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Abstract

Learning by ignoring, which identifies less important things and excludes them from the learning process, is broadly practiced

in human learning and has shown ubiquitous effectiveness. There has been psychological studies showing that learning to

ignore certain things is a powerful tool for helping people focus. In this paper, we explore whether this useful human learning

methodology can be borrowed to improve machine learning. We propose a novel machine learning framework referred to as

learning by ignoring (LBI). Our framework automatically identifies pretraining data examples that have large domain shift from

the target distribution by learning an ignoring variable for each example and excludes them from the pretraining process. We

formulate LBI as a three-level optimization framework where three learning stages are involved: pretraining by minimizing the

losses weighed by ignoring variables; finetuning; updating the ignoring variables by minimizing the validation loss. A gradient-

based algorithm is developed to efficiently solve the three-level optimization problem in LBI. Experiments on various datasets

demonstrate the effectiveness of our framework.
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Abstract

Learning by ignoring, which identifies less important things and excludes them from the
learning process, is broadly practiced in human learning and has shown ubiquitous effective-
ness. There has been psychological studies showing that learning to ignore certain things
is a powerful tool for helping people focus. In this paper, we explore whether this useful
human learning methodology can be borrowed to improve machine learning. We propose a
novel machine learning framework referred to as learning by ignoring (LBI). Our framework
automatically identifies pretraining data examples that have large domain shift from the
target distribution by learning an ignoring variable for each example and excludes them
from the pretraining process. We formulate LBI as a three-level optimization framework
where three learning stages are involved: pretraining by minimizing the losses weighed by
ignoring variables; finetuning; updating the ignoring variables by minimizing the validation
loss. An gradient-based algorithm is developed to efficiently solve the three-level optimiza-
tion problem in LBI. Experiments on various datasets demonstrate the effectiveness of our
framework.

1. Introduction

In human learning, a widely-practiced effective learning methodology is learning by ignoring.
For example, in course learning, given a large collection of practice problems provided in the
textbook, the teacher selects a subset of problems as homework for the students to practice
instead of using all problems in the textbook. Some practice problems are ignored because
1) they are too difficult which might confuse the students; 2) they are too simple which are
not effective in helping the students to practice their knowledge learned during lectures; 3)
they are repetitive. The study in (Cunningham and Egeth, 2016) shows that learning to
ignore certain things is powerful for helping people focus.

Drawing inspirations from this effective human-learning method, we are intrigued in
exploring whether this method is helpful for training better machine learning models as
well. We propose a novel machine learning framework called learning by ignoring (LBI) (as
illustrated in Figure 1). In this framework, a model is trained to perform a target task. The
model consists of a data encoder and a task-specific head. The encoder is trained in two

. †Equal contribution.

. ∗Corresponding author.

c© P. Xie*.
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Figure 1: Illustration of learning by ignoring. Void circles denote ignored pretraining data
examples. Given a set of intermediately selected pretraining examples, they are
used to pretrain a model, which is then finetuned and validated. The validation
performance provides guidance on what pretraining examples should be ignored
in the next round of learning. This process iterates until convergence.

phrases: pretraining and finetuning, conducted on a pretraining dataset and a finetuning
dataset. Pretraining is a commonly used technique in deep learning to learn more effective
representations for alleviating overfitting. Given a target task where the amount of training
data is limited, training deep neural networks on this small-sized dataset has high risk
of overfitting. To address this problem, one can pretrain the feature extraction layers in
the network on large-sized external data from some source domain, then finetune these
layers on the target data. The abundance of source data enables the network to learn
powerful representations that are robust to overfitting. And such representation power can
be leveraged to assist in the learning of the target task with more resilience to overfitting.

Some pretraining data examples have a domain difference with the finetuning dataset,
rendering them not suitable to pretrain the data encoder that will be used for performing
the target task. We would like to identify such out-of-domain data examples and exclude
them from the pretraining process. To achieve this goal, we associate each pretraining
example with an ignoring variable a ∈ [0, 1]. If a is close to 0, it means that this example
should be ignored. We develop a three-level framework (involving three learning stages) to
automatically learn these ignoring variables. In the first learning stage, we pretrain a data
encoder V by minimizing a weighted pretraining loss: the loss defined on each pretraining
example is multiplied with the ignoring variable of this example. If an example x should be
ignored, its a is close to 0; multiplying a to the loss of x makes this loss close to 0, which
effectively excludes x from the pretraining process. In this stage, these ignoring variables
A = {a} are fixed. They will be updated at a later stage. Note that the optimally pretrained
encoder V ∗(A) is a function of A since V ∗(A) is a function of the weighted loss and the
weighted loss is a function of A. In the second stage, we train another data encoder W on
the finetuning dataset. During the training of W , we encourage it to be close to the optimal
encoder V ∗(A) trained in the first stage by minimizing the squared L2 distance between W
and V ∗(A). V ∗(A) contains information distilled from non-ignored pretraining examples.
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Encouraging W to be close to V ∗(A) effectively achieves the goal of pretraining W on these
non-ignored examples. Note that the optimally trained encoder W ∗(V ∗(A)) is a function
of V ∗(A). In the third stage, we apply W ∗(V ∗(A)) to make predictions on the validation
set of the target task and update A by minimizing the validation loss. To summarize, we
aim to learn an ignoring variable for each pretraining example so that the data encoder
pretrained on non-ignored examples achieves the optimal performance on the validation set
after finetuning. The three stages are conducted end-to-end in a joint manner. Experiments
on various datasets demonstrate the effectiveness of our method.

