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Abstract

Quantum Computing presents an interesting paradigm where it can possibly offer certain improvements and additions to

a classical network while training. This method is particularly prevalent in the current Noisy Intermediate-Scale Quantum

era, where we can test these theories using libraries such as Pennylane in conjunction with robust ML frameworks such as

TensorFlow. This paper presents a proof-of-concept for the same, using a hybrid quantum-classical model to solve a text

classification problem on the IMDB Movie Sentiment Dataset. These hybrid models utilize precalculated embeddings and dense

layers alongside a variational quantum circuit layer. We created 4 such models, utilizing various kinds of embeddings, namely

NNLM-128, NNLM-50, Swivel and USE, using TFHub and Pennylane. We also trained classical versions of these models,

without the variational quantum layer to evaluate the performances. All models were trained on the same data, keeping the

parameters constant.
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Abstract — Quantum Computing presents an interesting 

paradigm where it can possibly offer certain improvements and 

additions to a classical network while training. This method is 

particularly prevalent in the current Noisy Intermediate-Scale 

Quantum era, where we can test these theories using libraries 

such as Pennylane in conjunction with robust ML frameworks 

such as TensorFlow. This paper presents a proof-of-concept for 

the same, using a hybrid quantum-classical model to solve a text 

classification problem on the IMDB Movie Sentiment Dataset. 

These hybrid models utilize precalculated embeddings and 

dense layers alongside a variational quantum circuit layer. We 

created 4 such models, utilizing various kinds of embeddings, 

namely NNLM-128, NNLM-50, Swivel and USE, using TFHub 

and Pennylane. We also trained classical versions of these 

models, without the variational quantum layer to evaluate the 

performances. All models were trained on the same data, 

keeping the batch size and epochs constant. 
 
 

I. INTRODUCTION 

 Transfer learning is a typical example of an artificial 
intelligence technique that has been originally inspired by 
biological intelligence. It originates from the simple 
observation that the knowledge acquired in a specific context 
can be transferred to a different area [1]. In the context of 
Natural Language Processing, this is most prevalent in the 
form of precalculated word embeddings, wherein textual 
representations obtained networks trained on copious amounts 
of unlabeled data for a generalized task are made available, so 
models for specific tasks can be built using them with a little 
fine-tuning. This is also referred to as Sequential Transfer 
Learning. [2]. In this paper, we explore the possibility of 
combining this technique with quantum computing. Quantum 
Computing utilizes qubits rather than classical binary state 
bits. These qubits can represent both 0 and 1 states due to 
superposition and attain a particular value when they are 
observed. The most common way they are represented is in 
the form of Bloch spheres, where each operation on a qubit is 
represented as a rotation of the quantum state vector along the 
three axes of the sphere. This representation leads to highly 
specific algorithms and circuits being formed, which show a 
significant increase in speed over calculations using classical 
bits due to the superposition of qubits. This is known as 
super-polynomial speedup. The application of this concept in 
traditional computing is something that has been speculated 
heavily, particularly in computationally heavy tasks such as 
machine learning. While notable advancements have been 
made in combining the two [3-7], the speedups observed have 
been few and far between and always been on quantum 
hardware. Right now, quantum computing is in the NISQ 
(Noisy Intermediate Scale Quantum) era. This means devices 
are available, but not powerful enough to outcompete classical 

 
 

methods (especially on tasks that they have been highly tuned 
for, e.g., image processing). One of the biggest positives of 
transfer learning is its democratization, and the opportunity for 
all ML practitioners, from hobbyists to researchers to utilize 
models pretrained on a huge amount of data and suit it to their 
needs. Quantum Computing and Quantum Machine Learning 
especially are quite a ways off from achieving the popularity 
and accessibility levels of models such as ResNet and BERT, 
but software libraries such as Pennylane and TensorFlow 
Quantum are making huge strides in this direction, making 
simulations of qubits and quantum algorithms possible on 
classical computers [8-9]. Increasingly difficult simulations, 
such as those in QML are difficult to execute quickly, but they 
are good predictors of actual qubit behavior on quantum 
hardware.  

