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Abstract

Distance estimation methods arise in many applications, such as indoor positioning and Covid-19 contact tracing. The received

signal strength indicator (RSSI) is favored in distance estimation. However, the accuracy is not satisfactory due to the signal

fluctuation. Besides, the RSSI-only method has a large ranging error because it uses fixed parameters of the path loss model.

Here, we propose an optimization method combining RSSI and pedestrian dead reckoning (PDR) data to estimate the distance

between smart devices. The PDR may provide the high accuracy of walking distance and direction, which is used to compensate

for the effects of interference on the RSSI. Moreover, the parameters of the path loss model are optimized to dynamically fit

to the complex electromagnetic environment. The proposed method is evaluated in outdoor and indoor environments and

is also compared with the RSSI-only method. The results show that the mean absolute error is reduced up to 0.51 m and

1.02 m, with the improvement of 10.60% and 64.55% for outdoor and indoor environments, respectively, in comparison with

the RSSI-only method. Consequently, the proposed optimization method has better accuracy of distance estimation than the

RSSI-only method, and its feasibility is demonstrated through real-world evaluations.
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Abstract—Distance estimation methods arise in many 

applications, such as indoor positioning and Covid-19 contact 

tracing. The received signal strength indicator (RSSI) is favored in 

distance estimation. However, the accuracy is not satisfactory due 

to the signal fluctuation. Besides, the RSSI-only method has a large 

ranging error because it uses fixed parameters of the path loss 

model. Here, we propose an optimization method combining RSSI 

and pedestrian dead reckoning (PDR) data to estimate the distance 

between smart devices. The PDR may provide the high accuracy 

of walking distance and direction, which is used to compensate for 

the effects of interference on the RSSI. Moreover, the parameters 

of the path loss model are optimized to dynamically fit to the 

complex electromagnetic environment. The proposed method is 

evaluated in outdoor and indoor environments and is also 

compared with the RSSI-only method. The results show that the 

mean absolute error is reduced up to 0.51 m and 1.02 m, with the 

improvement of 10.60% and 64.55% for outdoor and indoor 

environments, respectively, in comparison with the RSSI-only 

method. Consequently, the proposed optimization method has 

better accuracy of distance estimation than the RSSI-only method, 

and its feasibility is demonstrated through real-world evaluations.  

 
Index Terms—Distance estimation, optimization method, 

received signal strength indicator, pedestrian dead reckoning, 

Covid-19 

 

I. INTRODUCTION 

N the field of the Internet of things (IoT), excellent distance 

estimation is the key point for many applications [1], such as 

indoor positioning for wireless sensor networks (WSNs) and 

danger alerts for unmanned vehicles on the road [2], [3]. For 

human beings, currently, mobile smartphone apps are used to 

facilitate Covid-19 contact tracing [4], [5]. If two people 

carrying smartphones contact close to one another (generally, 

within 2 meters), then the apps on their smartphones will both 

record this contact event. The exposure notifications will be 

provided when one is diagnosed with Covid-19. The apps focus 

on the task of proximity sensing, which is relied on predicting 

accurate distance between the two smartphones [6]. 
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In recent years, the received signal strength indicator (RSSI) 

of Bluetooth low-energy (BLE) has been exploited for distance 

estimation [7], [8]. RSSI distance estimation method is based 

on the theoretical log-distance path loss (LDPL) model, which 

describes that the signal value attenuates as the distance 

increases [9], [10]. The LDPL model contains two main 

parameters, the RSSI at the reference distance (named as 𝐴) and 

the path loss exponent (named as 𝑛) [11]. These two parameters 

need to be calibrated before distance measurement for a known 

scenario. However, for an unknown situation, distance 

estimation may have inaccuracies because it uses parameters 

not fitted to this environment [12]. Furthermore, RSSI 

fluctuates significantly due to electromagnetic interference, 

especially in an indoor environment [13]. Despite the 

uncertainties in RSSI and LDPL model, the RSSI-only method 

is still a widely used tool for distance estimation applications, 

such as Google/Apple Exposure Notification (GAEN) app for 

Covid-19 contact tracing [14]. Douglas J. Leith and Stephen 

Farrell report on the evaluation results of this app in a commuter 

bus [15]. They find that the attenuation level indicated by the 

app need not increase with the distance between phones.  

