
P
os
te
d
on

13
M
ar

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
34
89
20
6.
v
2
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Learning by Teaching, with Application to Neural Architecture

Search

Parth Sheth 1, Pengtao Xie 1, and Yueyu Jiang 1

1Affiliation not available

November 8, 2023

Abstract

Learning by teaching is a broadly used methodology in human learning and shows great effectiveness in improving learning

outcome: a learner deepens his/her understanding of a topic by teaching this topic to others. We are interested in investigating

whether this powerful learning technique can be borrowed from humans to improve the learning abilities of machines. We

propose a novel machine learning approach called learning by teaching (LBT). In our approach, the teacher creates a pseudo-

labeled dataset and uses it to train a student model. Based on how the student performs on the validation dataset, the teacher

re-learns its model and re-teaches the student until the student achieves great validation performance. We propose a multi-level

optimization framework to formulate LBT which involves three learning stages: teacher learns; teacher teaches student; teacher

and student validate themselves. We develop an efficient algorithm to solve the LBT problem. We apply our approach to neural

architecture search on CIFAR-100, CIFAR-10, and ImageNet, where the results demonstrate the effectiveness of our method.

1



1–19

Learning by Teaching, with Application to Neural
Architecture Search

Parth Sheth parthfour@gmail.com

Yueyu Jiang y5jiang@eng.ucsd.edu

Pengtao Xie* p1xie@eng.ucsd.edu
University of California San Diego

Abstract

In human learning, an effective skill in improving learning outcomes is learning by teaching:
a learner deepens his/her understanding of a topic by teaching this topic to others. In this
paper, we aim to borrow this teaching-driven learning methodology from humans and
leverage it to train more performant machine learning models, by proposing a novel ML
framework referred to as learning by teaching (LBT). In the LBT framework, a teacher
model improves itself by teaching a student model to learn well. Specifically, the teacher
creates a pseudo-labeled dataset and uses it to train a student model. Based on how the
student performs on a validation dataset, the teacher re-learns its model and re-teaches the
student until the student achieves great validation performance. Our framework is based
on three-level optimization which contains three stages: teacher learns; teacher teaches
student; teacher re-learns based on how well the student performs. A simple but efficient
algorithm is developed to solve the three-level optimization problem. We apply LBT to
search neural architectures on CIFAR-10, CIFAR-100, and ImageNet. The efficacy of our
method is demonstrated in various experiments.

1. Introduction

As the saying goes, a good learner is also a good teacher. In human learning, a commonly
adopted strategy is to learn by teaching others. In the process of explaining a topic to
others, the learner can further enhance his/her understanding of this topic. The efficacy of
teaching in helping improve learning has been demonstrated in many studies. In (Fiorella
and Mayer, 2013), the studies showed that students who teach what they have learned to
their peers achieve better understanding and knowledge retention than students spending
the same time re-studying. In (Koh et al., 2018), the study shows that teaching improves the
teacher’s learning because it encourages the teacher to retrieve what they have previously
learned.

This teaching-driven learning methodology of humans motivates us to think about
whether it can benefit machine learning as well. Toward this goal, we propose a novel
ML framework called learning by teaching (LBT) (as illustrated in Figure 1), which im-
proves the learning outcome of a model by encouraging this model to teach other models
to perform well. In our framework, there is a teacher model and a student model, which

. ∗Corresponding author.

c© Y. Jiang & P. Xie*.



Teacher Student

Teach Student’s
performance

Teacher re-learns

Test

Figure 1: Illustration of learning by teaching. The teacher first learns a topic. Then the
teacher teaches this topic to the student and the student learns this topic. The
student performs a test to check how well he/she masters this topic. Based on
the student’s performance on the test, the teacher re-learns this topic to improve
his/her understanding.

perform the same target task (e.g., text classification, time-series forecasting, etc.). The
eventual goal is to make the teacher perform well on the target task. The way to achieve
that is to let the teacher teach the student and use the student’s performance as a feedback
to guide the teacher to improve its learning capability and outcome. The teacher model
consists of a learnable architecture and a set of learnable network weights. The student
model consists of a predefined architecture (by human experts) and a set of learnable net-
work weights. Similar to (Hinton et al., 2015b), teaching is conducted via pseudo-labeling:
given an unlabeled dataset U , the teacher uses its intermediately trained model to make
predictions on the input data examples in U ; then the student model is trained on these
pseudo-labeled data examples. Teacher-student learning based on pseudo-labeling has been
studied in many previous works (Papernot et al., 2016; Tarvainen and Valpola, 2017; Xie
et al., 2020). Our work differs from previous ones in that we aim to improve the learning
ability of the teacher by letting it teach a student while previous works focus on improving
the learning ability of a student model by letting it be taught by a fixed teacher model.
In other words, our work focuses on learning the teacher while previous works focus on
learning the student.

In our framework, the learning of the teacher and student are organized into three stages.
In the first stage, the teacher learns its network weights on a training dataset while tem-
porarily fixing its architecture. In the second stage, the teacher performs pseudo-labeling
on an unlabeled dataset and uses the pseudo-labeled dataset to train the student model.
Specifically, the teacher applies its model trained in the first stage to make predictions on
unlabeled data examples and the student model is trained to fit these predictions. In the
third stage, the student’s model is evaluated on a validation set and the teacher adjusts its
architecture based on the student’s validation performance. The three stages are organized
into a three-level optimization framework and are performed end-to-end in a unified man-
ner, where earlier stages influence later stages and vice versa. We apply LBT for neural
architecture search. Experiments on CIFAR-100, CIFAR-10, and ImageNet (Deng et al.,
2009) demonstrate the effectiveness of our method.

