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Abstract

The proliferation of distributed energy assets necessitates the provision of flexibility to efficiently operate modern distribution

systems. In this paper, we propose a flexibility market through which the DSO may acquire flexibility services from asset

aggregators in order to maintain network voltages and currents within safe limits. A max-min fair formulation is proposed

for the allocation of flexibility. Since the DSO is not aware of each aggregator’s local flexibility costs, we show that strategic

misreporting can lead to severe loss of efficiency. Using mechanism design theory, we provide a mechanism that makes it a payoff-

maximizing strategy for each aggregator to make truthful bids to the flexibility market. While typical truthful mechanisms

only work when the objective is the maximization of Social Welfare, the proposed mechanism lets the DSO achieve incentive

compatibility and optimality for the the max-min fairness objective.
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distribution systems. In this paper, we propose a flexibility
market through which the DSO may acquire flexibility services
from asset aggregators in order to maintain network voltages
and currents within safe limits. A max-min fair formulation is
proposed for the allocation of flexibility. Since the DSO is not
aware of each aggregator’s local flexibility costs, we show that
strategic misreporting can lead to severe loss of efficiency. Using
mechanism design theory, we provide a mechanism that makes
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NOMENCLATURE

Sets

Ωb Set of nodes / aggregators.

Ωl Set of lines.

ΩT Set of time periods.

Parameters

λi,t Parameter of flexibility cost at node i, period t
[$/kWh2].

Ki,t Maximum flexibility factor at node i, period t.

Ki,t Minimum flexibility factor at node i, period t.

Iij Maximum current magnitude for line ij [A].

PD
i,t Active power demand at node i, period t [kW].

QD
i,t Reactive power demand at node i, period t [kvar].

Rij Resistance of line ij [mΩ].

V Maximum voltage magnitude [kV].

V Minimum voltage magnitude [kV].

Xij Reactance of line ij [mΩ].
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Variables

Ki,t Flexibility factor at node i, period t.

Isqrij,t Squared current magnitude at line ij, period t [A2].

Pij,t Active power flow at line ij, period t [kW].

P S
i,t Active power injection at substation i, period t [kW].

Qij,t Reactive power flow at line ij, period t [kvar].

QS
i,t Reactive power injection at substation i, period t

[kvar].

V sqr
i,t Squared voltage magnitude at node i, period t [kV2].

I. INTRODUCTION AND RELATED WORK

A
LONG with high penetration of renewable energy

sources (RES), electricity distribution systems face sev-

eral challenges relating to their safe and reliable operation.

Flexible distributed resources are seen as an important asset

towards accommodating the intermittent nature of RES gener-

ation. These flexibility assets may include small-scale genera-

tion, distributed storage facilities, building energy management

systems, electric vehicles etc., and their flexibility refers to the

ability of controlling their power profile.

Due to their small size and large numbers, distributed flex-

ibility assets cannot be incorporated in the electricity markets

because they would dramatically increase the number of deci-

sion variables and constraints in the operator’s market clearing

problem. Thus, market participation of small flexibility assets

is envisioned via aggregators. An aggregator is an entity that

provides flexibility services on behalf of the flexible assets in

its portfolio [1], [2]. The framework for flexibility aggregation

is not trivial, and has been the topic of recent studies (e.g. [3]).

In modern electricity systems, buyers and sellers freely trade

energy through electricity pool markets or through bilateral

contracts. However, at a certain time before actual delivery (the

gate closure time), the trading stops and the system operator

makes sure that the physical constraints of the underlying grid

are respected. The energy transactions of a player until the

gate closure time, constitute the player’s market program. The

players’ market programs may not be feasible for the physi-

cal distribution system to support. Thus, distribution system

operators (DSOs) need to use flexibility services provided

locally by aggregators in order to keep the network within

safe operational limits.

In this paper we consider a distribution system and a set

of aggregators, where each aggregator represents a set of

loads along with a set of flexibility assets. The second-order

cone programming relaxation based on the branch flow model
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as in [4], [5] has been used to represent the operation of

the distribution system. Given the day-ahead program, the

DSO calls on the aggregators’ flexibility in order to satisfy

the physical network’s constraints. An aggregator provides

flexibility by modifying its demand profile with respect to its

day-ahead market program.