On the other hand, pedestrian dead reckoning (PDR) is 

recognized as a relative localization technique, which predicts 

the current location by taking into account the three main inputs, 

i.e. pedestrian's start position, walking distance, and walking 

direction [16]. It utilizes multiple sensors available in smart 

devices; for instance, magnetometer, gyro, and accelerometer 

sensors [17], [18]. Since the properties of the RSSI-based 

distance estimation method and PDR-based localization 

method are complementary, so the combination of these two 

methods would be beneficial to improve the estimation 

accuracy [19]. Moreover, recent studies try to dynamically 

adjust the parameters of the RSSI-distance model by using a 

neural network. Shi et al and Li et al built the RSSI-distance 

model with the backpropagation neural network (BPNN), 

which requires a huge amount of data to train the neural 

network before distance estimation [20], [21].  

Given the need for better distance estimation to compensate 
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for RSSI fluctuation and to adapt to different environments, we 

propose an optimization method combining RSSI and PDR data 

to estimate the distance between smart devices. The PDR may 

provide the high accuracy of walking distance and direction, 

which is used to compensate for the effects of interference on 

the RSSI. Moreover, the parameters of the log-distance path 

loss model optimized by particle swarm optimization (PSO) are 

used to dynamically fit the complex electromagnetic 

environment.  

In summary, this paper has the following contributions:  

•  An optimization method is developed to estimate the 

distance between smart devices by combining RSSI and PDR 

Data. The method optimizes the parameters of the RSSI-

distance model and the relative locations of each pair of devices 

simultaneously.  

• The method does not require a time-consuming fingerprint 

database buildup for an environment, and thus, it has high 

feasibility and low complexity.  

• The performance of the method is tested in outdoor and 

indoor environments. The results show better accuracy of 

distance estimation than the RSSI-only method.  

The rest of this paper is organized as follows. Section 2 

introduces the related works. Section 3 describes the proposed 

distance estimation method. Section 4 shows the experimental 

setup and procedure, as well as the evaluation results for several 

scenarios in outdoor and indoor environments. Finally, Section 

5 concludes this paper and presents some future directions.  

II. RELATED WORK 

A. Log-Distance Path Loss Model 

The RSSI-only method generally uses the log-distance path 

loss (LDPL) model [11]. It is expressed as  

𝑅𝑆𝑆𝐼 = 𝐴 − 10 ∗ 𝑛 ∗ 𝑙𝑔 (
𝑑

𝑑0
) + 𝜀 (1) 

where 𝑑  is the distance between the transmitter and the 

receiver, and 𝑛  is the path loss exponent which varies 

depending upon the radio propagation environment. 𝐴  is the 

RSSI at the reference distance 𝑑0  from the transmitter. 𝜀 is a 

Gaussian distribution random variable with mean zero.  

For convenience, 𝑑0 is assigned as 1 meter, and 𝜀 has a mean 

value of zero. Then the LDPL model can be obtained with  

𝑅𝑆𝑆𝐼 = 𝐴 − 10 ∗ 𝑛 ∗ 𝑙𝑔(𝑑) (2) 

where 𝐴 is the average measured RSSI when the receiver is 

placed 1 meter away from the transmitter. To calibrate the 

parameters 𝐴 and 𝑛, the RSSI-only method requires utilizing 

the least-squares algorithm to fit the LDPL model, by 

measuring the RSSI values at different distances in advance 

[22]. Since these two parameters need to be obtained before 

distance measurement, for an unknown situation, distance 

estimation may have inaccuracies because it uses parameters 

not fitted to the environment.  