The major contributions of this paper is as follows:

• Drawing inspirations from the ignoring-driven learning methodology of humans, we
propose a novel machine learning framework called learning by ignoring (LBI). Our
framework automatically identifies pretraining data examples that have large domain
shift from the target distribution by learning an ignoring variable for each example
and excludes them from the pretraining process.

• We formulate LBT as a multi-level optimization framework involving three learning
stages: pretraining by minimizing the losses weighed by ignoring variables; finetuning;
updating the ignoring variables by minimizing the validation loss.

• An efficient gradient-based algorithm is developed to solve the LBI problem.

• Experiments on various datasets demonstrate the effectiveness of our method.

2. Related Works

Data Re-weighting and Selection. Several approaches have been proposed for data se-
lection. Matrix column subset selection (Deshpande and Rademacher, 2010; Boutsidis et al.,
2009) aims to select a subset of data examples that can best reconstruct the entire dataset.
Similarly, coreset selection (Bachem et al.) chooses representative training examples in a
way that models trained on the selected examples have comparable performance with those
trained on all training examples. These methods perform data selection and model training
separately. As a result, the validation performance of the model cannot be used to guide
data selection. Ren et al. (2018) proposes a meta learning method to learn the weights of
training examples by performing a meta gradient descent step on the weights of the current
mini-batch of examples. Shu et al. (2019) propose a method which can adaptively learn
an explicit weighting function directly from data. These works focus on selecting training
(finetuning) examples using a bi-level optimization framework while our work focuses on
selecting pretraining examples using a three-level optimization framework.

Pretraining. Arguably, the most popular pretraining approach is supervised pretraining
(SP) (Pan and Yang, 2009), which learns the weight parameters of a representation network
by solving a supervised source task, i.e., correctly mapping input data examples to their
labels (e.g., classes, segmentation masks, etc.). Recently, self-supervised learning (Oord
et al., 2018; He et al., 2019; Chen et al., 2020; Misra and Maaten, 2020), as an unsupervised
pretraining approach, has achieved promising success and outperforms supervised pretrain-
ing in a wide range of applications. Similar to SP, self-supervised pretraining (SSP) also

3



solves predictive tasks. But the output labels in SSP are constructed from the input data,
rather than annotated by humans as in SP. The auxiliary predictive tasks in SSP could
be predicting whether two augmented data examples originate from the same original data
example (Hénaff et al., 2019; He et al., 2019; Chen et al., 2020; Misra and Maaten, 2020),
inpainting masked regions in images (Pathak et al., 2016), etc.

Domain Adaptation. Domain adaptation (Pan et al., 2010; Ganin et al., 2016a; Bous-
malis et al., 2017) considers the problem of transferring knowledge between two domains
with distinctive data distributions. There are mainly two approaches to address the do-
main adaptation problem. One way is by using metric learning, where a distance metric is
defined to measure the distribution discrepancy between domains and the target of training
is to minimize the distance (Sun and Saenko, 2016; Long et al., 2017c; Ben-David et al.,
2010). Another way is by doing adversarial domain adaptation (Hoffman et al., 2018a; Long
et al., 2017a). Instead of resorting to metric learning which explicitly optimizes a similarity
function, it learns a domain discriminator and a feature learning network adversarially. The
domain discriminator is trained to tell whether an instance is from the source domain or
the target domain, while the feature learning network learns domain-invariant features and
is trained to fool the domain discriminator.

Apart from the classic domain adaptation settings, in recent years, there are also works
focusing on unsupervised domain adaptation (UDA), which gives predictions for the unla-
beled target data, where labels only exist in the source data. There are mainly three types
of methods for unsupervised domain adaptation in computer vision. The first one uses a
model trained on the labeled source data to estimate labels on the target data, then trains
the model using pseudo target labels (Kang et al., 2019); the second one is to induce align-
ment between the source and the target domains in feature spaces, e.g. (Long et al., 2015b,
2017d) propose to minimize the Maximum Mean Discrepancy (MMD) between the source
and target domain in the deep neural network; The third type uses generative models to
transform the source images to resemble the target images (Hoffman et al., 2018b), which
operates on image pixels rather than on an intermediate representation space like the first
type of methods. Different from these approaches for UDA, in this paper, we use labels both
from source dataset and target dataset. We are also the first to use learning by ignoring on
domain adaptation problems.

3. Methods

Our framework aims to learn a machine learning model for accomplishing a target task T .
The ML model is composed of a data encoder W and a task-specific head H. For instance,
in a text classification task, the data encoder can be a BERT (Devlin et al., 2018) model
which produces an embedding of the input text and the classification head can be a multi-
layer perceptron which predicts the class label of this text based on its embedding. The
learning is performed in two phrases: pretraining and finetuning. In the pretraining phrase,

we pretrain the data encoder W on a pretraining dataset D(pre) = {d(pre)i }Mi=1 by solving
a pretraining task P . P could be the same as T . In this case, W and the task-specific
head H are trained jointly on D(pre). P could be different from T as well. Under such
circumstances, P has its own task-specific head J while sharing the same encoder W with
T . J and W are trained jointly on D(pre). Oftentimes, some pretraining data examples have

