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Abstract

This paper discusses current methods and trends for 3D bounding box detection in volumetric medical image data. For this

purpose, an overview of relevant papers from recent years is given. 2D and 3D implementations are discussed and compared.

Multiple identified approaches for localizing anatomical structures are presented. The results show that most research recently

focuses on Deep Learning methods, such as Convolutional Neural Networks vs. methods with manual feature engineering, e.g.

Random-Regression-Forests. An overview of bounding box detection options is presented and helps researchers to select the

most promising approach for their target objects.
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I. INTRODUCTION

The extraction of a Volume of Interest (VOI) is an
important pre-processing step in computer based diagnosis.
Tasks such as organ segmentation or classification of ma-
lignant tumors usually require a prior localization of the
corresponding organ or structure. Especially the semantic
segmentation of small organs benefits from a preceding
localization. By limiting the data to be examined to a VOI, it
is ensured that only relevant areas need to be processed and
the computing and memory effort is reduced. For instance
in the field of intervention training and planning, 4D Virtual
Reality (VR) simulations require realistic 3D patient organ
models in order to be an adequate preparation for training
and planning medical procedures [1], [2]. The automatic
reconstruction of such 3D organ models benefits from the
localization of a VOI, as it excludes irrelevant regions and
therefore making the segmentation of the relevant structures
easier and more efficient.

In this Paper we review 3D Bounding Box (BB) de-
tection in volumetric medical image data. Such data is
generated by imaging procedures such as CT (Computerized
Tomography), MRI (Magnetic Resonance Imaging), PET
(Positron Emission Tomography), US (Ultrasound), HFU
(High Frequency Ultrasound), just to name a few. We focus
only on recently published papers (last five years) to capture
current trends and developments.

II. METHODOLOGY

The papers of interest deal with methods to detect 3D
BBs around targets in volumetric medical image data. There-
fore we used search terms containing ”3D Bounding Box”
AND ”localization” AND medical -vehicle -”point cloud”
(excluding terms ”vehicle” and ”point cloud”) to find
relevant papers in public databases and digital libraries. The
platforms searched were, IEEE Xplore1, ACM2, Springer3,
Google Scholar4 and WoS5. The search was always limited
to publications from 2015 to 2020. All papers selected for
this review are written in English and have been published
internationally. By abstract screening, a total of 31 papers
was selected.

III. 3D BOUNDING BOX REPRESENTATIONS

A 3D BB describes a cuboid object in 3D space. 3D BBs
can be represented in different ways. Two common kinds
are the centroid and the two corner representations as seen
in Fig. 1. The former defines the center coordinates and the
height, width and length of the BB. In the latter case the BB
is defined by two opposite corners. Two opposite corners are
e.g. the minimum and the maximum coordinate points.

w

h

Figure 1. Possible BB representations. Using centroids (left) or two
opposite corners (right).

1ieeexplore.ieee.org
2dl.acm.org
3link.springer.com
4scholar.google.de
5webofknowledge.com, ”3D Bounding Box” AND ”localization” AND

medical NOT vehicle NOT ”point cloud”, Timespan: Last 5 years.

https://ieeexplore.ieee.org/search/searchresult.jsp?queryText=(((((%22All%20Metadata%22:3D%20Bounding%20Box)%20AND%20%22All%20Metadata%22:localization)%20AND%20%22All%20Metadata%22:medical)%20NOT%20%22All%20Metadata%22:vehicle)%20NOT%20%22All%20Metadata%22:point%20cloud)&highlight=true&returnFacets=ALL&returnType=SEARCH&matchPubs=true&ranges=2015_2019_Year
https://dl.acm.org/action/doSearch?fillQuickSearch=false&expand=dl&AfterYear=2015&BeforeYear=2020&AllField=%223D+Bounding+Box%22+AND+%22localization%22+AND+medical+NOT+vehicle+NOT+%22point+cloud%22
https://link.springer.com/search?date-facet-mode=between&facet-content-type=%22ConferencePaper%22&showAll=true&query=%223D+Bounding+Box%22+AND+%22localization%22+AND+medical+NOT+vehicle+NOT+%22point+cloud%22+&facet-start-year=2015&facet-end-year=2020
https://scholar.google.de/scholar?q=%223D+Bounding+Box%22+AND+%22localization%22+AND+medical+-vehicle+-%22point+cloud%22&hl=en&as_sdt=0%2C5&as_ylo=2015&as_yhi=2020
https://webofknowledge.com