Depending on the type of assets that constitute the aggrega-

tor’s portfolio, this modification can be realized in different

ways. For example, electric vehicle aggregators can shift

charging to later timeslots [6] or coordinate the geographical

distribution of vehicles via incentives and prices [7]. In simi-

lar fashion, residential aggregators and building management

systems can control the smart appliances of buildings (e.g.,

by manipulating the thermostats of thermostatically controlled

loads). These services come at the cost of possibly causing

discomfort to the end users, which is why aggregators com-

pensate the users for their flexibility provision via data-driven

methods [8], dynamic pricing schemes [9] or transactive local

energy markets [10].

Based on the above, flexibility comes at a financial cost

that the aggregator has to pay to its flexibility assets in order

to incentivize them to provide the requested service. Thus,

each aggregator bids a flexibility cost function to the DSO’s

flexibility market. The peculiarity of a DSO flexibility market

is that, due to the physical network’s topology, it is very often

the case that the flexibility of a particular node is necessary

for the safe network operation. This means that an aggregator

can strategically inflate its bid in order to benefit from price

manipulation. Furthermore, aggregators may also decide to not

follow the DSO instruction if they find that to be of benefit

for them. The potential of strategic behaviour by aggregators

has been demonstrated in recent studies [11], [12]. In [13], it

was also shown that even small aggregators can manipulate

the price by leveraging their grid location. Moreover, in [14],

deep reinforcement learning is shown to be a well-performing

method for aggregators to compute such a strategy.

For these reasons, it is important to implement a market

mechanism where aggregators are incentivized to make a truth-

ful report on their flexibility costs and have nothing to gain by

inflating their bids or by not following the DSO instructions.

A mechanism is defined by an allocation rule, i.e., the way

that resources are being allocated to participating agents, and

a payment rule, i.e., the way that agent paymets/rewards are

being calculated.

In the literature of electricity systems, the allocation rule

is typically defined by solving an optimization problem that

maximizes social welfare, while the payment rule is defined by

calculating a set of Lagrange multipliers, where the Lagrange

multiplier of a node’s power balance constraint is interpreted

as the node’s locational price. This concept has already been

proposed also for DSO markets, and is usually referred to

as Distribution Locational Marginal Pricing, e.g., [15], [16],

[17], [18], [19]. It is important to note that the Lagrangian

methods [15]– [19] do not provide protection against strategic

behavior and they are vulnerable to price manipulation by

strategic participants. One way to deal with strategic behavior

is to employ ex-post market monitoring techniques as proposed

in [20], while another is to ex-ante employ an incentive

compatible payment mechanism.

A mechanism that makes truthful reporting a profit-

maximizing strategy is said to have the property of incentive

compatibility. In more detail, there are different notions of

incentive compatibility, the strongest of which is called Dom-

inant Strategy Incentive Compatibility (or DSIC). We say that

a mechanism is DSIC when the best (dominant) strategy of

every participating player is to be truthful, regardless of what

other players do.

Some studies in the area of the smart gird have leveraged

concepts from mechanism design to design payment rules for

various use cases. In [21], a payment rule is designed, to

incentivize residential load agents to truthfully report their

expected demand to a load aggregator. In [22], a payment rule

is designed so that flexible electricity assets are incentivized

to shift their consumption away from peak-demand timeslots.

In [23], an asymptotically truthful rule (not DSIC) is designed

to allocate electricity consumption to a set of flexible house-

hold agents under certain assumptions on the agents’ local

valuation functions.

Another family of studies in the smart gird literature,

leverages the (DSIC and optimal) Vickrey-Clarke-Groves

(VCG) mechanism for achieving truthfulness and optimal-

ity. Examples include [24] and [25], while in [26], the

authors propose a distributed implementation of VCG to

achieve truthfulness along with scalability and privacy in a

Demand Response scheme.

Since the studies mentioned above ( [23]- [26]) , examine

different use cases, each one proposes a different payment

rule. However, the underlying objective in all of them is social

welfare maximization, which, although formulated differently

in different use cases, means that the allocation rules are

similar in nature: minimizing the average agent cost.

In the setting of a DSO flexibility market, however, the

typical approach of minimizing the average flexibility cost

among agents can have detrimental effects on the payoff of

some particular participant, i.e., the mechanism may “sacri-

fice” the payoff of a certain node or aggregator, in order to

benefit the whole system. Especially in a distribution system,

the grid topology might cause a particular set of users (that

are sited under a particular node of the grid) to be repeatedly

treated unfairly. Such phenomena can lead to non-sustainable

business models for some aggregators, which can result in

market concentration and deteriorate market competition.