The major contributions of this paper include:

2



• Motivated by the teaching-driven learning methodology of humans, we develop a novel
machine learning framework called learning by teaching (LBT). In our approach, a
teacher creates a pseudo-labeled dataset and uses it to train a student model. Based
on how the student performs on the validation dataset, the teacher re-learns its model
and re-teaches the student until the student achieves great validation performance.

• To formulate LBT, we develop a three-level optimization framework. This framework
consists of three learning stages: 1) teacher performs learning; 2) teacher teaches
what it has learned to a student; 3) teacher re-learns based on the performance of the
student.

• An efficient algorithm is developed to solve the three-level optimization problem.

• We apply LBT for neural architecture search on CIFAR-100, CIFAR-10, and Ima-
geNet, where the results show that our method is very effective in searching highly-
performing neural architectures.

2. Related Works

2.1. Neural Architecture Search

Neural architecture search (NAS) is the task of developing algorithms to automatically find
out architectures that can yield high ML-performance. Existing NAS methods can be cat-
egorized into three groups. Methods in the first group (Zoph and Le, 2017; Pham et al.,
2018; Zoph et al., 2018) are based on reinforcement learning, where an architecture gener-
ation policy is learned by maximizing ML performance on validation data. Methods in the
second group (Cai et al., 2019; Liu et al., 2019; Xie et al., 2019) are gradient-based and dif-
ferentiable. These methods adopt a network pruning strategy where an overparameterized
network with many building blocks is pruned into the final architecture and the optimal
pruning is achieved by minimizing the validation loss. Methods in the third group (Liu
et al., 2018b; Real et al., 2019) are based on evolutionary algorithms where architectures
are represented as a population. Highly-performing architectures are allowed to generate
offspring while poorly-performing architectures are eliminated.

2.2. Teacher-Student Learning

Teacher-student learning has been investigated in knowledge distillation (Hinton et al.,
2015a), adversarial robustness (Carlini and Wagner, 2017), self-supervised learning (Xie
et al., 2020), etc. Most of these methods are based on pseudo-labeling. In these existing
methods, the focus is to learn a student model with the help of a trained and fixed teacher
model. In these works, the teacher model is not updated. In contrast, our method focuses
on learning a teacher model, by letting it teach a student model. The teacher model
constantly updates itself based on the teaching outcome. Teacher-student learning has been
investigated in several neural architecture search works as well (Li et al., 2020; Trofimov
et al., 2020; Gu and Tresp, 2020). In these works, when searching the architecture of a
student model, pseudo-labels generated by a trained teacher model whose architecture is
fixed are leveraged. Our work differs from these works in that we focus on searching the

3



Table 1: Notations in Learning by Teaching
Notation Meaning

A Architecture of the teacher
T Network weights of the teacher
S Network weights of the student

D
(tr)
t Training data of the teacher

D
(val)
t Validation data of the teacher

D
(tr)
s Training data of the student

D
(val)
s Validation data of the student

Du Unlabeled dataset

architecture of a teacher model by letting it teach a student model where the student’s
architecture is fixed, whereas the existing works focus on searching the architecture of
a student model by letting it be taught by a teacher where the teacher’s architecture is
fixed. In a recent work (Pham et al., 2020) which was conducted independently of and
in parallel to our work, the teacher model is updated based on student’s performance.
Our work differs from this one in that our work is based on a three-level optimization
framework which searches teacher’s architecture by minimizing student’s validation loss and
trains teacher’s network weights before using teacher to generate pseudo-labels, whereas
in (Pham et al., 2020) the framework is based on two-level optimization which has no
architecture search and does not train the teacher before using it to perform pseudo-labeling.
In (Such et al., 2019), a meta-learning method is developed to learn a deep generative model
which generates synthetic labeled-data. A student model leverages the synthesized data to
search its architecture. Our work differs from this method in that we focus on searching
the teacher’s architecture via three-level optimization while (Such et al., 2019) focuses on
searching the student’s architecture via meta-learning.

3. Methods

In this section, we propose a three-level optimization framework to formalize learning-by-
teaching (LBT) (as shown in Figure 2) and develop an efficient optimization algorithm for
solving the LBT problem.

3.1. Learning by Teaching

In our framework, there is a teacher model and a student model, which both study how
to perform the same target task. Without loss of generality, we assume the target task is
classification. The eventual goal is to make the teacher achieve better learning outcomes.
The way to achieve this goal to let the teacher teach the student to perform well on the target
task. The intuition behind LBT is that a teacher needs to learn a topic very well in order to
teach this topic to a student clearly. Teaching is performed based on pseudo-labeling (Hinton
et al., 2015a): the teacher uses its model to generate a pseudo-labeled dataset; the student
is trained on the pseudo-labeled dataset. The teacher has a learnable neural architecture
A and a set of learnable network weights T . The student has a predefined architecture (by

4



Teacher

ArchitectureWeights

Training data
of teacher

Training loss
of teacher

Validation data
of teacher

Pseudo-
labeled data

Weights

Student

Training data
of student

Validation loss
of teacher

Unlabeled
data

Training loss of
studentValidation data

of student
Validation loss
of student

Figure 2: Learning by teaching. The solid arrows denote a forward pass where predictions
are made and training/validation losses are defined. The dotted arrows denote
a backward process where gradients of losses are calculated and parameters are
updated.