IV. 2D VS. 3D IMPLEMENTATION

In the past, a popular approach was to train a model
using handcrafted features. In 2010 Criminisi [3] proposed
Random Regression Forests (RRF) to localize target struc-
tures in 3D Volumes. Unlike traditional approaches, modern
Deep Leaning methods like Convolutional Neural Networks
(CNN) do not have to rely on handcrafted features, but
benefit from automated feature extraction. In recent years
the focus has clearly shifted towards Deep Learning.

The implementation of solutions for finding 3D BB for
target structures in volumetric data can be performed in 2D
or 3D. While a 3D implementation takes the whole volume
into account, a 2D implementation distinguishes between
three orthogonal image planes. These planes are shown in
Fig. 2 as red (sagittal), blue (coronal), green (axial) outlined
rectangles. In Fig. 2, a 3D BB then is constructed by shifting
the colored planes (plane/outside normals pointing away
from the patient) around a structure of the human body, e.g.
the head.

Figure 2. BB walls (6 opaque squares). Sagittal, coronal and axial image
viewing planes (outlined rectangles) [4].

A. Fully 3D Implementations

The 3D implementation approach takes the whole 3D
image volume as an input to detect a 3D BB. 3D CNNs
use 3D instead of 2D filter kernels. The 3D kernel has to
convolve over three axes, thus capturing context information
between slices, but also requiring far more resources than its
2D counterpart. Recent work has made extensive use of 3D
CNNs [5], [6], [7], [8], [9], [10], [11], [12]. 3D versions of
Deep Learning architectures like VGGNet([13]) [14], Faster
R-CNN([15]) [16], [17] and V-Net ([18]) [19], [20] are very

popular. Although most approaches today rely on CNNs,
more traditional approaches are still present. Y. Zhang et al.
(2017) [21] train a Random Forest after extracting Haar-like
features for every voxel to determine a rough 3D BB and
R. Gauriau et al. [22] use a cascade of two RRFs.

Although comparisons have shown that 3D approaches
generally deliver better results [23], [24], [25], they still
come at a cost. The processing in 3D manner requires far
more computational resources. The advantage of capturing
spatial information in all dimensions goes hand in hand
with higher memory demand and required computing power.
Furthermore, 3D training data is often not available to the
same extent as 2D training data.

B. 2D and 2.5D Implementations

The 2D implementation approach deals with 3D local-
ization as a 2D problem. Therefore the volumetric data is
examined slice wise in one of the three orthogonal image
planes (i.e. sagittal, coronal and axial). The 3D image is thus
treated as a stack of several 2D images. A common approach
is to use a single 2D CNN or a combination (2.5D) of several
(usually three) 2D CNNs for slice wise detection in either
one or all three orthogonal viewing plane directions.

Figure 3. Exemplary process flow for a single 2D CNN combining 3
orthogonal image plane stacks [26].

A single 2D CNN can be implemented to analyze exactly
one of the three image plane stacks [27], [28], [29], [30]. Ad-
jacent slices as additional channels [31] or dimensions [32]
help to capture contextual information. Another possibility is
to analyze all three image planes by using a single 2D CNN
three times [33], [34], [26], [4] or three separate 2D CNNs
per plane [35], [36], [37], [38], [39]. Adjacent slices and
separate CNNs can also be used in combination [40]. After
one or more 2D models have processed the data for multiple
slicing directions, the results still have to be combined to



create a 3D BB. This can be done by means of a majority
voting as seen in Fig. 3. In the illustrated workflow, the 3D
input image is sliced in all three viewing plane directions.
A single 2D model processes the input for each direction
separately. The output are three different BBs for the target
structure. The coordinates of the BBs are evaluated together
and a majority vote determines the final BB.

Figure 4. The problem of 2D detection when assembling the slices to
form a cuboid BB [9].