4



Table 1: Notations in learning by ignoring
Notation Meaning

M Number of pretraining examples
N Number of finetuning examples
O Number of validation examples

d
(pre)
i The i-th pretraining data example

ai Ignoring variable of d
(pre)
i in pretraining

bi Ignoring variable of d
(pre)
i in finetuning

d
(tr)
i The i-th finetuning data example

d
(val)
i The i-th validation example
W Encoder in finetuning
V Encoder in pretraining
H Head of the target task
J Head of the pretraining task

a domain shift with the finetuning dataset. This domain shift renders these examples not
suitable for pretraining the encoder. We aim to automatically identify such examples using
ignoring variables and exclude them from the pretraining process. To achieve this goal, we
multiply the loss of a pretraining example x with an ignoring variable a ∈ [0, 1]. If a is close
to 0, it means that this example should be ignored; accordingly, the loss (after multiplied
with a) is made close to 0, which effectively excludes x from the pretraining process. We
aim to automatically learn the values of these ignoring variables, which will be detailed

later. After pretraining, the encoder is finetuned on the training dataset D(tr) = {d(tr)i }Ni=1.
For mathematical convenience, we formulate “pretraining” in the following way: in the
pretraining phrase, we train another encoder V ; in the finetuning phrase, we encourage
the encoder W to be close to the optimally pretrained encoder V ∗ where the closeness is
measured using squared L2 distance ‖W − V ∗‖22.

Overall, the learning is performed in three stages. In the first stage, the model trains
the encoder V and the head J specific to the pretraining task P on the pretraining dataset

D(pre) = {d(pre)i }Mi=1, with the ignoring variables A = {ai}Mi=1 fixed:

V ∗(A) = minV,J

M∑
i=1

aiL(V, J, d
(pre)
i ). (1)

After training, the optimal head is discarded. The optimal encoder V ∗(A) is retained for
future use. The ignoring variables A are needed to make predictions and calculate training
losses. But they should not be updated in this stage. Otherwise, the values of A will all be

zero. Note that V ∗(A) is a function of A since it is a function of
∑M

i=1 aiL(V, J, d
(pre)
i ) and∑M

i=1 aiL(V, J, d
(pre)
i ) is a function of A.

In the second stage, the model trains its data encoder W and task-specific head H by
minimizing the training loss of the target task T . During training, W is encouraged to be
close to V ∗(A) trained in the pretraining phrase by minimizing the squared L2 distance
‖W − V ∗(A)‖22. This implicitly achieves the effect of pretraining W on the non-ignored
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pretraining examples. The optimization problem in the second stage is:

W ∗(V ∗(A)), H∗ = min
W,H

N∑
i=1

L(W,H, d
(tr)
i ) + λ‖W − V ∗(A)‖22, (2)

where λ is a tradeoff parameter. Note that W ∗(V ∗(A)) is a function of V ∗(A) since it is a
function of ‖W − V ∗(A)‖22, which is a function of V ∗(A).

In the third stage, we use the trained model consisting of W ∗(V ∗(A)) and H∗ to make
predictions on the validation dataset D(val) of the target task T . We update A by minimizing
the validation loss.

minA

O∑
i=1

L(W ∗(V ∗(A)), H∗, d
(val)
i ). (3)

The three stages mutually influence each other: V ∗(A) trained in the first stage is needed
to calculate the loss function in the second stage; W ∗(V ∗(A)) trained in the second stage
is needed to calculate the objective function in the third stage; the ignoring variables A
updated in the third stage alter the loss function in the first stage, which subsequently
changes V ∗(A) and W ∗(V ∗(A)) as well.

Putting the three learning stages together, we formulate LBI as the following three-level
optimization problem:

minA
∑O

i=1 L(W ∗(V ∗(A)), H∗, d
(val)
i )

s.t. W ∗(V ∗(A)), H∗ = minW,H
∑N

i=1 L(W,H, d
(tr)
i ) + λ‖W − V ∗(A)‖22

V ∗(A) = minV,J
∑M

i=1 aiL(V, J, d
(pre)
i )

(4)

This formulation consists of three optimization problems. The two inner optimization prob-
lems (on the constraints) represent the first and second learning stage respectively. The
outer optimization problem represents the third learning stage. The three stages are illus-
trated in Figure 2.

If the pretaining task and target task are the same, in the second stage we can use the
pretraining data to train W as well. Due to domain difference, not all pretraining examples
are suitable for training W . To exclude such examples, we associate each pretraining exam-

ple d
(pre)
i with an ignoring variable bi ∈ [0, 1]. Note that bi is different from ai. bi is used to

determine whether d
(pre)
i should be ignored during training W and ai is used to determine

whether d
(pre)
i should be ignored during training V . The corresponding formulation is:

min
A,B

∑O
i=1 L(W ∗(V ∗(A), B), H∗(B), d

(val)
i )

s.t. W ∗(V ∗(A), B), H∗(B) = min
W,H

N∑
i=1

L(W,H, d
(tr)
i ) + λ‖W − V ∗(A)‖22 + γ

M∑
i=1

biL(W,H, d
(pre)
i )

V ∗(A) = min
V,J

∑M
i=1 aiL(V, J, d

(pre)
i )

(5)
where γ is a tradeoff parameter and B = {bi}Mi=1. Note that W ∗ and H∗ are both functions
of B.
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Ignoring
variables 𝐴Head 𝐽 Encoder 𝑉

Pretraining data

Pretraining

Weighted pretraining loss

Head H Encoder 𝑊

Finetuning data

Regularized
finetuning loss

Encoder 𝑉∗Finetuning

Head 𝐻∗ Encoder 𝑊∗

Validation data

Validation loss

Validation

Figure 2: Learning by ignoring. Along the solid arrows, predictions are made and
train/validation losses are calculated. Along the dotted arrows, gradients are
calculated and parameters (including ignoring variables and network weights) are
updated.