Recent studies try to dynamically adjust the parameters of the 

RSSI-distance model by using a neural network. Nonetheless, 

it is difficult to implement these methods into real-world 

applications, especially for real-time Covid-19 contact tracing, 

because of computing with high complexity, requiring a large 

amount of calibrated data and training the neural network for 

the known scenario before distance estimation [15], [23].  

In this study, the LDPL model is optimized by particle swarm 

optimization without training. The RSSI-distance between two 

devices, 𝑑𝑟, is achieved during the optimization process, which 

is also a part of the optimization objective function. A detailed 

description of the optimization process is provided in section 3. 

B. Pedestrian Dead Reckoning (PDR) 

The PDR is a relative location method based on walking data 

of pedestrians, which can navigate with low-cost devices (e.g. 

the inertial sensors available in most smartphones, such as 

accelerometer, magnetometer, and gyro sensor) [24], [25]. It is 

comprised of three main parts: (i) pedestrian's start location, (ii) 

walking distance, and (iii) walking direction, as depicted in Fig. 

1, where E and N represent the East and North directions, 

respectively.  

 
Fig. 1.  Schematic diagram of pedestrian dead reckoning (PDR) method for 

distance estimation. 

 

The formula for the PDR can be defined as in equation (3):  

{
 
 

 
 
𝑥𝑘 = 𝑥0 +∑𝐿𝑖 𝑠𝑖𝑛(𝛼𝑖)

𝑘

𝑖=1

𝑦𝑘 = 𝑦0 +∑𝐿𝑖 𝑐𝑜𝑠(𝛼𝑖)

𝑘

𝑖=1

 (3) 

Here, 𝛼𝑖  and 𝐿𝑖  represent the walking direction (the angle 

between forwarding direction and North) and the walking 

distance from the (𝑖 − 1) th sampling point to the 𝑖 th, 

respectively. The coordinates can be calculated by equation (3) 

if 𝛼𝑖  and 𝐿𝑖  are obtained. Since the properties of the RSSI-

based distance estimation method and PDR-based localization 

method are complementary, so the combination of these two 

methods would be beneficial to improve the estimation 

accuracy  

In this study, the PDR-distance between two devices, 𝑑𝑝, is 

obtained from the coordinates of the two devices' locations. 𝑑𝑝 

is also a part of the optimization objective function.  
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III. MATERIALS AND METHODS 

For a pair of two smart devices, device #1 and device #2, 

suppose that there are 𝑚 sampling points during their recorded 

contacting paths, as Fig. 2 shows.  

 
Fig. 2.  Schematic diagram of the recorded contacting path from device #1 and 

device #2. 

 

In Fig. 2, (𝑥𝑖 , 𝑦𝑖) denotes the coordinates of the device at the 

𝑖th sampling point; 𝐿𝑖  denotes the walking distance from the 

𝑖 − 1 th sampling point to the 𝑖 th; 𝛼𝑖  denotes the walking 

direction, 0 ≤ 𝛼 < 360; 𝑑𝑖  denotes the real distance between 

two devices at the 𝑖th sampling point. The subscript 1 and 2 of 

𝑥, 𝑦, 𝐿, and 𝛼 represent device #1 and device #2, respectively. 

The subscript 0 represents the start point of this recorded 

contacting path. Additionally, at each sampling point, the 

receiver will record the RSSI, which can be denoted as 𝑅𝑖 for 

the 𝑖 th time point. Matrix 𝑄  is defined to contain all of the 

above data, that is,  

𝑄 =

[
 
 
 
 
𝐿1,0 𝛼1,0    𝐿2,0 𝛼2,0 𝑅0

⋮
𝐿1,𝑖 𝛼1,𝑖     𝐿2,𝑖 𝛼2,𝑖 𝑅𝑖

⋮
𝐿1,𝑚 𝛼1,𝑚    𝐿2,𝑚 𝛼2,𝑚 𝑅𝑚]

 
 
 
 

 (4) 

For simplicity's sake, the start point of device #1 is defined 

as the origin of the coordinate system, and the start point of 

device #2 is defined as (𝛥𝑥, 𝛥𝑦) in this coordinate system, that 

is,  

𝑥1,0 = 0, 𝑦1,0 = 0 (5) 

𝑥2,0 = Δ𝑥, 𝑦2,0 = Δ𝑦 (6) 

According to Section 2, the distance between the two devices 

can be calculated from both the RSSI-only method and the PDR 

method. These two methods will be described in the following 

subsections.  