The advantage of a 2D compared to a 3D approach,
is the lower memory consumption and the larger amount
of training data that results from splitting the 3D images
into stacks of several slices. A disadvantage is that context
information is usually lost. Furthermore, the results of all
slices must be assembled to form a cuboid BB, which is
further complicated by occurring spatial discontinuity of the
slices as seen in Fig. 4. In a 3D detection the image is
viewed as a whole. The resulting BB therefore seamlessly
encloses the target structure. The problem with 2D detection
is that the 3D image is broken down into individual sectional
images and BBs are determined individually for each image.

V. APPROACHES

The following approaches for 3D BB detection in volu-
metric medical image data have been identified amongst the
investigated papers.

A. Slice Wise Box Detection

This approach simply detects the presence of the target
structure in every slice. The results for each orthogonal
image plane stack are combined to produce a 3D BB [35],
[36], [37], [4]. The approach works regardless of whether the
results were generated by a single 2D CNN or a combination
of three 2D CNN.

B. Coarse Segmentation / Probability Maps

The coarse-segmentation of target structures is often an
intermediate step for a subsequent refined segmentation.
First, the entire image is viewed to roughly locate one or
more targets. The resulting sub-optimal segmentation is then
utilized to place a BB around the area of interest [32], [33],
[34], [29], [5], [31], [19], [20], [39].

Figure 5. Procedure implemented by H. Roth et al. (2018) [38].

Similar to a coarse-segmentation approach, H. Roth et al.
(2018) [38] implement a 2D pixel-wise probability detection
in every image plane direction to obtain confidence heat-
maps, which are then used to generate a 3D BB. By
applying a threshold against the pixel probabilities, the
largest connected component is found and a BB is simply
put around it. The procedure is shown step by step in Fig.5.
R. Gauriau et al. (2015) [22] calculate voxel probabilities to
obtain confidence maps in a 3D manner. They utilize RRFs
and divide the localization into 2 steps. A first RRF performs
a rough localization of all organs at once. A second, organ-
specific RRF focuses on the individual organs respectively.
In a similar fashion Y. Zhang et al. (2017) [21] first take
advantage of the knowledge about the relative positions of
the target structures and their voxel intensity by using haar-
like features to narrow down the target area. A RRF is
then trained on spatial and intensity features to predict a
voxel-wise probability map within the target area. Using a
threshold, a BB is placed around the target structure.

C. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) combines Rein-
forcement Learning (RL) and Deep Learning. In RL an agent
takes a sequence of actions in order to achieve a certain goal.
In doing so, it receives feedback in form of rewards and
penalties. Through trial and error, the agent tries to maximize
the accumulated reward and learns which actions to take.
DRL incorporates Deep Neural Networks (DNN) into this
task. The DNN analyzes the current state and decides which
action to take. In the work of F. Navarro et al. (2020) [10],
the CNN receives the current BB voxel values and those of
the last four states as input for performing the task of finding
the final BB. The actions consider the moving direction,
translation and scaling of the 3D BB. S. Iyer et al. (2018,
2020) [7], [12] employ two 3D CNNs, one for learning
the navigation in the coordinate directions and the other to
predict the size of the BB dimensions.

D. Anchor Based Approaches

Another often seen approach is using anchor boxes, which
are predefined BB guesses of certain scales and aspect
ratios. For instance M. Tang et al. (2018) [30] and Y. Wei
et al. (2019) [9] follow this approach. Latter combine a



3D CNN and an additional 2D feature extractor for the
axial slice direction to handle various scales and shapes of
the target structure. An output predictor takes the resulting
features as input. Very popular anchor-based approaches
are Faster R-CNN [15] and YOLO [41]. S. Afshari et al.
(2018) [27] use a modified 2D YOLO to analyze the coronal
image plane stack. Whereas YOLO is a one-stage detector,
the Faster R-CNN workflow consists of two stages. The
backbone network extracts features, which are, together with
the anchor boxes, used by a Region Proposal Network (RPN)
to generate BB candidates. A Fast R-CNN [42] classifier
and regressor are then used to determine the class of the
object and refine the BBs. K. Chaitanya et al. (2020) [17]
and X. Yang et al. (2019) [28] use a 3D and 2D Faster
R-CNN architecture respectively to detect BBes. X. Xu et
al. (2019b) [16] modify the 3D Faster R-CNN architecture
by removing the classifier and using the Region Proposal
Network to propose organ-specific BBs. Relying on the fact
that there is at most one instance of a organ, BBs with the
same label are merged into one.