In order to prevent such phenomena, the objective of the

market can be defined so as to maximize fairness. In [27]

and [28], fairness is defined using the Shapley value, whereas

in [29] a compensation mechanism for flexibility activation

is proposed as a fair way to compensate aggregators. In [30]

and [31] fairness is assessed on the basis of equally distributing

electricity costs among users, based on their level of effect

on the community’s electricity cost. However, in order to

remedy issues of aggregators sustainability and thus promote

market competition, the most relevant objective is to maximize

the lowest payoff among aggregators. This is commonly

referred to as optimizing for max-min fairness and is generally

considered a fairness criterion in various fields (e.g. load-

balancing in communication networks [32]). In [33], max-min
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fairness is assessed for a DR setting with electric vehicles and

cooling devices, while in [34], max-min fairness optimization

is considered and solved using the alternating direction method

of multipliers (ADMM) algorithm. In contrast to the case of

minimizing the average cost, optimizing for max-min fairness

is not thoroughly studied in the smart grid literature. Moreover,

the optimal and incentive compatible VCG mechanism only

works when the objective maximizes the social welfare and

not fairness.

In fact, to the best of our knowledge, developing a flex-

ibility mechanism that is simultaneously fair and incentive

compatible has not been dealt with before. In this paper

we consider a distribution system, where the DSO calls on

the aggregators’ flexibility in order to satisfy the physical

constraints of the system. We design a DSIC mechanism that

incentivizes aggregators to declare their true cost for flexibility

provision at the scheduling phase, and then follow the DSO’s

instruction at real-time operation. Thus, the main contributions

of this paper can be summarized as follows:

• We formulate a max-min fair allocation problem for flexi-

bility in a distribution system, so that network constraints

are satisfied in a fair way.

• We design an incentive compatible mechanism so that

flexibility aggregators are incentivized to declare their

true cost for flexibility at the scheduling phase, and then

follow the instructions of the DSO at real-time operation.

• We thoroughly evaluate the proposed system through

simulations and compare it to different benchmarks.

The remainder of this paper is organized as follows: Section

II presents the system model and the power flow equations

of the distribution network. In Section III the problem for-

mulation is presented and in Section IV the proposed reward

function is built, and its properties are theoretically proven.

In Section V, simulation results for various test cases are

presented and Section VI concludes the paper.

II. DISTRIBUTION SYSTEM MODEL

We consider a distribution system, constituted by a set Ωb

of nodes b ∈ Ωb and a set Ωl of lines l ∈ Ωl. We consider a

set of aggregators where each aggregator is responsible for

the net demand of its portfolio. We assume that the DSO

has access to measurement facilities and can observe each

aggregator’s power consumption. In order to facilitate the

analysis, we assume that each node of the distribution network

is represented by one demand aggregator i ∈ Ωb, however the

methods and results of this paper hold equivalently for the

general case. For a horizon of discrete timeslots t ∈ ΩT, an

aggregator i ∈ Ωb is characterized by an active power demand

profile P
D
i = {PD

i,t, t ∈ ΩT} constituted by the aggregator’s

demand at each timeslot. The profile P
D
i represents the energy

bought in the day-ahead market and it is communicated by the

day-ahead market operator to the DSO.

The DSO is responsible for the operation of the distribution

system, so that voltage and current magnitudes remain within

safe limits. For this purpose, the DSO draws on the flexibility

offered by the aggregators in Ωb, that is, the ability of an

aggregator to modify its active power demand PD
i,t at timeslot

t by a certain factor Ki,t. A modification Ki,tP
D
i,t, results in

an active power injection P S
i,t, determined by the active power

balance equation

∑

ki∈Ωl

Pki,t −
∑

ij∈Ωl

(
Pij,t +RijI

sqr
ij,t

)
+P S

i,t=Ki,tP
D
i,t,

∀i ∈ Ωb, t ∈ ΩT (1)

The corresponding reactive power flows are represented as

∑

ki∈Ωl

Qki,t −
∑

ij∈Ωl

(
Qij,t +XijI

sqr
ij,t

)
+QS

i,t=Ki,tQ
D
i,t,

∀i ∈ Ωb, t ∈ ΩT (2)

Notice that aggregators are assumed to maintain a constant

power factor and also, it is assumed P S
i,t = QS

i,t = 0 for all

buses but the substation. On the other hand, for the substation

bus, notice that P S
0,t can also be less than 0, representing

backfeeding. It should be noted that these assumptions are

without loss of generality with respect to the methods that

will be presented.