II. METHODS 

I tested the hybrid models with 4 different embeddings taken 

from TFHub. The first two are NNLM-128 and NNLM-50, 

which are 128-dimensional and 50-dimensional vectors, 

respectively. The NNLM model produces token-based 

embeddings [10]. Swivel is a much smaller model, with a 

20-dimensional output vector, with the individual 

embeddings being combined into sentence embeddings [11]. 

Finally, we have the USE model, with 512-dimension vectors 

as the output, as it takes greater than word length text for 

calculations [12]. The classical models were simple 

sequential models, with the embeddings layer followed by a 

fully connected dense layer of 16 units, followed by another 

dense layer of 4 units, and an output layer of 1 unit. We 

trained the models for 10 epochs with a batch size of 512.  

 

 
For the hybrid models, we added a variational quantum layer 
after the dense layer with 4 units. This essentially acts as a 
fully-connected dense layer, but since it cannot do explicit 
matrix multiplication due to the nature of the qubits, the 
variational layer is actually a dressed quantum layer composed 
of 3 parts. The first is an AngleEmbedding layer, which 
encodes N features into the rotation angles of n qubits, 
where N≤n. The next layer is a StroglyEntangledLayers 
layer,which contains a quantum circuit of parametrised single 
and two-qubit gates together with a single-qubit measurement 
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S. 

No. 
Classical Model Train Acc. 

Train 

Loss 

Test 

Acc. 

Test 

Loss 

1 Swivel 87.5 0.297 82.6 0.374 

2 NNLM-50 99.8 0.022 83.8 0.432 

3 NNLM-128 99.7 0.006 85.3 0.463 

4 USE 84.0 0.335 83.7 0.380 



  

is used to classify the inputs. The output of this is then 
converted back into a classical output for the final output layer 
of our sequential model by passing through a dense layer in 
the dressed quantum circuit with softmax activation. The 
entire circuit is wrapped in a QNode, which builds the circuit 
and provides the qubits for simulation. We use 3 layers for all 
the hybrid models, and train them for 10 epochs.  
 

  
We can observe that the results are comparable to the 
classical models, and the models with larger embedding 
vectors (NNLM-128 and USE) show improvements in the 
form of lowered loss values as well as increase in accuracies 
for USE. 

III. RESULTS 

After training all the models, the Quantum-Hybrid model 

with USE embeddings was the only one that showed a 

noticeable improvement in the final accuracy over its 

classical counterpart with 85.8%, a 2.1% increase. Even 

though the other models did not show an increase in the 

accuracy, they lowered the loss in many cases. The quantum 

models took much longer (about 90 minutes per epoch for a 

batch size of 512) to train using the Pennylane simulator. 

However, this is to be expected, as efficient quantum 

simulations are not widely available yet. As the number of 

qubits increase, the operations on the same become 

increasingly difficult to carry out. However, seeing that the 

end results of the hybrid models are so comparable to those of 

the classical models, it is evident that if hardware limitations 

are overcome, they can show tangible increases in accuracy, 

and maybe even open the door to fully quantum neural 

networks. For now, transfer learning for a downstream task is 

the most effective way of achieving quantum speedup in a 

hybrid model. 

 

IV. DISCUSSION 

Limitations of current classical computers forbid us from 
trying out circuits with more number of qubits or training the 
hybrid models for more epochs, especially when considering 
those with large embedding vectors. The NISQ era promises 
quantum speedup for around 50-200 qubits or so, but the fact 
is that quantum computing is still at such an early stage that 
integrating it with other areas of computer science such as ML 
is not efficient on classical hardware. Quantum simulation 
libraries are paving the way for the democratization of 
quantum computing, but quantum hardware is still required to 

run highly complex algorithms and take advantage of the 
super-polynomial speedup promised by quantum computing. 
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S. 

No

. 
Hybrid Model Train Acc. 

Train 

Loss 

Test 

Acc. 

Test 

Loss 

1 Swivel 86.7 0.352 80.9 0.417 

2 NNLM-50 99.6 0.270 84.4 0.430 

3 NNLM-128 99.8 0.004 84.2 0.375 

4 USE 88.0 0.280 85.8 0.320 
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