humans) and a set of learnable network weights S. The teacher has a training dataset D
(tr)
t

and a validation dataset D
(val)
t . The student has a training dataset D

(tr)
s and a validation

dataset D
(val)
s . There is an unlabeled dataset Du where pseudo labeling is performed. In our

framework, both the teacher and student perform learning, which is organized into three
stages. In the first stage, the teacher fixes its architecture and trains its network weights

by minimizing the training loss defined on D
(tr)
t :

T ∗(A) = minT L(T,A,D
(tr)
t ). (1)

The architecture A is needed to calculate the loss on training examples. However, it
cannot be updated by minimizing the training loss. Otherwise, a degenerated solution will
be produced where A has very large capacity to overfit the training examples but will yield
poor prediction outcomes on unseen examples. T ∗(A) is a function of A: a different A

will result in a different training loss L(A, T,D
(tr)
t ); T trained by minimizing L(A, T,D

(tr)
t )

will be different as well. In the second stage, the teacher teaches a student via pseudo-
labeling. Given an unlabeled dataset Du = {xi}Ni=1, the teacher uses its model T ∗(A)
trained in the first stage to make predictions on Du. Assuming the task is classification
with K classes, the prediction f(xi;T

∗(A)) on xi would be a K-dimensional vector, where
the k-th element indicates the probability that xi belongs to the k-th class and the sum of
elements in f(xi;T

∗(A)) is one. Let Dpl(Du, T
∗(A)) = {(xi, f(xi;T

∗(A)))}Ni=1 denote the
pseudo-labeled dataset. The network weights S of the student is trained on Dpl(Du, T

∗(A))

5



and a human-labeled training set D
(tr)
s :

S∗(T ∗(A)) = minS L(S,D(tr)
s ) + λL(S,Dpl(Du, T

∗(A))).

where L(·) denotes a cross-entropy loss and λ is a tradeoff parameter. S∗(T ∗(A)) is
a function of T ∗(A): a different T ∗(A) will result in a different pseudo-labeled dataset
Dpl(Du, T

∗(A)) which will render the training loss to be different; a different training loss
will result in a different S∗(T ∗(A)). In the third stage, the student’s model S∗(T ∗(A))

trained in the second stage is validated on D
(val)
s . Besides, we also validate the teacher’s

model T ∗(A) trained in the first stage on D
(val)
t . The validation performances provide

feedback on how good the teacher’s architecture A is. At this stage, A is optimized by
minimizing the validation losses:

minA L(T ∗(A), A,D
(val)
t ) + γL(S∗(T ∗(A)), D(val)

s ), (2)

where γ is a tradeoff parameter.
Given the three learning stages, we propose a three-level optimization framework to

stitch them together:

min
A

L(T ∗(A), A,D
(val)
t )) + γL(S∗(T ∗(A)), D

(val)
s )

s.t. S∗(T ∗(A)) = min
S

L(S,D
(tr)
s ) + λL(S,Dpl(Du, T

∗(A)))

T ∗(A) = min
T

L(A, T,D
(tr)
t )

(3)

From bottom to top, the three optimization problems correspond to the first, second, and
third stage respectively. The first two optimization problems are on the constraints of the
third optimization problem. The three stages are performed end-to-end in a joint manner
where different stages mutually influence each other. T ∗(A) trained in the first stage is used
to generate pseudo-labeled dataset in the second stage; T ∗(A) and S∗(T ∗(A)) trained in
the first two stages are validated in the third stage; after A is updated in the third stage,
it will render the training loss in the first stage to be changed, which accordingly results
in a new T ∗(A). For computational efficiency, we search A in a differentiable way (Liu
et al., 2019): given an overparameterized network, a subnetwork is carved out as the final
architecture. The overparameterized network contains a large number of basic building
blocks such as convolution operations, pooling operations, etc. The output of each building
block is multiplied with a scalar. The search algorithm optimizes these scalars by minimizing
validation losses. In the end, building blocks with largest scalars form the final architecture.

3.2. Optimization Algorithm

In this section, we develop a gradient-based algorithm to solve the learning by teach-
ing (LBT) problem. Drawing insights from (Liu et al., 2019), we calculate the gradi-

ent of L(A, T,D
(tr)
t ) w.r.t T , update T by one-step gradient descent and get T ′, which is

used as an approximation of T ∗(A). We substitute this approximation into L(S,D
(tr)
s ) +

λL(S,Dpl(Du, T
∗(A))), yielding an approximated objective Os. Similarly, we approxi-

mate S∗(T ∗(A)) using one-step gradient descent update of S using the gradient of Os.

6



Lastly, we substitute the approximations of T ∗(A) and S∗(T ∗(A)) into L(T ∗(A), D
(val)
t )) +

γL(S∗(T ∗(A)), D
(val)
s ) and perform gradient-descent update of A by minimizing the approx-

imated validation loss. Let ∇2
Y,Xf(X,Y ) denote ∂f(X,Y )

∂X∂Y .
First, we approximate T ∗(A) using

T ′ = T − ξt∇TL(T,A,D
(tr)
t ) (4)

where ξt is a learning rate. Substituting T ′ into L(S,D
(tr)
s ) +λL(S,Dpl(Du, T

∗(A))) results

in an approximated objective Os = L(S,D
(tr)
s ) +λL(S,Dpl(Du, T

′)). Next, we approximate
S∗(T ∗(A)) using one-step gradient descent update of S w.r.t Os:

S′ = S − ξs∇S(L(S,D(tr)
s ) + λL(S,Dpl(Du, T

′))). (5)