Since current and voltage magnitudes appear naturally as

squared, non-negative, continuous variables in the steady-state

operation of AC electrical distribution systems, it is convenient

to perform the change in variables V sqr
i,t ≡ V 2

i,t and Isqrij,t ≡ I2ij,t
as in [35]. The voltage magnitude drop between nodes i and

j is represented by

V sqr
i,t −2(RijPij,t+XijQij,t)−

(
R2

ij +X2
ij

)
Isqrij,t = V sqr

j,t ,

∀ij ∈ Ωl, t ∈ ΩT (3)

while current magnitudes are calculated using

V sqr
j,t Isqrij,t = P 2

ij,t+Q2
ij,t, ∀ij ∈ Ωl, t ∈ ΩT (4)

Upper and lower bounds on nodal voltage magnitudes and

current magnitudes are enforced by

V2 ≤ V sqr
i,t ≤ V

2
∀i ∈ Ωb, t ∈ ΩT (5)

0 ≤ Isqrij,t ≤ I
2

ij ∀ij ∈ Ωl, t ∈ ΩT (6)

An aggregator’s flexibility is bounded as in

Ki,t ≤ Ki,t ≤ Ki,t ∀i ∈ Ωb, t ∈ ΩT (7)

Let Ki = {Ki,t, t ∈ ΩT} denote i’s profile of flexibility ac-

tivation. Accordingly, tuple Li = {λi,t,Ki,t,Ki,t, t ∈ ΩT}
denotes the aggregator’s local parameters, where λi,t is a

cost parameter for flexibility activation. It is assumed that

the aggregator draws its flexibility by calling on demand-

response resources from the prosumers in its portfolio at a cost

defined by function ci(Ki,Li). This is modelled by causing

a deviation in the prosumers’ active power demand (from PD
i,t

to PD
i,t (1−Ki,t)), which comes at a cost defined as

ci(Ki,Li) =
∑

t∈ΩT

λi,t

(
PD
i,t (1−Ki,t)

)2
, ∀i ∈ Ωb (8)
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III. PROBLEM FORMULATION

The objective of the DSO is to satisfy the operational

constraints of the distribution system, while minimizing the

highest flexibility cost incurred among aggregators by deciding

the optimal flexibility activation. In other words, the DSO

pursues a fair allocation of flexibility costs among aggregators

so that all aggregators are motivated to contribute, while no

particular aggregator has to be compromised to unilaterally fa-

cilitate the DSO in achieving its objectives. This optimization

problem can be formulated as

min
Ki,V

sqr
i,t

,I
sqr
ij,t

,Pij,t,Qij,t,P
S
0,t,Q

S
0,t

max
i∈Ωb

{ci (Ki,Li)}

s.t (1)–(8)
(9)

By introducing the slack variable z, and replacing (4) with

V sqr
j,t Isqrij,t ≥ P 2

ij,t +Q2
ij,t, ∀ij ∈ Ωl, t ∈ ΩT (10)

problem (9) can be recast as second order cone programming

problem that is represented by

min
z,Ki,V

sqr
i,t

,I
sqr
ij,t

,Pij,t,Qij,t,P
S
0,t,Q

S
0,t

{z}

s.t z ≥ ci (Ki,Li) , ∀i ∈ Ωb

(1)–(3), (5)–(8), and (10)

(11)

Notice that under certain conditions, constraint (4) is equiva-

lent to (10) in radial distribution systems, as explained in [4]

and [5].

The model in (11) could be efficiently tackled assuming that

the DSO knows the flexibility cost parameters λi,t, as well as

the limits Ki,t and Ki,t for each aggregator. However, these

parameters depend on each aggregator’s demand response

capabilities based on the scheduling of the flexible loads in

its portfolio. Thus, the DSO does not have direct access to

this information and relies on the aggregator’s self report.

An important problem arises, concerning the aggregator’s

truthfulness upon declaring its local parameters. Naturally,

unless the aggregator is compensated for the service provided,

it would opt for maximizing its own revenue, which is done by

declaring no available flexibility. Moreover, a compensation

scheme that is not carefully designed, might still result in

strategic misreporting.

Let L̂i = {λ̂i,t, K̂i,t, K̂i,t} denote the aggregator’s decla-

ration for Li which may or may not be equal to the actual

Li. The DSO solves (11) using the declarations L̂i as input,

and the optimal solution is given to each aggregator as an

instruction K
∗
i to follow.

Once the instruction is communicated to each aggregator

for the horizon ΩT, real-time operation begins. The aggregator

implements a flexibility profile K̃i, where the tilde denotes the

fact that this is the actual final flexibility factor implemented

by the aggregator, as measured by the DSO’s smart meters.