A. Distance Estimation by Using RSSI-Only Method 

For the RSSI-only method, according to equation (2), the 

distance at the 𝑘 th sampling point can be calculated by the 

following equation:  

𝑑𝑟,𝑘 = 10
[
(𝐴−𝑅𝑘)
10∗𝑛

]
 (7) 

Consequently, the distance estimation of RSSI-only method,  

𝑑𝑟 = (𝑑𝑟,0, 𝑑𝑟,1, … , 𝑑𝑟,𝑘, … , 𝑑𝑟,𝑚) (8) 

can be written as a function of 𝑅, 𝐴 and 𝑛, that is,  

𝑑𝑟 = 𝑔(𝑅, 𝐴, 𝑛) (9) 

it can also be written as  

𝑑𝑟 = 𝑔(𝑄, 𝐴, 𝑛), (10) 

where 𝑄  is the known data; 𝐴  and 𝑛  are the optimization 

variables.  

B. Distance Estimation by Using PDR Method 

According to equation (3) and (5), the coordinates of device 

#1 at the 𝑘th sampling point are  

𝑥1,𝑘 = 𝑥1,0 +∑𝐿1,𝑖 𝑠𝑖𝑛(𝛼1,𝑖)

𝑘

𝑖=1

=∑𝐿1,𝑖 𝑠𝑖𝑛(𝛼1,𝑖)

𝑘

𝑖=1

 (11) 

𝑦1,𝑘 = 𝑦1,0 +∑𝐿1,𝑖 𝑐𝑜𝑠(𝛼1,𝑖)

𝑘

𝑖=1

=∑𝐿1,𝑖 𝑐𝑜𝑠(𝛼1,𝑖)

𝑘

𝑖=1

 (12) 

Similarly, according to equation (3) and (6), the coordinates 

of device #2 at the 𝑘th sampling point are  

𝑥2,𝑘 = 𝑥2,0 +∑𝐿2,𝑖 𝑠𝑖𝑛(𝛼2,𝑖)

𝑘

𝑖=1

= 𝛥𝑥 +∑𝐿2,𝑖 𝑠𝑖𝑛(𝛼2,𝑖)

𝑘

𝑖=1

 (13) 

𝑦2,𝑘 = 𝑦2,0 +∑𝐿2,𝑖 𝑐𝑜𝑠(𝛼2,𝑖)

𝑘

𝑖=1

= 𝛥𝑦 +∑𝐿2,𝑖 𝑐𝑜𝑠(𝛼2,𝑖)

𝑘

𝑖=1

 (14) 

So, for the PDR method, the distance at the 𝑘th sampling 

point can be calculated by the following equation:  

𝑑𝑝,𝑘

=

(

 
 
 
 [(𝛥𝑥 +∑𝐿2,𝑖 𝑠𝑖𝑛(𝛼2,𝑖)

𝑘

𝑖=1

) −∑𝐿1,𝑖 𝑠𝑖𝑛(𝛼1,𝑖)

𝑘

𝑖=1

]

2

+[(𝛥𝑦 +∑𝐿2,𝑖 𝑐𝑜𝑠(𝛼2,𝑖)

𝑘

𝑖=1

) −∑𝐿1,𝑖 𝑐𝑜𝑠(𝛼1,𝑖)

𝑘

𝑖=1

]

2

)

 
 
 
 

1
2

 
(15) 