3.1. Optimization Algorithm

In this section, we develop a gradient-based optimization algorithm to solve the three-
level optimization problem in Eq.(4). Drawing inspirations from (Liu et al., 2018), we
approximate V ∗(A) using:

V ′ = V − ξV∇V
M∑
i=1

aiL(V, J, d
(pre)
i ), (6)

where ξV is a learning rate. We update J as:

J ← J − ξJ
M∑
i=1

ai∇JL(V, J, d
(pre)
i ). (7)

Substituting V ′ into
∑N

i=1 L(W,H, d
(tr)
i ) + λ‖W − V ∗(A)‖22, we obtain an approximated

objective
∑N

i=1 L(W,H, d
(tr)
i ) + λ‖W − V ′‖22. Then we calculate the gradient of OW w.r.t

7



to W and approximate W ∗(V ∗(A)) using one-step gradient descent update of W :

W ′ = W − ξW∇W (
∑N

i=1 L(W,H, d
(tr)
i ) + λ‖W − V ′‖22) (8)

Similarly, we approximate H∗ with:

H ′ = H − ξH∇H(
∑N

i=1 L(W,H, d
(tr)
i ) + λ‖W − V ′‖22) (9)

Finally, we substitute W ′ and H ′ into
∑O

i=1 L(W ∗(V ∗(A)), H∗, d
(val)
i ) and get OA =

∑O
i=1

L(W ′, H ′, d
(val)
i ). We calculate the gradient of OA w.r.t A and update A by descending the

gradient:

A ← A− ξA∇A
∑O

i=1 L(W ′, H ′, d
(val)
i )

(10)

where
∂V ′

∂A =
∂(V−ξV∇V

∑M
i=1 aiL(V,J,d

(pre)
i ))

∂A

= −ξV∇2
A,V

∑M
i=1 aiL(V, J, d

(pre)
i ),

(11)

and
∂W ′

∂V ′ =
∂(W−ξW (

∑N
i=1∇WL(W,H,d

(tr)
i )+2λ(W−V ′)))

∂V ′

= 2ξWλI,
(12)

where I is an identity matrix.
For the formulation in Eq.(5), the optimization algorithm is similar. V ∗(A) is approxi-

mated using Eq.(6). We approximate W ∗(V ∗(A), B) using

W ′ = W − ξW∇W (
N∑
i=1

L(W,H, d
(tr)
i ) + λ‖W − V ∗(A)‖22 + γ

M∑
i=1

biL(W,H, d
(pre)
i )), (13)

and approximate H∗(B) using

H ′ = H − ξH∇H(
N∑
i=1

L(W,H, d
(tr)
i ) + λ‖W − V ∗(A)‖22 + γ

M∑
i=1

biL(W,H, d
(pre)
i )). (14)

The update of A is the same as that in Eq.(10). The update of B is as follows:

B ← B − ξB∇B
∑O

i=1 L(W ′, H ′, d
(val)
i )

= B − ξB
∑O

i=1(
∂W ′

∂B ∇W ′L(W ′, H ′, d
(val)
i ) + ∂H′

∂B ∇H′L(W ′, H ′, d
(val)
i )), (15)

where

∂W ′

∂B
= −ξWγ∇2

B,W

M∑
i=1

biL(W,H, d
(pre)
i ), (16)

and

∂H ′

∂B
= −ξHγ∇2

B,H

M∑
i=1

biL(W,H, d
(pre)
i ). (17)
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Table 2: Accuracy (%) on the Office31 dataset. In the A → B notion, A denotes the
source data and B denotes the target data. 1, 2, 3 in DAN, DANN, CDAN, MME
denote unsupervised, semi-supervised, and supervised domain adaptation settings
respectively.

A→W A→D D→W D→A W→D W→A Average

DAN-1 (Long et al., 2015a) 78.11 67.27 91.12 50.66 98.18 53.85 73.20
DAN-2 (Long et al., 2015a) 95.86 98.18 96.45 86.12 97.27 87.05 93.49
DAN-3 (Long et al., 2015a) 97.04 96.36 97.04 88.74 100.0 87.24 94.40
DANN-1 (Ganin et al., 2016b) 78.70 68.18 87.57 46.72 94.55 50.28 71.00
DANN-2 (Ganin et al., 2016b) 94.08 93.64 94.67 85.55 95.45 84.99 91.40
DANN-3 (Ganin et al., 2016b) 96.45 94.55 97.63 86.68 100.0 85.37 93.45
CDAN-1 (Long et al., 2017b) 83.84 71.82 94.08 56.47 97.27 60.98 77.41
CDAN-2 (Long et al., 2017b) 94.67 95.45 96.45 86.68 97.27 84.80 92.55
CDAN-3 (Long et al., 2017b) 97.04 95.45 97.63 85.93 99.09 87.24 93.73
MME-1 (Saito et al., 2019) 60.95 50.91 88.17 40.71 95.45 41.28 62.91
MME-2 (Saito et al., 2019) 95.86 96.36 96.45 84.05 99.09 85.74 92.93
MME-3 (Saito et al., 2019) 94.67 90.90 97.63 87.24 100.0 84.43 92.48