In real time operation, two things may go differently than

scheduled:

• The aggregator might not follow the instruction, and

implement a different final profile, i.e., K̃i 6= K
∗
i .

• The actual cost c̃i = ci(K̃i,Li) that the aggregator pays

to its customers for the implementation of the flexibility

profile K̃i, may not be equal to the cost calculated by

the DSO, ci(K̃i, L̂i), e.g., aggregators providing false

declarations of flexibility costs.

Note that both cases result in inefficiency, since even after

assuming that the aggregator perfectly follows the instruction,

the costs can still differ, i.e., c̃i = ci(K
∗
i ,Li) 6= ci(K

∗
i , L̂i).

The efficiency sensitivity to aggregator’s declarations will be

addressed in a later section.

The payoff of an aggregator i, defined as πi, is calculated

as the compensation pi received by the DSO for its flexibility

services, minus the actual cost c̃i paid to its flexible customers

according to

πi = pi − c̃i (12)

The task of the DSO in this case is to design the reward

function, pi, in such a way that it makes it a dominant

strategy for each aggregator to first make truthful declarations

and then follow the flexibility instruction, i.e., L̂i ≈ Li

and K̃i ≈ K
∗
i , respectively. That is, the reward function p(·)

should be incentive compatible in the sense that it aligns

the aggregators’ local objectives with the general objective

of the DSO. This needs to be done in order to achieve the

optimal solution to problem (11), since this solution guarantees

the safe operation of the distribution system and fairness for

flexibility assets.

A general overview of the proposed procedure and message

exchange is depicted in Fig. 1. First, the DSO is informed

about the aggregators’ expected demand profiles P
D
i for a

given time horizon ahead. The DSO checks whether the

network constraints can be satisfied. In case they cannot be

satisfied, the DSO calls for the aggregators’ flexibility bids.

The aggregators make their flexibility bids L̂i to the DSO.

Given the bids, the DSO solves (11) and communicates the

instruction K
∗
i to each aggregator i. Given the instruction,

the aggregator manages its portfolio at real time operation.

The aggregator’s actual load profile K̃i can be measured

by the DSO. After the end of the horizon, the aggregator

compensates its flexible agents and communicates the “proof

of payment” to the DSO, i.e., the voucher c̃i. This could

also be done automatically e.g. via a smart contract. Given

the aggregator’s instruction and observation (i.e. measured

consumption and proof of payments), the DSO calculates the

aggregator’s compensation pi.

IV. REWARD FUNCTION DESIGN

For the design of the reward function pi we consider the

family of mechanisms referred to as compensation and penalty

mechanisms (CPM), as in [36], Section 10.6.1. In our context,

the aggregators’ instructions K
∗
i , are calculated by solving

problem (11), but using the declared tuples L̂i as the input

that defines the functions ci(Ki, L̂i). After the observation of

the outcome, the aggregator’s reward is calculated by

pCPM
i = c̃i − β max

{
c̃i, max

j∈Ωb:j 6=i
{cj(K

∗
j , L̂j)}

}
(13)

As explained above, c̃i = ci(K̃i,Li) is the observation

of the actual flexibility costs for aggregator i after the end

of the horizon, while K̃i is the measured flexibility factor,
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P
D
i

L̂i

K
∗
i

K̃i c̃i

pi

Fig. 1. Procedure and message exchange between DSO and Aggregator

which is calculated at the end of the horizon based on the

measurements of the actual power injections. The first term

in (13) compensates the aggregator for its actual flexibility cost

that the latter offered at its flexible assets. The second term

is the worst-off flexibility cost among aggregators, where the

cost is calculated over the declared tuples L̂j and instruction

factors K
∗
j of the rest of the aggregators, j 6= i, but over

the observed cost for i. Parameter β is a penalization factor

chosen by the DSO.
Let us temporarily assume that all aggregators follow their

instruction K
∗
i , that is K̃i = K

∗
i . Then, the CPM mechanism

is incentive compatible, and consequently, an implementation

of the optimal solution to (11). The intuition behind this is that

each aggregator is penalized over the maximum actual flexi-

bility cost of all players. Thus, by making false declarations

L̂i, the aggregators can only increase this cost, since a false

declaration causes the DSO to allocate flexibility suboptimally.

A formal statement and proof follows.

Lemma 1. If the aggregators always follow the instruction,

then under the CPM payment rule (13), it is a dominant

strategy for each aggregator to declare its true parameters

L̂i = Li.

Proof. The proof is provided in Appendix A.