Consequently, the distance estimation of the PDR method,  

𝑑𝑝 = (𝑑𝑝,0, 𝑑𝑝,1, … , 𝑑𝑝,𝑘, … , 𝑑𝑝,𝑚) (16) 

can be written as a function of 𝐿, 𝛼, Δ𝑥 and Δ𝑦, that is,  

𝑑𝑝 = ℎ(𝐿, 𝛼, 𝛥𝑥, 𝛥𝑦) (17) 

it can also be written as  
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𝑑𝑝 = ℎ(𝑄, 𝛥𝑥, 𝛥𝑦) (18) 

where 𝑄 is the known data; Δ𝑥 and Δ𝑦 are the optimization 

variables.  

C. Proposed Optimization Method 

Based on the equation (10) and (18), the objective function 

of the distance estimation optimization problem is proposed:  

𝑚𝑖𝑛 𝑓(𝑑𝑟 , 𝑑𝑝) (19) 

that is,  

𝑚𝑖𝑛
𝐴,𝑛,𝛥𝑥,𝛥𝑦

𝑓(𝑔(𝑄, 𝐴, 𝑛), ℎ(𝑄, 𝛥𝑥, 𝛥𝑦)) 
(20) 

The function 𝑓 is defined as  

𝑓(𝑑𝑟 , 𝑑𝑝) =∑(𝑑𝑟,𝑖 − 𝑑𝑝,𝑖)
2

𝑚

𝑖=1

 (21) 

So, the objective function can be written as  

𝑚𝑖𝑛∑(𝑑𝑟,𝑖 − 𝑑𝑝,𝑖)
2

𝑚

𝑖=1

 (22) 

that is,  

𝑚𝑖𝑛
𝐴,𝑛,𝛥𝑥,𝛥𝑦

∑(𝑔(𝑄, 𝐴, 𝑛) − ℎ(𝑄, 𝛥𝑥, 𝛥𝑦))
2

𝑚

𝑖=1

 (23) 

where 𝑄  is the known data; 𝐴 , 𝑛,  Δ𝑥  and Δ𝑦  are the 

optimization variables.  

The constraints of this optimization problem include three 

items:  

(1) The domain of the model parameters 𝐴 and 𝑛.  

For common smartphones, the value of 𝐴 is in the range of -

80 dBm and -40 dBm. 𝑛 is the path loss exponent that varies 

depending upon the radio propagation environment. T. S. 

Rappaport gives typical values for 𝑛  in outdoor and indoor 

environments. The minimal value of 𝑛 is 2 for free space, while 

the maximum can be set to 6 for obstructed building. The 

constraints are written as  

−40 − 𝐴 ≥ 0 

𝐴 + 80 ≥ 0 

𝑛 − 2 ≥ 0 

6 − 𝑛 ≥ 0 

(24) 

(2) The domain of the relative coordinates of device #2 start 

point.  

Due to the range of Bluetooth low-energy (BLE) is about 100 

m, the minimal relative coordinate value of device #2 start point 

can be set to -100 m, and the maximum can be set to 100 m. 

The constraints are written as  

𝛥𝑥 + 100 ≥ 0 

100 − 𝛥𝑥 ≥ 0 

𝛥𝑦 + 100 ≥ 0 

100 − 𝛥𝑦 ≥ 0 

(25) 

(3) The effective measurable range of the proposed distance 

estimation method.  

The effective measurable range depends on the application 

scenario. For Covid-19 contact tracing apps, the minimal 

effective distance can be set to 0.1 m, and the maximum can be 

set to 10 m. The constraints are written as  

𝑔(𝑄, 𝐴, 𝑛) − 0.1 ≥ 0 

10 − 𝑔(𝑄, 𝐴, 𝑛) ≥ 0 

ℎ(𝑄, 𝛥𝑥, 𝛥𝑦) − 0.1 ≥ 0 

10 − ℎ(𝑄, 𝛥𝑥, 𝛥𝑦) ≥ 0 

(26) 

The above optimization problem is solved by the particle 

swarm optimization (PSO) algorithm. The PSO algorithm first 

creates initial particles and then assigns initial velocities to them. 