Fig. 6 illustrates the common workflow and the one
adapted by X. Xu et al. (2019b) [16]. L. Liu et al. (2019)
[43] first identify target regions with a Conditional Gaussian
Model (CGM) and further localize target structures using a
2D Faster R-CNN.

E. Other Approaches

S. Han et al. (2020) [11] use a 3D modified pre-activation
ResNet [44] for regression on the BB coordinates. R.
Janssens et al. (2018) [6] also use regression to predict
two relative displacement vectors between the two diagonal
corners of a BB and a reference voxel.

Z. Qiu et al. (2018) [14] scan the whole volume using
a 3D sliding window, that is large enough to fully contain
the target structure. A 10-layer VGGNet [13] serves as the
classifier.

X. Xu et al. (2019a) [8] binarize the predicted sagittal,
axial and coronal presence probability curves of the target
organs by applying a threshold. The 3D BBs are composed
by the largest 1D nonzero component in these three binary
curves.

VI. RESULTS

Table I gives an overview of the evaluated papers. In-
cluded are the author, the image modality, the approach to
3D BB detection, the target structure in the body and the
evaluation results of the work. The ”Results” column in
Table I is nonexhaustive. B. de Vos et al. (2017) [4], for
instance, did extensive testing and a more detailed evaluation
can be found in their paper. Some results are also left
blank, since no evaluation was performed as localization
was a less important intermediate step in these papers.
Measured was mostly Intersection over Union (IoU), Dice

Figure 6. left: general Faster-R-CNN [15] workflow, right: X. Xu et al.
(2019b) [16] workflow.

Similarity Coefficient (Dice), Average Precision (AP) and
Wall Distance (WD).



Table I: Literature for 3D BB detection. IoU: Intersection over Union.

Author Data Approach Target(s) Results
R. Gauriau et al.
(2015) [22]

CT two cascaded RRF. 1st RRF for global
coarse segmentation and 2nd organ spe-
cific RRF for local BB improvement

6
abdominal
organs

mean WD 10.7± 4 mm, 5.5± 4
mm, 5.6 ± 3 mm, 7.9 ± 4 mm,
9.5± 4 mm, 13.2± 5 mm

B. de Vos et al.
(2016) [35]

CT combination of three 2D CNNs (AlexNet
[45]), each analyzing one orthogonal im-
age plane stack

heart, aor-
tic arch, d.
aorta

median Dice: 0.89, 0.70, 0.85

M. Zreik et al.
(2016) [37]

CT see Bob D. de Vos et al. (2016) [35] left ventri-
cle

complete left ventricle was con-
tained within the BB in all test
scans

J. Wolterink et
al. (2016) [36]

CT see Bob D. de Vos et al. (2016) [35] heart in all cases the BB contained the
whole heart

B. de Vos et al.
(2017) [4]

CT single 2D CNN (comparing BoBNet [4],
VGGNet-16 [13], ResNet-34 [44] and
AlexNet [45]) analyzes all three orthog-
onal image plane stacks

liver, heart,
a. aorta,
aortic arch,
d. aorta

Dice (comparing CNNs) 0.967,
0.963, 0.960, 0.959, WD (BoB-
Net for liver and heart) 8.87 ±
15.00 mm, 3.11± 3.43 mm

Y. Zhang et al.
(2017) [21]

CT Combination of 3D Haar-like feature [46]
extraction for every voxel and a RF

l.&r. lung,
heart

/

H. Roth et al.
(2018) [38]

CT combination of three 2D CNNs (HNN
[47]), each analyzing one orthogonal im-
age plane stack

Pancreas BB completely surround the pan-
creases with nearly 100% recall

V. Valindria et
al. (2018) [5]

MRI weighted 3D CNN for coarse segmen-
tation, using larger weights for smaller
organs

11 abdomi-
nal organs,
7 bones

/

M. Tang et al.
(2018) [30]

US single 2D CNN (VGGNet-16 [13]) ana-
lyzes one orthogonal image plane stack

femoral
head

/

R. Huang et al.
(2018) [39]

US combination of three 2D CNNs (View-
based Projection Networks (VP-Nets)),
each analyzing one orthogonal image
plane stack in real-time