Finally, we plug T ′ and S′ into L(T ∗(A), D
(val)
t )) + γL(S∗(T ∗(A)), D

(val)
s ) and get Ov =

L(T ′, D
(val)
t ) + γL(S′, D

(val)
s ). We can update the teacher’s architecture A by descending

the gradient of Ov w.r.t A:

A← A− η(∇AL(T ′, A,D
(val)
t ) + γ∇AL(S′, D

(val)
s )) (6)

where
∇AL(T ′, A,D

(val)
t ) =

∇AL(T − ξt∇TL(T,A,D
(tr)
t ), A,D

(val)
t ) =

−ξt∇2
A,TL(T,A,D

(tr)
t )∇T ′L(T ′, A,D

(val)
t ) +∇AL(T ′, A,D

(val)
t )

(7)

The matrix-vector multiplication in the first term on the third line is computationally
expensive. To reduce computational cost, following (Liu et al., 2019), we approximate the
multiplication using a finite difference:

∇2
A,TL(T,A,D

(tr)
t )∇T ′L(T ′, A,D

(val)
t ) ≈ 1

2α(∇AL(T+, A,D
(tr)
t )−∇AL(T−, A,D

(tr)
t )),

(8)

where T± = T ± α∇T ′L(T ′, A,D
(val)
t ) and α is 0.01/‖∇T ′L(T ′, A,D

(val)
t )‖2.

For ∇AL(S′, D
(val)
s ) in Eq.(6), it can be calculated as ∂S′

∂A∇S′L(S′, D
(val)
s ) according to

the chain rule, where

∂S′

∂A
=
∂(S − ξs∇S(L(S,D

(tr)
s ) + λL(S,Dpl(Du, T

′))))

∂A
(9)

=
∂(−ξsλ∇SL(S,Dpl(Du, T

′)))

∂A
(10)

= −ξsλ
∂T ′

∂A
∇2
T ′,SL(S,Dpl(Du, T

′)) (11)

For ∂T ′

∂A , it can be calculated as:

∂T ′

∂A
=
∂(T − ξt∇TL(T,A,D

(tr)
t ))

∂A
= −ξt∇2

A,TL(T,A,D
(tr)
t ) (12)

The algorithm for solving LBT is presented in Algorithm 1.

7



Algorithm 1 Optimization algorithm for learning by teaching

while not converged do
1. Update the teacher’s network weights T using Eq.(4)
2. Update the student’s network weights S using Eq.(5)
3. Update the teacher’s architecture A using Eq.(6)

end

4. Experiments

In this section, we apply learning-by-teaching (LBT) to search neural architectures in image
classification tasks. We follow the experimental protocol in (Liu et al., 2019), consisting
of two phrases: one for architecture search and the other for architecture evaluation. In
the search phrase, an optimal cell is searched by minimizing the validation loss. In the
evaluation phrase, the searched cell is replicated and composed into a large network, which
is trained from scratch on training and validation sets. Its performance is reported on the
test set. More hyperparameter settings, additional results, and significance tests of results
are deferred to the supplements.

4.1. Datasets

The experiments were conducted on three image classification datasets: CIFAR-10, CIFAR-
100, and ImageNet (Deng et al., 2009), with 10, 100, and 1000 classes respectively. For
CIFAR-10 and CIFAR-100, each of them is split into a 25K training set, a 25K validation

set, and a 5K test set. The training set is used as D
(tr)
t of the teacher and D

(tr)
s of the

student. The validation set is used as D
(val)
t of the teacher and D

(val)
s of the student. For

experiments on CIFAR-10, input images in CIFAR-100 (removing labels) are used as the
unlabeled datasetDu. For experiments on CIFAR-100, input images in CIFAR-10 (removing
labels) are used as the unlabeled dataset Du. For ImageNet, it is split into a training set
of 1.2M images and a test set of 50K images.

4.2. Experimental Settings

In LBT, for the search space of A, we experimented the spaces in DARTS (Liu et al., 2019),
P-DARTS (Chen et al., 2019), and PC-DARTS (Xu et al., 2020). These search spaces are
similar, with the following candidate operations: 3 × 3 and 5 × 5 separable convolutions,
3 × 3 and 5 × 5 dilated separable convolutions, 3 × 3 max pooling, 3 × 3 average pooling,
identity, and zero. For the student’s architecture, we experimented with ResNet-18 and
ResNet-50 (He et al., 2016b). λ and γ are both set to 1.

During architecture search, for CIFAR-10 and CIFAR-100, the teacher’s architecture is
a stack of 8 cells, each consisting of 7 nodes. The initial channel number was set to 16.
The rest hyperparameters for the teacher’s architecture and network weights follow those in
DARTS, P-DARTS, and PC-DARTS. The search algorithm ran for 50 epochs, with a batch
size of 64. Network weights are optimized using SGD, with an initial learning rate of 0.025
(adjusted using a cosine decay scheduler), a momentum of 0.9, and a weight decay of 3e-4.
For architecture search on ImageNet, following (Xu et al., 2020), we randomly sample 10%

8



of the 1.2M ImageNet images as D
(tr)
t and D

(tr)
s in LBT, randomly sample 2.5% of the 1.2M

images as D
(val)
t and D

(val)
s , and randomly sample another 10% of the 1.2M images as Du.