It evaluates the objective function (fitness) of each particle 

position and determines the best function value and the best 

position. It selects a new velocity based on the current velocity, 

the individual best position of the particle (𝑝𝑏𝑒𝑠𝑡), and the best 

position among all the population (𝑔𝑏𝑒𝑠𝑡). Then, it iteratively 

updates the particle position and velocity (the new position is 

the old position plus the velocity, and keeps the particle within 

the boundary). The algorithm iterates until reaches the stopping 

criterion. The following two equations illustrate the searching 

process:  

𝑣𝑖,𝑗+1 = 𝑤 ∗ 𝑣𝑖,𝑗 + 𝑐1 ∗ 𝑢1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖,𝑗)

+ 𝑐2 ∗ 𝑢2 ∗ (𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑖,𝑗) 
(27) 

𝑥𝑖,𝑗+1 = 𝑣𝑖,𝑗 + 𝑥𝑖,𝑗 (28) 

where 𝑖 denotes the particle index and 𝑗 denotes the iteration 

index. 𝑥𝑖,𝑗  and 𝑣𝑖,𝑗  represent the position and velocity of 

particle 𝑖  in iteration 𝑗 , respectively. 𝑢1  and 𝑢2  are random 

numbers uniformly distributed in the interval (0,1). 𝑐1 and 𝑐2 

are positive constants, where 𝑐1 is the self-adjustment weight 

and 𝑐2  is the global adjustment weight. 𝑤  presents inertia 

weight. In this study, the value of 𝑤 was constantly reduced 

from 0.8 to 0.4 during the searching process. 𝑐1 and 𝑐2 were set 

to 0.4 and 0.6, respectively.  

IV. THE EXPERIMENTAL SETUP AND RESULTS 

A. Outdoor Experiments with Participants 

We placed 13 sampling points (A~M) on outdoor park 

ground, as the following Fig. 3 shows. Two participants walked 

from the start point to the endpoint with smartphones, following 

the designed path (detailed description in Table. I). The first 

participant held device #1 (iPhone XS) as a transmitter; the 

second participant held device #2 (Samsung Note10) as a 

receiver.  
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(a) 

 
(b) 

Fig. 3.  The experimental setup in the outdoor environment: (a) The picture of 

the park ground; (b) The schematic diagram of the experimental setup for the 

park ground. The side length of the grid is about 0.5 meters, and the 13 sampling 
points (A~M) were located at the vertex of the grid. 

 

For the RSSI-only method, the RSSI-distance model’s 

parameter 𝐴 was set to 65 dBm and 𝑛 was 3.3, after a typical 

calibration procedure. For the proposed method, the domain of 

𝐴  was between -80 and -40 dBm, and the domain of 𝑛  was 

between 2 and 6. These values and domains of parameters were 

also used for indoor experiments. To reduce the effects of signal 

fluctuation, at each sampling point, we measured RSSI for one 

minute. The median of sampled RSSI was considered as the 

RSSI value for our experiments. The distance between two 

smartphones was estimated by using the RSSI-only method and 

the proposed method, respectively. Then, we measured the real 

distance to evaluate the performance of these two methods. The 

real distance, the estimation errors of the RSSI-only method, 

and the proposed method were shown in Table. I.  

We can see that the estimation results of the RSSI-only 

method were still average even when the parameter calibration 

was used. The mean value was 0.43 m, the root mean square 

error (RMSE) was 0.96 m, the mean absolute error (MAE) was 

0.57 m, and the maximum error was 3.45 m. The proposed 

method was able to reduce the estimation error: the mean was 

0.10 m, the RMSE was 0.76 m, the MAE was 0.51 m, and the 

maximum error was 2.23 m. The results were compared with 

the paired-samples t-test using SPSS statistical software version 

26.0. The statistical results indicated that there was a significant 

difference between the two methods, P-value < 0.00001. 