5 key brain
structures

center deviation: 1.8 ± 1.4 mm,
size difference: 1.9±1.5 mm, 3D
IoU: 63.2± 14.7%

S. Afshari et al.
(2018) [27]

PET single 2D CNN (modified YOLO [41])
analyzes coronal image plane stack

brain,
heart,
bladder,
r.&l. kidney

avg. precision 75-98%, recall 94-
100%, centroid dist. < 14 mm,
WD < 24 mm

Z. Qiu et al.
(2018) [14]

HFU 3D CNN (10-layer VGGNet [13]) brain verti-
cle

BB containing entire brain ver-
ticle 93.7% (single classifier),
96.4% (ensemble of 3 classifiers)

G. Humpire-
Mamani et al.
(2018) [40]

CT combination of three 2.5D (adjacent
slices) CNNs, each analyzing one orthog-
onal image plane stack

11 thorax-
abdomen
organs

avg. WD of 3.20±7.33 mm, 2nd
human observer achieved 1.23±
3.39 mm

R. Janssens et
al. (2018) [6]

CT 3D CNN lumbar ver-
tebrae

/

S. Iyer et al.
(2018) [7]

CT combination of two 3D CNN for Deep
Reinforcement Learning and Imitation
Learning

thoracic
&lumbar
vertebrae

IoU 67.52%, Dice 80.23%

M. Ebner et
al.(2018) [34]
and (2020) [33]

MRI single 2D CNN (P-Net [48]) for coarse
segmentation analyzes all three orthogonal
image plane stacks

fetal brain IoU 86.54% (normal), 84.74%
(presurgical), 83.67% (postsurgi-
cal)

X. Wang et al.
(2019) [29]

US single 2D CNN (U-Net [49]) analyzes one
orthogonal image plane stack for coarse
segmentation

fetal femur IoU 78.1%



X. Xu et al.
(2019a) [8]

CT single triple-branch 3D CNN with a
branch for every orthogonal image plane
stack. Additionally creating a three-
channel image as input

11 body or-
gans

IoU 76.44, mean WD 4.36 ±
7.98 mm, mean centroid distance
6.91± 9.66 mm

L. Liu et al.
(2019) [43]

PET
/CT

combination a conditional Gaussian model
(CGM) and a 2D CNN (Faster R-CNN
[15]) for refinement, analyzing one or-
thogonal image plane stack

heart, liver,
spleen,
l.&r. kidney

centre position error thorax:
7.00±2.87 mm (CT), 4.47±2.50
mm (PET) Abdomen: 4.72±2.23
mm (CT), 4.41±2.02 mm (PET)

X. Xu et al.
(2019b) [16]

CT 3D CNN (modified Faster R-CNN [15]) 11 body
organs, 12
head organs

body: precision 97.91%, recall
98.71%, AP 98.24%, head:
91.11% 91.11%, 84.78%

Y. Wei et al.
(2019) [9]

CT hybrid multi-atrous and multi-scale net-
work (HMMNet) with multi-atrous 3D
CNN (MA3DNet) backbone

liver lesions Dice 54.8% and 34.2% with IoU
of 0.5 and 0.75 respectively

H. Jiang et al.
(2019) [32]

CT single 2.5D (5 adjacent slices, 3D Conv-
Kernel) Attention Hybrid Connection Net-
work (AHCNet) for coarse segmenta-
tion analyzes one orthogonal image plane
stack.

liver /

X. Zhou et al.
(2019) [26]

CT single 2D CNN analyzes all three orthog-
onal image plane stacks

17 torso or-
gans

Sucessfully localized 84.3% (IoU
≥ 0.5), mean IoU 70.2%

X. Yang et al.
(2019) [28]

MRI single 2D CNN (Faster-RCNN [15]) ana-
lyzes one orthogonal image plane stack

left atrium
region

100% accuracy

J. Lou et al.
(2019) [31]

MRI single 2D (adjacent slices as additional
channels) CNN (DS U-net [50]) for coarse
segmentation analyzes one orthogonal im-
age plane stack

fetal brain IoU 91.31±0.08%, centroid dist.
2.90± 3.53 mm

F. Navarro et al.
(2020) [10]

CT 3D CNN (similar to d DQN-based net-
work architecture [51]) for Deep Reinfo-
cement Learning

