0.7036 95.39

Fig. 11. Loss vs learning rate of the neural network’s Adam optimizer

V. CONCLUSION

In this paper, we have presented the current common prac-
tices around federated learning in academia and enterprises.
To overcome the generic challenge of secure and anonymized
orchestration of models in the federated network, we are
proposing an elegant and new method of realizing federated
learning, independent of machine learning framework using
entitled, anonymized and secure channels. We have empha-
sized the medium of communication would be a distributed
messaging system, either like Kafka, NATS.io, pub-sub or
like a permissioned blockhain/ledger like Quorum [34]. The
system described in the given paper is flexible because of no
dependency on any specific framework. It is highly available
in nature because of distributed messaging through “highly
available cluster” [35] or through “blockchain network”

A. Applications

In terms of application, the proposed federated framework
is most applicable in an operator managed private, permis-

Fig. 12. Accuracy (in percentage) vs learning rate of the neural network’s
Adam optimizer



sioned, consortium decentralized networks. On a permissioned
blockchain, we can categorize most of the activities in two
broad categories:

1) Transactional data between two participants. Examples
of this may include data related to trades, personal
information, token, money transfer etc. The data could
be classified as highly confidential and sensitive.

2) Network related meta-data such as count of a specific
categories of transactions, frequency of transactions,
throughput & latency of such transactions.

Transactional data between two participants can be used to
train machine learning models that can learn from such data to
identify anomalies or specific patterns in the transactions. Such
models, when fully trained, can make predictions of future
transactional behaviour on the network.

To further illustrate anomalies, two participants have learnt
that they have observed a large number of transactions for
a specific currency in the last N hours or days that can be
attributed to a specific geo-political event. Interestingly, other
pairs of participants have observed similar behaviour/patterns
across other events. However, because of privacy and compli-
ance concerns, other than only those participants that were part
of those such transactions have visibility into such patterns.
So, how do other participants on the network benefit from
such a data pattern on the network? The proposed solution
can be implemented in this case where the network operator
can ensure a secured (perhaps by operational procedures)
messaging infrastructure (Kafka, blockchain or similar) and
allow network participants to communicate with that messag-
ing infrastructure along with proposed techniques for sharing
the model. Further, the same infrastructure can be leveraged
for unsupervised anomaly detection on the network.

Some other applications on similar networks can include im-
proving network efficiency by leveraging secured computation
of network-wide aggregate metrics, providing transparency in
the network without compromising the privacy of underlying
data. As the number of enterprise blockchains and decen-
tralized networks continue to evolve, along with increasing
the volume of transactions on such networks. Further, it is
evident that the more successful networks would provide its
participants the benefit of the network effect and learning,
without requiring the members of the network to share pro-
prietary and competitive data to other members. It is also
observed that most enterprises technology teams are quite
familiar with public key infrastructure along with messaging
systems, such as Kafka. A federated learning solution based on
this technology stack can increase its adoption and usability.

B. Challenges and future scope

The proposed solution opens up scope for stringent safe-
guarding the security of encryption/decryption keys. Any com-
promise of the private keys of the aggregator by a malicious
operator can potentially leak some data attributes, which
in result can compromise data privacy in general over the
network. The possible ways to safeguard the keys would be
to use key management solutions [36] [37] like a vault.

In the current model, there is only one and predefined
collaborator, which is decided by the network operator. In
future, the choice of collaborator can be based on a consensus
algorithm among all of the participants. One potential algo-
rithm could be RAFT based [38] [39], where the collaborator
could be elected by the rest of the participants in the network
for a certain duration. In such cases, it is possible to extend
the solution to a true peer-2-peer decentralized network where
there is no network operator responsible for the governance of
the messaging infrastructure, which brings federated learning
in more fluid and ad-hoc infrastructure.
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