TABLE. I 

THE RESULTS OF THE OUTDOOR EXPERIMENTS (ALL IN METERS) 

Path 

Index 
Designed Scenario Designed Path 

Real 

Distance 

Estimation Error of 

RSSI-Only Method 

Estimation Error of 

Proposed Method 

1 Two people walk side by side in the same direction 
#1 A→B→C→D→E 
#2 F→G→H→I→J 

d1 1.01 -0.08 -0.16 

d2 0.51 0.02 -0.27 

d3 1.01 0.06 -0.18 

d4 0.51 0.02 -0.09 

d5 0.51 0.06 -0.11 

2 
Two people walk forward in the same direction, the 

one in front is fast while the one behind is slow 

#1 E→D→C 

#2 I→H→F 

d1 2.10 0.05 -0.05 

d2 2.28 0.38 0.09 

d3 4.21 1.13 0.23 

3 
Two people walk forward in the same direction, 

and the one behind exceeds the one in front 

#1 B→C→D 

#2 F→H→J 

d1 2.28 0.20 0.20 

d2 1.01 0.06 -0.31 

d3 2.10 0.05 0.03 

4 
Two people face each other, pass by, continue 

walking in the opposite direction 

#1 E→D→C→B→A 

#2 F→G→H→I→J 

d1 8.22 -0.11 -0.98 

d2 4.11 -0.84 -0.91 

d3 1.01 1.47 0.97 

d4 4.11 3.45 2.19 

d5 8.18 1.82 2.23 

5 Two people meet vertically at an intersection 
#1 A→B→C→D 
#2 K→L→M→I 

d1 8.65 0.05 -0.22 

d2 5.77 0.37 -0.34 

d3 2.88 -0.03 -0.43 

d4 0.51 0.02 -0.12 
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6 
Two people walk to an intersection, one goes on, 

and the other turns 

#1 B→C→D→E 

#2 G→H→M→L 

d1 0.51 0.64 0.76 

d2 1.01 0.86 0.84 

d3 2.04 2.00 0.98 

d4 4.56 1.58 0.90 

7 
Two people meet at an intersection and then go 

forward in the same direction 
#1 E→D→C→B 
#2 L→M→H→G 

d1 4.56 0.42 -0.06 

d2 2.04 0.11 -0.22 

d3 1.01 -0.01 -0.32 

d4 0.51 0.02 -0.12 

8 

Two people face each other at an intersection, one 

turns after the other, and then walk forward in the 
same direction 

#1 E→D→M→L 

#2 B→C→I→M 

d1 6.12 -1.48 -1.79 

d2 2.04 -0.03 -0.40 

d3 1.53 1.74 1.00 

d4 2.04 0.44 0.50 

9 
One sits on a chair on the side of the road, the other 

walks in front of him 

#1 I→I→I→I 

#2 B→C→D→E 

d1 4.11 0.53 0.01 

d2 2.10 0.05 -0.06 

d3 0.51 0.06 -0.18 

d4 2.10 0.21 0.08 

 

B. Indoor Experiments with Participants 

We placed 16 sampling points (A~I, O, M1~M6) on an 

indoor meeting room ground, as the following Fig. 4 shows. 

The first participant held iPhone XS (transmitter) at point I, the 

second participant walked from the start point to the endpoint 

with Samsung Note10 (receiver), following the designed path 

(detailed description in Table. II).  

 
(a) 

 
(b) 

Fig.  4  The experimental setup in the indoor environment: (a) The picture of 

the meeting room. There was a desk in the center of a meeting room. Some 

obstacles were on the desk, such as computers, books, and bottles of water. 
Point O was the start point for all designed paths, which are located at the door; 

(b) The schematic diagram of the experimental setup for the meeting room.  

 

Similarly, as the outdoor experiment, the distance between 

two smartphones was estimated by using the RSSI-only method 

and the proposed method, respectively. Then, we measured the 

real distance to evaluate the performance of these two methods. 