7
abdominal
organs

IoU 0.63, abs. median WD 2.25
mm, median dist. between cen-
troids 3.65 mm

K. Chaitanya et
al. (2020) [17]

CT 3D CNN (Faster R-CNN [15]) lung
nodules

sensitivity 93% (nodules> 5
mm), 91% (nodules> 3 mm)

S. Han et al.
(2020) [11]

MRI 3D CNN (modified pre-activation ResNet
[52])

cerebellum /

T. Xu et al.
(2020) [19]

HFU 3D CNN (similar to V-Net [18]) for coarse
segmentation

embryonic
mice brain
ventricle &
body

Dice (coarse segmentation)
0.818, 0.918

S. Iyer et al.
(2020) [12]

CT see S. Iyer et al. (2018) [7] thoracic
&lumbar
vertebrae

IoU 74/85% (chest), Dice
77/86% (abdomen)

H. Zheng et al.
(2020) [20]

CT two cascaded 3D CNN (V-Net[18]) for
coarse segmentation

pancreas 1st&2nd V-Net Dice: 81.38 ±
6.48%, 81.79±7.10%, sensitivity
80.55± 9.36%, 81.51± 7.22%



VII. CONCLUSION AND FUTURE WORK

We provide a synopsis of the recent works dealing with
3D BB detection in volumetric medical images. For this pur-
pose 31 papers of the last 5 years were evaluated. The review
is intended to provide an overview of the current trends as
well as information on various options for BB detection in
3D data. 3D and 2D implementations were differentiated,
processing the 3D input as a whole or splitting it into sev-
eral 2D inputs. Various approaches were identified, Coarse
Segmentation being the most commonly used. It was also
found that Deep Learning methods have largely replaced
traditional and other methods, e.g. RRF. The overview of
options presented in this review will help future researchers
to select a promising approach, which also reflects the
state of research. Some of the presented techniques are
also applicable to 2D imagery, e.g. detecting, learning and
discerning face appearances in photographs [53]. Traditional
techniques such as RRFs have been augmented by Deep
Learning techniques, especially with CNNs among them.
The most promising and increasingly successful methods
seem to be CNNs, as they combine traditional signal pro-
cessing approaches (convolution filtering) with automatic
learning from examples in Neural Networks. BB detection
helps to save computational cost and to train models for
the subsequent semantic segmentation of body areas more
specifically, with better results in the end.

To assess the quality and relevance of BB detection for
patient modelling in VR simulators [54], [1], [2] thoroughly,
we plan studies in our lab to examine the influence of
different imaging modalities [55], [56], [57], [58], [59] and
BB detection quality by VR visualization and interaction
with detected BBs using haptic force feedback [60], [58],
[61], [62], [63] for quality assurance. In the future, we
will also address the accurate and precise BB detection and
content segmentation [64] using nD image data from various
imaging sources. Additionally the quality of organ models
in the time-dynamic simulation of 4D medical needle [65],
[66] interventions [67], [68] shall profit from the hierarchical
and more specific approach.
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M. A. Viergever, and I. Išgum, “Convnet-based localization
of anatomical structures in 3-d medical images,” IEEE Trans-
actions on Medical Imaging, vol. 36, no. 7, pp. 1470–1481,
2017.

[5] V. V. Valindria, I. Lavdas, J. Cerrolaza, E. O. Aboagye,
A. G. Rockall, D. Rueckert, and B. Glocker, “Small organ
segmentation in whole-body mri using a two-stage fcn and
weighting schemes,” Lecture Notes in Computer Science, p.
346–354, 2018.

[6] R. Janssens, G. Zeng, and G. Zheng, “Fully automatic
segmentation of lumbar vertebrae from ct images using
cascaded 3d fully convolutional networks,” 2018 IEEE
15th International Symposium on Biomedical Imaging (ISBI
2018), Apr 2018. [Online]. Available: http://dx.doi.org/10.
1109/ISBI.2018.8363715

[7] S. Iyer, A. Sowmya, A. Blair, C. White, L. Dawes, and
D. Moses, “Localization of lumbar and thoracic vertebrae in
3d ct datasets by combining deep reinforcement learning with
imitation learning,” 2018.

[8] X. Xu, F. Zhou, B. Liu, and X. Bai, “Multiple organ lo-
calization in ct image using triple-branch fully convolutional
networks,” IEEE Access, vol. 7, pp. 98 083–98 093, 2019.