Pretrain Finetune

Ablation 1 No No source 96.45 97.48 97.63 85.46 99.09 85.37 93.58
Ablation 2 No Full source 96.45 93.64 97.63 87.43 99.09 86.12 93.39
Ablation 3 No Weighted source 98.22 97.27 97.63 86.68 98.18 86.87 94.14
Ablation 4 Full source No source 97.04 97.27 97.63 85.74 98.18 86.38 93.71
Ablation 5 Full source Full source 95.86 95.45 97.04 87.05 100.0 86.30 93.62
Ablation 6 Full source Weighted source 97.63 96.36 97.63 88.18 99.09 87.99 94.48
Ablation 7 Weighted source No source 96.45 99.09 97.04 86.49 99.09 86.49 94.11
Ablation 8 Weighted source Full source 95.86 91.82 97.63 88.37 100.0 87.05 93.46

Full LBI (ours) Weighted source Weighted source 98.82 99.09 97.04 87.80 99.09 86.87 94.79

Algorithm 1 Optimization algorithm for LBI

while not converged do
1. Update encoder V in pretraining phrase using Eq.(6)
2. Update head J in pretraining using Eq.(7)
3. Update encoder W in finetuning phrase using Eq.(8)
4. Update head H in finetuning using Eq.(9)
5. Update ignoring variables A using Eq.(10)

end

4. Experiments

In this section, we present experimental results. Please refer to the supplements for more
hyperparameter settings and additional results.

4.1. Datasets

We perform experiments on three datasets: OfficeHome (Venkateswara et al., 2017) Of-
fice31 (Saenko et al., 2010), and ImageCLEF (Müller et al., 2010). OfficeHome consists of
15,500 images of daily objects from 65 categories and 4 domains, including Art (Ar), Clipart

9



Table 3: Accuracy (%) on the ImageCLEF dataset. In the A → B notion, A denotes the
source data and B denotes the target data. 1, 2, 3 in DAN, DANN, CDAN, MME
denote unsupervised, semi-supervised, and supervised domain adaptation settings
respectively.

C→P C→I P→C P→I I→C I→P Average

DAN-1 (Long et al., 2015a) 68.15 76.40 89.19 78.88 88.51 66.88 78.00
DAN-2 (Long et al., 2015a) 61.78 83.85 93.92 83.85 92.57 63.06 79.84
DAN-3 (Long et al., 2015a) 64.33 81.37 93.25 85.71 93.24 68.79 81.12
DANN-1 (Ganin et al., 2016b) 61.78 73.29 84.46 77.02 75.68 66.24 73.08
DANN-2 (Ganin et al., 2016b) 63.06 83.23 93.92 85.71 93.24 64.33 80.58
DANN-3 (Ganin et al., 2016b) 68.43 83.85 95.27 88.20 91.89 69.26 82.82
CDAN-1 (Long et al., 2017b) 64.97 70.81 70.27 78.26 90.54 64.33 73.20
CDAN-2 (Long et al., 2017b) 64.42 85.71 95.27 85.09 95.27 67.52 82.21
CDAN-3 (Long et al., 2017b) 64.97 87.58 93.24 89.44 94.59 67.52 82.89
MME-1 (Saito et al., 2019) 57.96 68.32 75.00 72.05 85.14 64.97 70.57
MME-2 (Saito et al., 2019) 61.15 80.12 93.92 81.99 93.92 59.97 78.51
MME-3 (Saito et al., 2019) 64.97 80.75 88.51 84.47 91.22 61.78 78.62

Pretrain Finetune

Ablation 1 No No source 59.87 86.34 91.89 84.47 91.22 65.61 79.90
Ablation 2 No Full source 68.02 86.34 93.24 86.04 90.54 67.39 81.93
Ablation 3 No Weighted source 67.52 88.20 94.59 84.47 95.95 66.88 82.94
Ablation 4 Full source No source 62.42 87.28 93.87 83.79 93.72 63.43 80.75
Ablation 5 Full source Full source 68.79 86.96 94.59 85.09 93.92 68.15 82.92
Ablation 6 Full source Weighted source 68.15 89.44 95.45 86.95 97.30 68.15 84.24
Ablation 7 Weighted source No source 63.06 87.58 93.23 86.34 93.24 64.33 81.30
Ablation 8 Weighted source Full source 66.88 85.09 93.24 85.71 94.59 66.88 82.07

Full LBI (ours) Weighted source Weighted source 70.70 89.44 93.24 87.58 95.95 70.06 84.50

(Cl), Product (Pr), and Real-World (Rw). Each category has an average of about 70 images
and a maximum of 99 images. Office31 contains 4,110 images belonging to 31 classes and 3
domains, including Amazon website (A), web camera (W), and digital SLR camera (D). The
number of images in domain A, W, and D is 2817, 795, and 498 respectively. ImageCLEF
consists of 1,800 images from 3 datasets (domains) with 12 classes, including Caltech-256
(C), ILSVRC2012 (I), and Pascal VOC2012 (P). We split OfficeHome, Office31, and Im-
ageCLEF into train/validation/test sets with a ratio of 5:3:2, 6:2:2, and 6:2:2 respectively.
For each dataset, we perform domain adaptation (Long et al., 2015a) studies: one domain
is selected as source and another domain is selected as target; data in the source domain
is leveraged to help with model training in the target domain. In the learning-by-ignoring
framework, source data is used as pretraining data and target data is used as finetuning
data.