The real distance, the estimation errors of the RSSI-only 

method, and the proposed method were listed in Table. II.  

We can see that the estimation results of the RSSI-only 

method were poor when the parameter 𝐴 and 𝑛 used the fixed 

value. The mean value was -2.88 m, the RMSE was 3.24 m, the 

MAE was 2.89 m, and the maximum error was 4.49 m. The 

proposed method was able to effectively reduce the estimation 

error: the mean was -0.31 m, the RMSE was 1.21 m, the MAE 

was 1.02 m, and the maximum error was 2.15 m. The paired-

samples t-test results indicated that there was a significant 

difference between the two methods, P-value < 0.00001.  

The results show that the proposed method has better 

distance estimation accuracy than the RSSI-only method, and 

demonstrate its feasibility through real-world evaluations.  

TABLE. II 

THE RESULTS OF THE INDOOR EXPERIMENTS (ALL IN METERS) 
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Path 

Index 
Designed Scenario Designed Path 

Real 

Distance 

Estimation Error of 

Typical Method 

Estimation Error of 

Proposed Method 

1 
The second participant entered from the 

door, and then walked to seat A 

#1 I→I→I 

#2 O→M1→A 

d1 5.79 -4.49 -1.14 

d2 3.11 -1.92 -0.64 

d3 0.83 0.09 2.15 

2 
The second participant entered from the 

door, and then walked to seat B 
#1 I→I→I 

#2 O→M2→B 

d1 5.79 -4.49 -0.73 

d2 3.86 -2.35 -0.69 

d3 1.61 -0.76 1.08 

3 
The second participant entered from the 

door, and then walked to seat C 

#1 I→I→I 

#2 O→M3→C 

d1 5.79 -4.49 -1.79 

d2 4.35 -3.14 -1.33 

d3 2.69 -1.48 0.88 

4 
The second participant entered from the 

door, and then walked to seat D 

#1 I→I→I 

#2 O→M4→D 

d1 5.79 -4.49 -1.88 

d2 4.33 -3.14 -1.33 

d3 3.39 -2.18 0.22 

5 
The second participant entered from the 

door, and then walked to seat E 

#1 I→I→I 

#2 O→M5→E 

d1 5.79 -4.49 -1.74 

d2 4.09 -2.51 0.16 

d3 2.79 -1.75 0.47 

6 
The second participant entered from the 

door, and then walked to seat F 
#1 I→I→I 

#2 O→M5→F 

d1 5.79 -4.49 -1.24 

d2 4.09 -2.51 -0.06 

d3 1.80 -0.90 1.23 

7 
The second participant entered from the 

door, and then walked to seat G 

#1 I→I→I 

#2 O→M5→G 

d1 5.79 -4.49 -0.39 

d2 4.09 -2.51 -0.16 

d3 0.93 -0.26 1.86 

8 
The second participant entered from the 

door, and then walked to seat H 

#1 I→I→I 

#2 O→M6→H 

d1 5.79 -4.49 -2.12 

d2 5.55 -4.05 -0.83 

d3 5.81 -3.88 0.47 

V. CONCLUSIONS AND FUTURE WORK 

This paper presents a novel optimization method to estimate 

the distance between smart devices based on RSSI and PDR 

data by using particle swarm optimization. The PDR may 

provide the high accuracy of walking distance and direction, 

which is used to compensate for the effects of interference on 

the RSSI. Moreover, the parameters of the log-distance path 

loss model optimized by PSO are used to dynamically fit the 

complex electromagnetic environment. The performance of the 

method is tested in outdoor and indoor environments. The 

results show better accuracy of distance estimation than the 

RSSI-only method and demonstrate its high feasibility and low 

complexity. Therefore, the proposed method can be further 

integrated into the positioning systems for wireless sensor 

networks and proximity alert apps for Covid-19 contact tracing. 

We hope that more researchers or research institutions will be 

interested in further testing the effectiveness of this method.  
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