The CPM reward structure was originally designed for task

allocation to machines where each machine declares its cost

for executing a task. Once the tasks are allocated, the machine

has no option but to execute its tasks, and this is why the as-

sumption that the aggregator follows the instruction is needed

for the CPM to work in our setting. However, in practice,

aggregators are not hard-constrained to follow the instruction.

In fact, the aggregator can instead opt for a profile K̃i 6= K
∗
i .

In this case, the original CPM mechanism is not enough to

guarantee incentive compatibility. We propose a novel payment

rule, called enhanced-CPM (ECPM), modifying the CPM rule

as stated by

pi

(
K̃, L̂

)
= Ri + c̃i

− β max
{
c̃i, max

j∈Ωb:j 6=i

{
cj(K

∗
j , L̂j)

}}

−
∑

t∈ΩT

γ
(
K̃i,t −K∗

i,t

)2

(14)

The first term, Ri, is a fixed payment to each aggregator, in

order to make sure that the mechanism is individually rational,

i.e., the aggregators’ payoff is always positive which makes

the aggregators eager to participate in the mechanism rather

than opt out. The middle term is (13), while the last term is a

penalty controlled by parameter γ, that has been introduced in

order to penalize the aggregator’s deviation from the DSO’s

instruction. The penalty imposed to the deviating aggregator

is quadratic in the volume of deviation, so as to penalize

deviations in both directions (up and down). Also, the per-unit

penalization is increasing in the amount of deviation, which

helps towards penalizing large deviations strongly, but keeping

the penalty of small (possibly unintended) deviations mild.
The last term is not included in the original CPM mech-

anism described in [36], but it is necessary in order to in-

centivize the aggregators to follow the instructions. Regarding

the value of γ, the following theorem states that the proposed

mechanism (14) is incentive compatible for γ ≫ λi,t:

Theorem 1. Given payment structure (14), for γ ≫ λi,t, it

is a dominant strategy for each aggregator to declare its true

parameters (L̂i = Li) and then follow the DSO’s instructions

(K̃i = K
∗
i ).

Proof. The proof is provided in Appendix B.

Remarks and Extensions

The proposed mechanism of this paper intrinsically assumes

a deterministic and perfect information system, where the

aggregators have perfect knowledge of their flexibility param-

eters Li. In practice, however, an aggregator may only have a

forecast of the parameters that it is required to declare. Thus,

there can be a case where an aggregator truthfully declares

Li to the best of its abilities, but is then unable to follow the

instruction, due to unforeseen changes in the capabilities of

its flexibility portfolio and through no fault of its own.
Identifying the reasons behind a deviation from the in-

struction, and determining whether it occurred due to un-

certainty or due to strategic behavior, is a challenging task
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that requires administrative procedures (e.g. auditing) and falls

well beyond the scope of this paper. Nevertheless, against

this perspective, ECPM provides the DSO with the ability

to adjust the deviation penalty γ, depending on the system

characteristics, so that a good trade-off is achieved between

not heavily punishing unintended deviations on one hand and

disincentivizing strategic behavior on the other.
More generally, the choice of values for parameters γ, Ri

and β of ECPM need to be carefully engineered so that the

aggregators always benefit from participating in the flexibility

market. This means that the penalization for deviations needs

to be high enough so as to disincentivize misreporting, but at

the same time not so high that aggregators with uncertainties

would rather not participate in the market at all, in fear

of negative payoffs and heavy penalties. In this context, in

Section V, the reader can find examples of suitable choices

for parameters γ, Ri and β, that address this trade-off in a

particular test case.
In view of the uncertainties discussed in this subsection, it

is also important to note that the ECPM payment rule (14),

also provides resiliency, since an aggregator’s payment does

not depend on the deviations of others. As a counter-example,

consider the simpler payment function

pi = Ri + c̃i − βmax
n

{c̃n} −
∑

t∈ΩT

γ
(
K̃i,t −K∗

i,t

)2

where the term maxn{c̃n} is the maximum realized cost

over all aggregators (including i). In a fully deterministic

system where aggregators have accurate knowledge over their

cost function and are also assumed to follow the instruction,

this choice would also align the aggregators’ incentives with

the DSO’s objective. However, in cases of uncertainty in

the players’ cost parameters λ, the term −maxn{c̃n} of

the above choice would unfairly penalize truthful and non-

deviating aggregators, due to imperfect λ forecasts of other,

more volatile, aggregators.
Moreover, such a choice would not only result in unfairness,

but would also incentivize an aggregator i to strategically

misreport a lower λi,t in order to be allocated more flexibility,

so that less flexibility is allocated to another aggregator j,

which i considers to be volatile. In contrast, in the proposed

mechanism, an aggregator’s payoff depends only on its own

cost realization c̃i and not on the cost realizations of others (but

only on their declarations, which are proved to be truthful).
Finally, towards extending the system model to include

multiple aggregators under the same network node, equations

(1) and (2) would read respectively as

∑

ki∈Ωl

Pki,t −
∑

ij∈Ωl

(
Pij,t + RijI

sqr
ij,t

)
+ P S

i,t =
∑

a∈Ωi
A

Ki,a,tP
D
i,a,t

(15)