4.2. Baselines

We compare with the following baselines. For each baseline, we experimented with three
domain adaptation (DA) settings: 1) unsupervised DA, where the labels of source examples
are used for DA and the labels of target examples are not; 2) semi-supervised DA, where
the labels of target examples are used for DA and the labels of source examples are not; 3)
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Table 4: Accuracy (%) on the OfficeHome dataset.
Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar

DAN-1 (Long et al., 2015a) 30.86 46.25 54.19 33.54 41.22 45.03 33.33
DAN-2 (Long et al., 2015a) 67.66 86.77 72.74 57.51 87.59 69.50 62.14
DAN-3 (Long et al., 2015a) 68.46 87.94 75.53 59.05 85.13 72.29 60.29
DANN-1 (Ganin et al., 2016b) 33.37 43.56 55.75 40.95 47.66 50.50 37.24
DANN-2 (Ganin et al., 2016b) 67.09 83.37 73.63 55.56 82.79 69.83 58.64
DANN-3 (Ganin et al., 2016b) 68.80 85.60 72.96 60.08 86.53 72.74 59.88
CDAN-1 (Long et al., 2017b) 37.49 49.77 59.55 41.56 51.99 54.41 41.77
CDAN-2 (Long et al., 2017b) 68.23 84.43 73.41 60.49 84.66 71.84 59.67
CDAN-3 (Long et al., 2017b) 67.31 86.65 73.52 61.93 84.66 71.06 61.93
MME-1 (Saito et al., 2019) 28.11 40.40 52.40 29.84 35.71 40.34 29.22
MME-2 (Saito et al., 2019) 68.23 84.66 70.73 55.35 85.01 66.37 58.44
MME-3 (Saito et al., 2019) 69.60 85.01 71.96 56.97 84.66 67.93 52.47

Pretrain Finetune

Ablation 1 No No source 66.40 87.47 73.18 65.23 87.24 72.96 64.40
Ablation 2 No Full source 68.69 85.36 74.75 60.08 86.07 72.29 59.47
Ablation 3 No Weighted source 68.00 86.42 75.08 62.14 86.53 73.52 63.37
Ablation 4 Full source No source 69.71 87.94 76.65 67.28 88.17 76.54 65.02
Ablation 5 Full source Full source 67.54 85.13 74.75 60.08 84.54 71.17 61.11
Ablation 6 Full source Weighted source 68.00 84.66 74.64 61.73 86.3 71.84 63.17
Ablation 7 Weighted source No source 70.51 87.70 76.20 69.75 89.34 77.65 68.52
Ablation 8 Weighted source Full source 67.66 85.25 74.41 61.52 86.77 73.30 61.52

Full LBI (ours) Weighted source Weighted source 69.03 84.66 75.42 61.32 85.83 73.52 62.76

Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Average

DAN-1 (Long et al., 2015a) 28.69 52.96 51.03 33.37 65.69 43.01
DAN-2 (Long et al., 2015a) 70.40 74.19 65.23 68.11 86.07 72.33
DAN-3 (Long et al., 2015a) 70.51 75.75 63.79 69.14 86.89 72.90
DANN-1 (Ganin et al., 2016b) 33.37 56.54 52.67 42.74 70.73 47.09
DANN-2 (Ganin et al., 2016b) 65.60 72.29 60.70 68.00 86.07 70.30
DANN-3 (Ganin et al., 2016b) 68.80 73.18 64.61 68.46 87.70 72.45
CDAN-1 (Long et al., 2017b) 41.14 58.21 56.58 41.83 73.54 50.65
CDAN-2 (Long et al., 2017b) 69.49 73.41 63.58 67.54 88.06 72.07
CDAN-3 (Long et al., 2017b) 70.74 72.63 65.23 69.94 87.35 72.75
MME-1 (Saito et al., 2019) 26.97 48.04 46.71 33.71 61.71 39.43
MME-2 (Saito et al., 2019) 67.31 69.50 59.26 66.51 86.18 69.80
MME-3 (Saito et al., 2019) 69.14 73.07 62.96 68.80 85.83 70.70

Pretrain Finetune

Ablation 1 No No source 68.91 73.85 60.70 69.14 86.77 73.02
Ablation 2 No Full source 67.77 74.75 66.16 69.60 87.47 72.71
Ablation 3 No Weighted source 69.94 74.53 65.02 70.17 89.23 73.66
Ablation 4 Full source No source 69.71 76.20 68.96 69.37 88.06 75.30
Ablation 5 Full source Full source 66.74 71.84 64.61 66.63 87.00 71.76
Ablation 6 Full source Weighted source 66.97 74.19 65.43 67.54 88.41 72.74
Ablation 7 Weighted source No source 70.63 77.65 67.90 69.83 90.52 76.35
Ablation 8 Weighted source Full source 67.43 74.19 68.31 68.34 86.18 72.91

Full LBI (ours) Weighted source Weighted source 69.94 74.41 67.28 67.89 86.18 73.19

supervised DA, where both the labels of source examples and target examples are used for
DA.