[9] Y. Wei, X. Jiang, K. Liu, C. Zhong, Z. Shi, J. Leng, and F. Xu,
“ A Hybrid Multi-atrous and Multi-scale Network for Liver
Lesion Detection,” in Machine Learning in Medical Imaging.
MLMI 2019, vol. 11861. Springer, 2019.

[10] F. Navarro, A. Sekuboyina, D. Waldmannstetter, J. C. Peeken,
S. E. Combs, and B. H. Menze, “Deep reinforcement learning
for organ localization in ct,” 2020.

[11] S. Han, A. Carass, Y. He, and J. L. Prince, “Automatic
cerebellum anatomical parcellation using u-net with locally
constrained optimization,” NeuroImage, vol. 218, p. 116819,
2020.

[12] S. Iyer, A. Sowmya, A. Blair, C. White, L. Dawes, and
D. Moses, “A novel approach to vertebral compression frac-
ture detection using imitation learning and patch based con-
volutional neural network,” in 2020 IEEE 17th International
Symposium on Biomedical Imaging (ISBI), April 2020, pp.
726–730.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” 2014.

[14] Z. Qiu, J. Langerman, N. Nair, O. Aristizabal, J. Mamou,
D. H. Turnbull, J. Ketterling, and Y. Wang, “Deep bv:
A fully automated system for brain ventricle localization
and segmentation in 3d ultrasound images of embryonic
mice,” 2018 IEEE Signal Processing in Medicine and
Biology Symposium (SPMB), Dec 2018. [Online]. Available:
http://dx.doi.org/10.1109/SPMB.2018.8615610

http://dx.doi.org/10.1109/ISBI.2018.8363715
http://dx.doi.org/10.1109/ISBI.2018.8363715
http://dx.doi.org/10.1109/SPMB.2018.8615610


[15] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 6, p. 1137–1149, Jun 2017. [Online].
Available: http://dx.doi.org/10.1109/TPAMI.2016.2577031

[16] X. Xu, F. Zhou, B. Liu, D. Fu, and X. Bai, “Efficient multiple
organ localization in ct image using 3d region proposal
network,” IEEE Transactions on Medical Imaging, vol. 38,
no. 8, pp. 1885–1898, 2019.

[17] K. C. Kaluva, K. Vaidhya, A. Chunduru, S. Tarai, S. P. P.
Nadimpalli, and S. Vaidya, “An Automated Workflow for
Lung Nodule Follow-Up Recommendation Using Deep
Learning,” in Image Analysis and Recognition, A. Campilho,
F. Karray, and Z. Wang, Eds. Cham: Springer International
Publishing, 2020, pp. 369–377.

[18] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully
convolutional neural networks for volumetric medical
image segmentation,” 2016 Fourth International Conference
on 3D Vision (3DV), Oct 2016. [Online]. Available:
http://dx.doi.org/10.1109/3DV.2016.79

[19] T. Xu, Z. Qiu, W. Das, C. Wang, J. Langerman,
N. Nair, O. Aristizabal, J. Mamou, D. H. Turnbull,
J. A. Ketterling, and et al., “Deep mouse: An end-to-
end auto-context refinement framework for brain ventricle
and body segmentation in embryonic mice ultrasound
volumes,” 2020 IEEE 17th International Symposium on
Biomedical Imaging (ISBI), Apr 2020. [Online]. Available:
http://dx.doi.org/10.1109/ISBI45749.2020.9098387

[20] H. Zheng, L. Qian, Y. Qin, Y. Gu, and J. Yang, “Improving
the slice interaction of 2.5d cnn for automatic pancreas
segmentation,” Medical Physics, 2020.

[21] Y. Zhang, J. Liu, and J. Liu, “A muti-organ localization
method in ct volumes,” in 2017 9th International Conference
on Modelling, Identification and Control (ICMIC), 2017, pp.
331–335.

[22] R. Gauriau, R. Cuingnet, D. Lesage, and I. Bloch, “Multi-
organ localization with cascaded global-to-local regression
and shape prior,” Medical Image Analysis, vol. 23, no. 1, pp.
70 – 83, 2015.