∑

ki∈Ωl

Qki,t −
∑

ij∈Ωl

(
Qij,t + XijI

sqr
ij,t

)
+QS

i,t =
∑

a∈Ωi
A

Ki,a,tQ
D
i,a,t

(16)

where Ωi
A is the set of aggregators under node i of the network.

The ECPM mechanism (and its properties) reads the same as

presented, although an aggregator would have to be indexed

by a, where a ∈ Ωi
A, rather than simply i.

V. TEST CASES

Different test cases were performed in order to compare

the proposed formulation using a 34-bus medium-voltage,

radial, distribution system. System parameters can be found

in [37]. The system has 29 load buses each defined by its base

load, Pi,base and Qi,base. As explained in the introduction, a

great deal of flexibility capability stems from small distributed

assets, which in turn motivates the need for aggregation.

These small assets typically reside at residential or commercial

buildings and parking lots. For this reason load buses are

assumed in this paper as the system aggregators. Hourly

profiles have been shaped by scaling base loads with a loading

factor for each timeslot, resembling a typical day-load profile.

A. Assuming truthful declarations of flexibility costs and ac-

curate instruction following

This test aims at showing the difference in the results

stemming from the proposed min-max approach, compared to

the standard formulation that minimizes the total system cost.

For this particular test, load parameters were randomly

selected from normal distributions, i.e., Pi,base ∼ N (µs
P , σ

s
P ).

Without loss of generality, it was assumed that all aggregators

shared the same probability distribution family and a fixed

standard deviation of 15 kW. The above setting was simulated

for a total of 8 scenarios where µs
P = {100, 200, ..., 800} kW,

and a constant power factor of 0.95. For each scenario, the

results were averaged out over a number of experiments.

Assuming truthful declarations and no inaccuracies, the

results of problem (11) were compared to the results of the

cost minimization problem

min
z,Ki,V

sqr
i,t

,I
sqr
ij,t

,Pij,t,Qij,t,P
S
0,t,Q

S
0,t

∑

i∈Ωb

ci (Ki,Li)

(1)–(3), (5)–(8), and (10)

(17)

Notice that (17) minimizes the total system cost, whereas the

proposed approach minimizes the maximum cost. The total

flexibility cost of the system,
∑

i∈Ωb
ci (K

∗
i ,Li), is depicted

in Fig. 2 for both cases relating the average, maximum, and

minimum value of the experiments. It can be seen that the

solution to problem (17) minimizes the total cost, as expected.

Thus, Fig. 2 can be interpreted as a quantification of the

cost of fairness for this particular case study.

Similarly, both approaches were compared in terms

of the maximum flexibility cost among aggregators,

maxi∈Ωb
ci(K

∗
i ,Li). Results are shown in Fig. 3, again as

a function of µP (s). Interestingly, the difference is higher in

cases where the distribution system is only mildly overloaded.

B. The cost of not knowing the flexibility cost functions

It is usual for the DSO to receive a flexibility activation

service by activating predefined contracts. Those contracts

define the aggregator’s compensation in a static fashion. Thus,
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Fig. 2. Cost of fairness: total system cost of the maxmin fair approach
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Fig. 3. Maximum flexibility cost among aggregators, for the maxmin fair
approach and the cost minimization approach

the aggregators do not bid the cost functions c(·), but those are

assumed known by the DSO based on the contract. However,

the actual flexibility cost of an aggregator is not static and may

differ from the assumed costs. In this subsection, we assume

that the DSO’s estimation of flexibility cost parameters, λi,t, is

inaccurate. More specifically, for our experiments, the assumed

parameter λ̂i,t follows a normal distribution around the actual

value λi,t, i.e., λ̂i,t ∼ N (λi,t, σλ).

After solving problem (11) using λ̂i,t, the DSO determines a

suboptimal instruction K
sub
i . Assuming all aggregators follow

the instruction, the actual cost of aggregator i is defined as

ci,subopt = ci

(
K

sub
i ,Li

)
, as in (8).