• DAN (Long et al., 2015a), which matches mean embeddings of different domain
distributions in a reproducing kernel Hilbert space.

• DANN (Ganin et al., 2016b), which uses adversarial learning to learn representations
so that source domain and target domain are not distinguishable.

• CDAN (Long et al., 2017b), which conditions adversarial adaptation on discrimina-
tive information.
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• MME (Saito et al., 2019), which is a semi-supervised domain adaptation method
based on minimax entropy.

4.3. Experimental Settings

We use ResNet-34 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009) as the
backbone of our methods. Our models were trained using the Adam (Kingma and Ba,
2014) optimizer, with a batch size of 64, a learning rate of 1e-4 for the feature extractor, a
learning rate of 1e-3 for the classifier, a weight decay of 5e-4, for 50 epochs. The learning
rate was decreased by a factor of 10 after 40 epochs. In learning by ignoring, γ is set to 1
for all datasets; λ is set to 7e-3 for OfficeHome, 5e-4 for Office31, and 3e-3 for ImageCLEF.

4.4. Results

Table 2 shows the results on the Office31 dataset. In the A → B notion, A denotes the
source dataset and B denotes the target dataset. As can be seen, our proposed LBI method
achieves better averaged accuracy than the domain adaptation (DA) baselines including
DAN, DANN, CDAN, and MME. The major reason is that our method automatically
identifies source examples that are not suitable for pretraining and excludes them from
the pretraining process. In contrast, these DA baselines adapt all source examples into
the target domain and lack the ability of explicitly identifying source examples that are
not suitable for domain adaptation. Table 2 shows the results on the ImageCLEF dataset.
Our proposed LBI achieves better average accuracy than the DA baselines, thanks to its
mechanism of ignoring source examples that are not suitable for helping with the learning on
the target domain. Table 4 shows the results on the OfficeHome dataset. LBI outperforms
all DA methods, which further demonstrates the effectiveness of our proposed learning-
by-ignoring framework. On this dataset, using source dataset for finetuning leads to worse
performance. This is probably because the source domains in this dataset have large domain
shifts with the target domains. Therefore, using source data directly for finetuning may not
be proper. However, using non-ignored source data for pretraining is helpful.

4.5. Ablation Studies

We perform ablation studies to check the effectiveness of individual modules in our frame-
work. Unless otherwise notified, γ was set to 1 for all three datasets; λ was set to 7e-3 for
OfficeHome, 5e-4 for Office31, and 3e-3 for ImageCLEF.

• Ablation setting 1: no pretraining, finetune on target data only. We ignore the source
dataset and directly train a model on the target dataset. This is equivalent to setting
both λ and γ in LBI (Eq.(5)) to 0.

• Ablation setting 2: no pretraining, finetune on target data and all source examples.
There is no pretraining; we combine the source dataset and the target dataset as a
single dataset, then train a model on the combined dataset. This is equivalent to
setting λ to 0 and setting all ignoring variables in B to 1 in LBI (Eq.(5)).

• Ablation setting 3: no pretraining, finetune on target data and weighted source ex-
amples. There is no pretraining; the model is directly trained on all target examples
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and selected source examples. This is equivalent to setting the tradeoff parameter λ
to 0 in the LBI framework (Eq.(5)).

• Ablation setting 4: pretrain on all source examples, finetune on target data only.
We first train a model M1 on the full source dataset. Then we train a model M2

on the target dataset. When training M2, we encourage its weights to be close to
the optimally trained weights of M1 by minimizing their squared L2 distance. This is
equivalent to setting γ to 0 and setting all ignoring variables in A to 1 in LBI (Eq.(5)).

• Ablation setting 5: pretrain on all source examples, finetune on target data and all
source examples. This setting is similar to ablation 4, except that M2 is trained on
the target and full source dataset. This is equivalent to setting all ignoring variables
in A and B to 1 in LBI (Eq.(5)).

• Ablation setting 6: pretrain on all source examples, finetune on target data and
weighted source examples. This setting is similar to ablation 4, except that M2 is
trained on the target and weighted source dataset. This is equivalent to setting all
ignoring variables in A to 1 in LBI (Eq.(5)).

• Ablation setting 7: pretrain on weighted source examples, finetune on target data
only. This is equivalent to setting the tradeoff parameter γ to 0 in the LBI framework
(Eq.(5)).

• Ablation setting 8: pretrain on weighted source examples, finetune on target data
and all source examples. In this setting, all source examples are used for finetuning,
without ignoring any of them. This is equivalent to setting all ignoring variables in B
to 1 in the LBI framework (Eq.(5)).

• Ablation study on λ. We explore how the performance varies as the tradeoff parameter
λ in Eq.(5) increases. In this study, the other tradeoff parameter γ in Eq.(5) is set
to 1. We report the average accuracy on the validation set. The experiments are
conducted on ImageCLEF and OfficeHome. Please refer to the supplements for results
on OfficeHome.

• Ablation study on γ. We explore how the performance varies as γ increases. We
report the average accuracy on the validation set. The experiments are conducted
on ImageCLEF and OfficeHome. In this study, the other tradeoff parameter λ is set
to 3e-3 for ImageCLEF and 7e-3 for OfficeHome. Please refer to the supplements for
results on OfficeHome.