During architecture evaluation, for CIFAR-10 and CIFAR-100, 20 copies of the optimal
cell searched in the search phrase are stacked into a large network, which is trained using
the combined training and validation datasets. The initial channel number was set to 36.
The network was trained for 600 epochs, with mini-batch size set to 96. These experiments
were conducted on a Tesla v100 GPU. For ImageNet, we evaluate the architectures searched
by PC-DARTS on the subset of ImageNet and architectures searched by DARTS-2nd and
P-DARTS on CIFAR-10 and CIFAR-100, by stacking 14 searched cells into a large network
and training it on the 1.2M training images and reporting its performance on the 50K test
images. The initial channel number was set to 48. The network was trained for 250 epochs
with a batch size of 1024 on 8 Tesla v100s. Each LBT experiment was repeated for ten times
with different random seeds. Mean and standard deviation of the 10 runs are reported.

4.3. Results

In Table 2, we compare different NAS methods in terms of classification error on the test
set of CIFAR-100, number of network weights, and search cost measured using GPU days.
From these results, we observe the following. First, with the help of our proposed learning-
by-teaching (LBT) framework, the architectures searched by various methods including
DARTS, P-DARTS, and PC-DARTS can be greatly improved. For example, applying LBT
to DARTS-2nd, the error is reduced from 20.58% to 17.06%. With the assistance of LBT,
the error of P-DARTS decreases from 17.49% to 16.29%. Without using LBT, the error of
PC-DARTS is 17.96%; adding LBT reduces this error to 16.88%. These results strongly
demonstrate that LBT is an effective learning framework that helps to improve a wide
variety of NAS methods. In our method, the teacher model improves its learning ability by
teaching a student model to perform well on the classification task. The student is trained
on the pseudo-labeled dataset created by the teacher. If the student does not perform well
on the validation set, that means the pseudo labels are not correct, which indicates the
teacher’s model is not accurate. To avoid such an outcome, the teacher enforces itself to
learn better to generate correct pseudo labels. Second, a stronger student helps the teacher
to learn better. Here we consider a student model is stronger if its architecture (manually
designed) is more powerful and expressive. For example, ResNet with 50 layers (RN50) is
generally considered to have stronger representation learning power than ResNet with 18
layers (RN18). In LBT applied to DARTS, P-DARTS, and PC-DARTS, we experimented
with two student models with RN50 and RN18 as their architectures respectively. As can
be seen, LBT with RN50 as the student achieves better performance than LBT with RN18
as the student. For example, on DARTS-2nd, LBT with RN50 achieves an error of 17.06%
while LBT with RN18 achieves an error of 17.93%. As another example, on P-DARTS, the
error achieved by LBT(RN50) is 16.29%, which is lower than the 16.53% error achieved by
LBT(RN18). The reason is that to teach a stronger student to learn better, the teacher
has to be even stronger. For example, given a relatively weak student such as a CNN with
only three layers, since there is a large room for the student to improve, an ordinary teacher
such as a CNN with ten layers would be sufficient to teach the student to perform better.
However, if the student (e.g., ResNet with 50 layers) is very strong whose performance is

9



Table 2: Results on CIFAR-100, including classification error (%) on the test set, number
of model weights (millions), and search cost (GPU days). LBT(RN18,DARTS-
1st) represents that in LBT the search space is the same as that of DARTS-1st
and the architecture of the student is ResNet-18. Similar meanings hold for other
notations in such a format. RN50 denotes ResNet-50. DARTS-1st and DARTS-
2nd indicates that first-order and second-order approximation is used in DARTS’
optimization algorithm. * denotes that the results are taken from DARTS− (Chu
et al., 2020a). † denotes that we re-ran this method for 10 times. The search cost
is measured by GPU days on a Tesla v100.

Method Error(%) Param(M) Cost

*ResNet (He et al., 2016a) 22.10 1.7 -
*DenseNet (Huang et al., 2017) 17.18 25.6 -

*PNAS (Liu et al., 2018a) 19.53 3.2 150
*ENAS (Pham et al., 2018) 19.43 4.6 0.5
*AmoebaNet (Real et al., 2019) 18.93 3.1 3150

*GDAS (Dong and Yang, 2019) 18.38 3.4 0.2
*R-DARTS (Zela et al., 2020) 18.01±0.26 - 1.6
*DARTS− (Chu et al., 2020a) 17.51±0.25 3.3 0.4
*DropNAS (Hong et al., 2020) 16.39 4.4 0.7
†DARTS-1st (Liu et al., 2019) 20.52±0.31 1.8 0.4
LBT(RN18,DARTS-1st) (ours) 19.28±0.13 1.9 0.5
LBT(RN50,DARTS-1st) (ours) 18.74±0.09 1.9 0.6

*DARTS-2nd (Liu et al., 2019) 20.58±0.44 1.8 1.5
LBT(RN18,DARTS-2nd) (ours) 17.93±0.18 2.0 1.9
LBT(RN50,DARTS-2nd) (ours) 17.06±0.22 2.1 2.2

*P-DARTS (Chen et al., 2019) 17.49 3.6 0.3
LBT(RN18,P-DARTS) (ours) 16.53±0.16 3.6 0.5
LBT(RN50,P-DARTS) (ours) 16.29±0.07 3.7 0.6

†PC-DARTS (Xu et al., 2020) 17.96±0.15 3.9 0.1
LBT(RN18,PC-DARTS) (ours) 17.21±0.13 3.8 0.1
LBT(RN50,PC-DARTS) (ours) 16.88±0.09 3.8 0.2

already high, it is very challenging to teach the student to improve unless the teacher is
even stronger. To better train a strong student, the pseudo-labels generated by the teacher
are required to be highly accurate. To achieve this goal, the teacher is forced to escalate the
performance of its model to an excellent level. Third, our method LBT(RN50,P-DARTS)
achieves the lowest error among all methods in this table. This shows that our method
is very competitive in bringing the NAS performance to a state-of-the-art level. Fourth,
while our LBT framework can greatly help to improve the quality of searched architectures,
it does not substantially increase the number of model parameters or search cost. As shown

10



Table 3: Results on CIFAR-10, including classification error (%) on the test set, number of
model weights (millions), and search cost (GPU days). * denotes that the results
are taken from DARTS− (Chu et al., 2020a), NoisyDARTS (Chu et al., 2020b),
and DrNAS (Chen et al., 2020). The rest notations are the same as those in
Table 2.