[23] S. Ji, Z. Chi, A. Xu, and Y. Duan, “3d convolutional neural
networks for crop classification with multi-temporal remote
sensing images,” Remote Sensing, vol. 10, p. 75, 01 2018.

[24] Z. Xiangrong, Y. Kuzuma, T. Ryosuke, Z. Xinxin, H. Takeshi,
F. Hiroshi, W. Song, and K. Takuya, “Performance evaluation
of 2d and 3d deep learning approaches for automatic segmen-
tation of multiple organs on ct images,” p. 105752C, 2018.

[25] H. Lu, H. Wang, Q. Zhang, S. W. Yoon, and D. Won, “A 3d
convolutional neural network for volumetric image semantic
segmentation,” Procedia Manufacturing, vol. 39, pp. 422
– 428, 2019, 25th International Conference on Production
Research Manufacturing Innovation: Cyber Physical Manu-
facturing August 9-14, 2019 — Chicago, Illinois (USA).

[26] X. Zhou, T. Kojima, S. Wang, X. Zhou, T. Hara,
T. Nozaki, M. Matsusako, and H. Fujita, “Automatic
anatomy partitioning of the torso region on CT images by
using a deep convolutional network with majority voting,” in
Medical Imaging 2019: Computer-Aided Diagnosis, K. Mori
and H. K. Hahn, Eds., vol. 10950, International Society for
Optics and Photonics. SPIE, 2019, pp. 256 – 261. [Online].
Available: https://doi.org/10.1117/12.2512651

[27] S. Afshari, A. BenTaieb, and G. Hamarneh, “Automatic local-
ization of normal active organs in 3d pet scans,” Computerized
Medical Imaging and Graphics, vol. 70, pp. 111 – 118, 2018.

[28] X. Yang, N. Wang, Y. Wang, X. Wang, R. Nezafat, D. Ni,
and P.-A. Heng, “Combating uncertainty with novel losses
for automatic left atrium segmentation,” Lecture Notes in
Computer Science, p. 246–254, 2019.

[29] X. Wang, X. Yang, H. Dou, S. Li, P.-A. Heng, and D. Ni,
“Joint segmentation and landmark localization of fetal femur
in ultrasound volumes,” 2019 IEEE EMBS International
Conference on Biomedical and Health Informatics (BHI),
May 2019. [Online]. Available: http://dx.doi.org/10.1109/
BHI.2019.8834615

[30] M. Tang, Z. Zhang, D. Cobzas, M. Jagersand, and
J. L. Jaremko, “Segmentation-by-detection: A cascade
network for volumetric medical image segmentation,”
2018 IEEE 15th International Symposium on Biomedical
Imaging (ISBI 2018), Apr 2018. [Online]. Available:
http://dx.doi.org/10.1109/ISBI.2018.8363823

[31] J. Lou, D. Li, T. D. Bui, F. Zhao, L. Sun, G. Li, and D. Shen,
“Automatic fetal brain extraction using multi-stage u-net with
deep supervision,” in Machine Learning in Medical Imaging,
H.-I. Suk, M. Liu, P. Yan, and C. Lian, Eds. Cham: Springer
International Publishing, 2019, pp. 592–600.

[32] H. Jiang, T. Shi, Z. Bai, and L. Huang, “Ahcnet: An applica-
tion of attention mechanism and hybrid connection for liver
tumor segmentation in ct volumes,” IEEE Access, vol. 7, pp.
24 898–24 909, 2019.

[33] M. Ebner, G. Wang, W. Li, M. Aertsen, P. A. Patel, R. Augh-
wane, A. Melbourne, T. Doel, S. Dymarkowski, P. De Coppi,
A. L. David, J. Deprest, S. Ourselin, and T. Vercauteren,
“An automated framework for localization, segmentation and
super-resolution reconstruction of fetal brain mri,” NeuroIm-
age, vol. 206, p. 116324, 2020.

[34] M. Ebner, G. Wang, W. Li, M. Aertsen, P. Patel, R. Augh-
wane, A. Melbourne, T. Doel, A. David, J. Deprest,
S. Ourselin, and T. Vercauteren, An Automated Localization,
Segmentation and Reconstruction Framework for Fetal Brain
MRI. Springer International Publishing, 09 2018, pp. 313–
320.

[35] B. D. de Vos, J. M. Wolterink, P. A. de Jong, M. A. Viergever,
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