Table 2 shows the ablation study results on the Office31 dataset. From this table, we
make the following observations. First, during pretraining, ignoring certain source ex-
amples is better than using all source examples. For instance, ablation 7 achieves better
average accuracy than ablation 4 where the former performs pretraining on weighted source
data and the latter uses all source examples for pretraining. The rest settings of ablation 7
and 4 are the same. As another example, our proposed full LBI framework achieves higher
average accuracy than ablation 6 where the former performs ignoring of certain source ex-
amples during pretraining while the latter does not. The rest settings of full LBI are the
same as those of ablation 6. The reason is that due to domain shift between source and
target, some source examples are largely different from the target examples; if using such
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source examples for pretraining, the pretrained encoder may be biased to the source distri-
bution and cannot well represent target examples. Our proposed approaches automatically
identify source examples that have large domain discrepancy with the target and remove
them from the pretraining process. Consequently, the pretrained encoder with ignoring
is better than the one pretrained using all source examples without ignoring. Second,
when using source examples to finetune the encoder (together with target examples), it is
beneficial to ignore some source examples in the finetuning process. As can be seen, in
terms of average accuracy, the full LBI framework performs better than ablation 8 where
the former ignores certain source examples during finetuning while the latter does not. The
rest settings of these two methods are the same. Similarly, ablation 6 outperforms ablation
5; ablation 3 achieves higher average accuracy than ablation 2. Again, the reason is that
due to domain shift, some source examples are not suitable for finetuning the encoder of
the target dataset. Our proposed ignoring approach excludes such source examples from
finetuning, hence achieving better performance than not using ignoring. Third, without
the ignoring mechanism, using source examples for finetuning is harmful. For example, ab-
lation 2 which uses all source samples for finetuning achieves lower average accuracy than
ablation 1 which uses no source example for finetuning. Similarly, ablation 5 achieves worse
average accuracy than ablation 4; ablation 8 performs less well than ablation 7. However,
once we add the ignoring mechanism and uses non-ignored source examples for finetuning,
the resulting average accuracy is higher than not using any source examples for finetuning,
as can be seen from the average accuracy results that ablation 3 outperforms ablation 1;
ablation 6 outperform ablation 4; and the full LBI method outperforms ablation 7. This
further demonstrates the effectiveness of our proposed ignoring mechanism, which can 1)
identify sources examples that are close to the target domain and use them for finetuning;
2) recognize source example having large domain shifts from the target and exclude them
from finetuning. In contrast, the baseline methods can only do the black-or-white choice:
either using all source examples for finetuning or not using any source example at all, which
hence leads to inferior performance.

Table 3 shows the ablation results on ImageCLEF. From this table, we make similar
observations as those in Table 2. First, in pretraining, the ignoring mechanism which
identifies source examples that have large domain shifts from the target and excludes them
from the pretraining process achieves better performance than not using ignoring. This is
evidenced from the average accuracy results that ablation 7 outperforms ablation 4; our
full LBI framework achieves better accuracy than ablation 6. Second, during finetuning,
ignoring certain source examples works better than using all source examples. This is
demonstrated by the average accuracy results that the full LBI outperforms ablation 8;
ablation 6 outperforms ablation 5; and ablation 3 outperforms ablation 2.

Table 4 shows the ablation results on OfficeHome. The observations from these results
are similar to those made in Table 2 and 3. First, performing ignoring on source during
pretraining is beneficial, as seen from the average accuracy results that ablation 7 outper-
forms ablation 4; ablation 8 outperforms ablation 5; and the full LBI outperforms ablation
6. Second, performing ignoring on source during finetuning is advantageous than not using
ignoring, as demonstrated by the average accuracy results that ablation 3 performs better
than ablation 2; ablation 6 outperforms ablation 5; and the full LBI framework outperforms
ablation 8.
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Figure 3: (Left) How accuracy changes as λ increases. (Right) How accuracy changes as γ
increases.

Figure 3(Left) shows how the average accuracy varies as the tradeoff parameter λ in-
creases. As can be seen, when λ increases from 0.001 to 0.007, the accuracy increases. This
is because a larger λ results in a stronger effect of pretraining. The pretrained encoder
captures information of non-ignored source examples and such information is valuable for
finetuning. However, if λ continues to increase, the accuracy starts to decrease. The reason
is that an excessively large λ leads to too much emphasis on the pretrained encoder and
pays less attention to the finetuning on the target data. Figure 3(Right) shows how the
average accuracy varies as the tradeoff parameter γ increases. When γ increases from 0.001
to 0.01, the accuracy increases. This is because a larger γ imposes a stronger utilization of
non-ignored source examples as additional data for finetuning. However, further increas-
ing γ leads to a worse accuracy. The reason is that if γ is too large, the source data will
dominate target data.

5. Conclusions

In this paper, we propose a novel machine learning framework – learning by ignoring (LBI),
motivated by the ignoring-driven learning methodology of humans. In LBI, an ignoring
variable is learned for each pretraining data example to identify examples that have sig-
nificant domain difference with the target distribution. We formulate LBI as a three-level
optimization problem which consists of three learning stages: an encoder is trained by min-
imizing a weighted pretraining loss where the loss of each data example is weighted by its
ignoring variable; another encoder is finetuned where during the finetuning this encoder
is encouraged to be close to the previously pretrained encoder; the ignoring variables are
updated by minimizing the validation loss calculated using the finetuned encoder. We con-
duct experiments on various datasets where the results demonstrate the effectiveness of our
method.
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