Method Error(%) Param(M) Cost

*DenseNet (Huang et al., 2017) 3.46 25.6 -

*HierEvol (Liu et al., 2018b) 3.75±0.12 15.7 300
*NAONet-WS (Luo et al., 2018) 3.53 3.1 0.4
*PNAS (Liu et al., 2018a) 3.41±0.09 3.2 225
*ENAS (Pham et al., 2018) 2.89 4.6 0.5
*NASNet-A (Zoph et al., 2018) 2.65 3.3 1800
*AmoebaNet-B (Real et al., 2019) 2.55±0.05 2.8 3150

*R-DARTS (Zela et al., 2020) 2.95±0.21 - 1.6
*GDAS (Dong and Yang, 2019) 2.93 3.4 0.2
*SNAS (Xie et al., 2019) 2.85 2.8 1.5
*BayesNAS (Zhou et al., 2019) 2.81±0.04 3.4 0.2
*MergeNAS (Wang et al., 2020) 2.73±0.02 2.9 0.2
*NoisyDARTS (Chu et al., 2020b) 2.70±0.23 3.3 0.4
*ASAP (Noy et al., 2020) 2.68±0.11 2.5 0.2
*SDARTS (Chen and Hsieh, 2020) 2.61±0.02 3.3 1.3
*DropNAS (Hong et al., 2020) 2.58±0.14 4.1 0.6
*PC-DARTS (Xu et al., 2020) 2.57±0.07 3.6 0.1
*FairDARTS (Chu et al., 2019) 2.54 3.3 0.4
*DrNAS (Chen et al., 2020) 2.54±0.03 4.0 0.4
*GTN (Such et al., 2019) 2.92±0.06 8.2 0.67
*GTN(F=128) (Such et al., 2019) 2.42±0.03 97.9 0.67

*DARTS-1st (Liu et al., 2019) 3.00±0.14 3.3 0.4
LBT(RN18,DARTS-1st) (ours) 2.87±0.05 3.2 0.6
LBT(RN50,DARTS-1st) (ours) 2.79±0.07 3.3 0.7

*DARTS-2nd (Liu et al., 2019) 2.76±0.09 3.3 1.5
LBT(RN18,DARTS-2nd) (ours) 2.65±0.03 3.4 1.9
LBT(RN50,DARTS-2nd) (ours) 2.61±0.05 3.4 2.1

*P-DARTS (Chen et al., 2019) 2.50 3.4 0.3
LBT(RN18,P-DARTS) (ours) 2.64±0.11 3.4 0.4
LBT(RN50,P-DARTS) (ours) 2.57±0.15 3.4 0.5

*PC-DARTS (Xu et al., 2020) 2.57±0.07 3.6 0.1
LBT(RN18,PC-DARTS) (ours) 2.59±0.03 3.7 0.1
LBT(RN50,PC-DARTS) (ours) 2.56±0.04 3.7 0.2

in the third column and fourth column, the model size and search cost of our methods are
similar to those of baselines.

In Table 3, we show the results on CIFAR-10, including the classification error on the
test set, number of model parameters, and search cost measured by GPU days. From

11



Table 4: Results on ImageNet, including top-1 and top-5 classification errors on the test
set, number of model weights (millions), and search cost (GPU days). * de-
notes that the results are taken from DARTS− (Chu et al., 2020a) and Dr-
NAS (Chen et al., 2020). The rest notations are the same as those in Table 2.
From top to bottom, on the first, second, and third panel are manually-designed
networks, non-differentiable search methods, and differentiable search methods.
LBT(RN50,DARTS-2nd,CIFAR10) means the architecture is searched using LBT
on CIFAR-10 with ResNet-50 as the student, where the search space is the same
as that in DARTS-2nd. Similar meanings hold for other notations like this.

Method
Top-1 Top-5 Param Cost

Error (%) Error (%) (M) (GPU days)

*Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 -
*MobileNet (Howard et al., 2017) 29.4 10.5 4.2 -
*ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 7.6 7.4 -

*NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 1800
*PNAS (Liu et al., 2018a) 25.8 8.1 5.1 225
*MnasNet-92 (Tan et al., 2019) 25.2 8.0 4.4 1667
*AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 3150

*SNAS-CIFAR10 (Xie et al., 2019) 27.3 9.2 4.3 1.5
*BayesNAS-CIFAR10 (Zhou et al., 2019) 26.5 8.9 3.9 0.2
*PARSEC-CIFAR10 (Casale et al., 2019) 26.0 8.4 5.6 1.0
*GDAS-CIFAR10 (Dong and Yang, 2019) 26.0 8.5 5.3 0.2
*DSNAS-ImageNet (Hu et al., 2020) 25.7 8.1 - -
*SDARTS-ADV-CIFAR10 (Chen and Hsieh, 2020) 25.2 7.8 5.4 1.3
*PC-DARTS-CIFAR10 (Xu et al., 2020) 25.1 7.8 5.3 0.1
*ProxylessNAS-ImageNet (Cai et al., 2019) 24.9 7.5 7.1 8.3
*FairDARTS-CIFAR10 (Chu et al., 2019) 24.9 7.5 4.8 0.4
*FairDARTS-ImageNet (Chu et al., 2019) 24.4 7.4 4.3 3.0
*DrNAS-ImageNet (Chen et al., 2020) 24.2 7.3 5.2 3.9
*DARTS−-ImageNet (Chu et al., 2020a) 23.8 7.0 4.9 4.5
*DARTS+-CIFAR100 (Liang et al., 2019) 23.7 7.2 5.1 0.2

*DARTS-2nd(CIFAR10) (Liu et al., 2019) 26.7 8.7 4.7 1.5
LBT(RN50,DARTS-2nd,CIFAR10) (ours) 25.5 7.9 4.8 2.1

*P-DARTS(CIFAR10) (Chen et al., 2019) 24.4 7.4 4.9 0.3
LBT(RN50,P-DARTS,CIFAR10) (ours) 24.1 7.2 4.9 0.5

*P-DARTS(CIFAR100) (Chen et al., 2019) 24.7 7.5 5.1 0.3
LBT(RN50,P-DARTS,CIFAR100) (ours) 24.2 7.1 5.3 0.6

*PC-DARTS(ImageNet) (Xu et al., 2020) 24.2 7.3 5.3 3.8
LBT(RN50,PC-DARTS,ImageNet) (ours) 23.5 6.8 5.4 4.1

this table, we make similar observations as those in Table 2. First, our proposed LBT
framework is widely effective in helping different NAS methods to improve the quality of
searched architectures. For example, applying LBT to DARTS-2nd reduces the error from
2.76% to 2.61%. This further demonstrates that by teaching a student model to learn well,
the teacher can improve itself greatly. In the GTN (Such et al., 2019) baseline approach

12



where the architecture of a student is searched by leveraging the synthetic data generated
by a trainable generative model, the classification error is 2.92%, which is much worse than
those achieved by our methods, while the number of parameters in GTN is twice more
than ours. Setting the network width to 128, GTN achieves an error of 2.42%; however,
the resulting number of parameters in GTN is about 30 times more than ours. GTN
focuses on searching the student’s architecture while our method focuses on searching the
teacher’s architecture. These results demonstrate that searching teacher’s architecture is
more advantageous than searching student’s architecture. Second, using ResNet with 50
layers (RN50) as the student results in better performance than using ResNet-18 (RN18),
which further demonstrates that teaching a stronger student can drive the teacher to learn
better. Third, while achieving better classification accuracy than baselines, our method
does not substantially increase the model size or search cost compared with baselines.

The results on ImageNet are shown in Table 4, including top-1 and top-5 classification
errors on the test set, number of weight parameters (millions), and search costs (GPU days).
LBT(RN50,DARTS-2nd,CIFAR10), which is the architecture searched by applying LBT to
DARTS-2nd on CIFAR10 with ResNet-50 as the student, achieves lower error than DARTS-
2nd(CIFAR10) which does not use LBT. Similarly, LBT(RN50,P-DARTS,CIFAR10) out-
performs P-DARTS(CIFAR10), LBT(RN50,P-DARTS,CIFAR100) outperforms P-DARTS(CIFAR100),
and LBT(RN50,PC-DARTS,ImageNet) outperforms PC-DARTS(ImageNet). These results
again demonstrate the effectiveness of our method in improving a model by letting it teach
another model to learn well.

4.4. Ablation Studies

In this section, we perform several ablation studies to better understand the individual
learning stages in LBT. For each ablation setting, we compare it with the full LBT frame-
work.

• Ablation setting 1. In this setting, the teacher updates its architecture by minimizing
the validation loss of the student only, without considering the validation loss of itself.
The corresponding formulation is:

min
A

L(S∗(T ∗(A)), D
(val)
s )

s.t. S∗(T ∗(A)) = min
S

L(S,D
(tr)
s ) + λL(S,Dpl(Du, T

∗(A)))

T ∗(A) = min
T

L(A, T,D
(tr)
t )

In this study, λ is set to 1. The student’s architecture is ResNet-18. LBT is applied to
DARTS-2nd.

• Ablation setting 2. In this setting, in the second stage of LBT, only the pseudo-

labeled dataset is used to train the student; D
(tr)
s labeled by humans is not used. The

corresponding formulation is:

min
A

L(T ∗(A), A,D
(val)
t )) + γL(S∗(T ∗(A)), D

(val)
s )

s.t. S∗(T ∗(A)) = min
S

L(S,Dpl(Du, T
∗(A)))

T ∗(A) = min
T

L(A, T,D
(tr)
t )

13



Table 5: Classification errors in ablation setting 1. “Student only” means that only the
student’s validation loss is used to update the teacher’s architecture. “Student
+ teacher” means that both the student’s validation loss and teacher’s validation
loss are minimized to update the teacher’s architecture.

Method Error (%)

Student only (CIFAR-100) 20.27±0.24
Student + Teacher (CIFAR-100) 17.93±0.18

Student only (CIFAR-10) 3.01±0.08
Student + teacher (CIFAR-10) 2.61±0.05

In this study, γ is set to 1. The student’s architecture is ResNet-18. LBT is applied to
DARTS-2nd.

• Ablation study on λ. We investigate how the teacher’s test error changes with the tradeoff
parameter λ in Eq.(3). In this study, the other tradeoff parameter γ in Eq.(3) is set to
1. For either CIFAR-100 or CIFAR-10, from their training set and validation set, 5K
examples are uniformly sampled to form a new test set. Architecture search is performed
on the remaining training and validation sets. Architecture evaluation result is reported
on the 5K new test set. Student’s architecture is ResNet-18. LBT is applied to DARTS-
2nd.

• Ablation study on γ. We investigate how the teacher’s test error changes with the tradeoff
parameter γ in Eq.(3). In this study, the other tradeoff parameter λ is set to 1. Similar
to the ablation study on λ, the test error is reported on the 5K dataset. Student’s
architecture is ResNet-18. LBT is applied to DARTS-2nd.

In Table 5, we show the classification errors on the test set of CIFAR-10 and CIFAR-
100 in ablation setting 1. As can be seen, on both datasets, minimizing both student’s
validation loss and teacher’s validation loss results in better architectures for the teacher
than minimizing student’s validation only. The reason is that student’s validation loss
indirectly measures the quality of the teacher’s architecture. How well the student performs
depends on not only how well the teacher teaches the student but also how strong the student
itself is. If the student is a very strong learner, its validation loss may be largely determined
by the student itself and less influenced by the teacher. In this case, student’s validation
would be a relatively weak signal for guiding the learning of the teacher. In contrast, the
validation loss of the teacher directly depends on its architecture and can serve as a direct
(hence strong) signal to guide the teacher to learn. In the end, combining the direct signal
(teacher’s validation loss) and indirect signal (student’s validation loss) together is more
beneficial than using the indirect signal only.

In Table 6, we show the classification errors on the test sets of CIFAR-10 and CIFAR-100
in ablation setting 2. We can see that using both the pseudo-labeled dataset and human-
labeled dataset to train the student yields better performance than using the pseudo-labeled
dataset only. The reason is that since the pseudo-labels are automatically generated by a
model, they are not entirely reliable. Trained on less reliable labels, the student’s model

14



Table 6: Classi�cation errors in ablation setting 2. \Pseudo labels only" means in the
second learning stage, only the pseudo-labeled dataset is used to train the student.
\Pseudo labels + human labels" means both the pseudo-labeled dataset and a
human-labeled datasetD (tr)

s are used to train the student.

Method Error (%)
Pseudo labels only (CIFAR-100) 19.82� 0.31
Pseudo labels + human labels (CIFAR-100) 17.93 � 0.18
Pseudo labels only (CIFAR-10) 2.93� 0.07
Pseudo labels + human labels (CIFAR-10) 2.61� 0.05

Figure 3: How errors change as� increases.

may have low quality and a poorly-performing student cannot drive the teacher to learn
better. This risk can be reduced by incorporating human-provided labels which are more
reliable. As a result, using human labels and pseudo-labels jointly yields better performance
than solely using pseudo-labels.

In Figure 3, we show how the classi�cation errors of LBT on CIFAR-10 and CIFAR-
100 vary as � increases. From the plot on CIFAR-100, we observe the following. First,
when � increases from 0.5 to 1, the error decreases. This is because a larger� incurs a
stronger e�ect of teaching, where the training of the student relies more on the pseudo-
labeled dataset created by the teacher. When the teaching e�ect is strong, the teacher can
gain more feedback from the student's performance, which helps the teacher to learn better.
Second, if we continue to increase� , the performance becomes worse. The reason is that if�
is too large, the teaching e�ect would be excessively strong. Under such circumstances, the
student is mainly trained on the pseudo labels which are less reliable than human-provided
labels and consequently its model may be of low quality. A mediocre student will not be
very helpful in driving the teacher to improve. Similar phenomenon are observed from the
plot on CIFAR-10.

In Figure 4, we show how the classi�cation errors of LBT vary as we increase
 . As can be
seen, on CIFAR-100, when we increase
 from 0.1 to 1, the error decreases. This is because
a larger 
 encourages the teacher to pay more attention to the feedback obtained from the
student. This feedback is valuable because the validation performance of the student re
ects
the correctness of the pseudo-labels generated by the teacher and the quality of pseudo-

15



Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for
image classifier architecture search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780–4789, 2019.

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth O. Stanley, and Jeff Clune.
Generative teaching networks: Accelerating neural architecture search by learning to
generate synthetic training data. CoRR, abs/1912.07768, 2019.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In CVPR, 2015.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard,
and Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile. In
CVPR, 2019.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In Advances in neural
information processing systems, pages 1195–1204, 2017.

Ilya Trofimov, Nikita Klyuchnikov, Mikhail Salnikov, Alexander Filippov, and Evgeny
Burnaev. Multi-fidelity neural architecture search with knowledge distillation. CoRR,
abs/2006.08341, 2020.

Xiaoxing Wang, Chao Xue, Junchi Yan, Xiaokang Yang, Yonggang Hu, and Kewei Sun.
Mergenas: Merge operations into one for differentiable architecture search. In IJCAI,
2020.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy
student improves imagenet classification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10687–10698, 2020.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture
search. In ICLR, 2019.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai
Xiong. PC-DARTS: partial channel connections for memory-efficient architecture search.
In ICLR, 2020.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank
Hutter. Understanding and robustifying differentiable architecture search. In ICLR, 2020.

Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A bayesian approach
for neural architecture search. In ICML, 2019.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In
ICLR, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In CVPR, 2018.

19


	Introduction
	Related Works
	Neural Architecture Search
	Teacher-Student Learning

	Methods
	Learning by Teaching
	Optimization Algorithm

	Experiments
	Datasets
	Experimental Settings
	Results
	Ablation Studies

	Conclusions