Thus, the cost of the worst-off aggregator, i.e, the sub-

optimal value of the objective function in problem (11),

is obj = maxi∈Ωb
{ci,subopt}. On the other hand, the

optimal objective value of problem (11) is denoted by obj∗,

hence, obj∗ ≤ obj. The optimality loss factor caused by

inaccurate estimation of the flexibility costs is defined as

OptLoss = obj/obj∗ and it is a function of the esti-

mation inaccuracy σλ. Actual values for λi,t were assumed

to follow a normal distribution with average 3 [$/kW2] and

a standard deviation of 0.5 [$/kW2]. Results were averaged

out over a number of experiments and plotted in Fig. 4 as a

function of σλ.

As observed in Fig. 4, the inefficiency grows with the
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Fig. 4. Optimality loss factor OptLoss as a function of estimation inaccuracy
σλ
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Fig. 5. Aggregator’s payoff for the pay-as-bid scheme, as a function of the
false declaration factor ǫ for various cases of instruction deviation factor δK

inaccuracy of the estimated flexibility costs. Note that the

inefficiency due to the DSO’s inaccurate estimation of λi,t

is analog to the case of a false parameter λ̂i,t self-reported by

the aggregators for strategic reasons. Thus, it is important to

incentivize aggregators for truthful reports of their parameters.

C. Simulating the pay-as-bid scheme and considering inaccu-

rate instruction following

For the next experiment, we take the perspective of a

particular aggregator. We assume that the DSO employs the

pay-as-bid scheme: In each scenario, the DSO compensates

the aggregator by pi = λ̂i,tK̃i,t, where λ̂i,t is the aggregator’s

declared flexibility cost. The aggregator’s measured flexibility

actions K̃i,t may differ from the optimal instruction K∗
i,t by

a factor δK , that is, K̃i,t = δK K∗
i,t. Assuming a tolerance

of 0.05% in the instruction following, we simulated three

scenarios for values of δK = {0.95, 1, 1.05}.

The aggregator can declare false values λ̂i,t on purpose. In

the simulation, declaration λ̂i,t was selected as λ̂i,t = ǫ λi,t

where ǫ ∈ [0.8, 1.2]. Note that different values for λ̂i,t results

in different instructions for all the aggregators. The results on

the aggregator’s payoff are depicted in Fig. 5.

It can be seen that the aggregator is able to increase its

payoff by declaring a higher flexibility cost than its true one,

i.e., ǫ > 1. Moreover, by exploiting the tolerance level δK ,
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the aggregator is able to curtail more load in order to take

advantage of the inflated compensation. Thus, it is evident

that the pay-as-bid scheme is not suitable for our setting, since

it might incentivize the aggregators to arbitrarily inflate their

bids. This phenomenon has a detrimental effect on the global

efficiency, as shown in Section V-B.

D. Simulating the proposed ECPM scheme with accurate

instruction following

For the next experiment, we assume that the DSO employs

the proposed ECPM scheme and that the aggregators perfectly

follow the instruction. However, they can still declare false

flexibility costs λ̂i,t = ǫ λi,t with ǫ ∈ [0.5, 4]. The

aggregator’s payoff πi, given from (39), as a function of ǫ
for different choices of the penalty parameter β is depicted in

Fig 6. Parameter Ri was set to $ 400.
As it can be observed from Fig 6, the aggregator only makes

itself worse-off by declaring lower flexibility costs, ǫ < 1. The

optimal choice would be ǫ = 1, which represents a truthful

declaration. For ǫ > 1, the aggregator inflates its declared

flexibility cost, causing the DSO to allocate less flexibility to

i and more flexibility to other aggregators. The aggregator’s

payoff remains unchanged for a range of ǫ since the DSO

can still allocate the necessary flexibility without increasing

the term maxj∈Ωb:j 6=i{cj(K
∗
j , L̂j)}. However, after a certain

point this term also increases, causing the decreasing of the

aggregator’s payoff.

E. Proof against strategic behavior, using the ECPM scheme

Finally, we study the case where the aggregator is free to

strategically declare its flexibility costs λ̂i,t = ǫ λi,t and then,

employ a flexibility profile K̃i,t = δK K∗
i,t. The aggregator’s

payoff πi, given from (39), was tested using different values

for β and γ. The incentives for different aggregators were also

assessed. Indicative results are presented below.
In the case that the focal aggregator is not the one with

the worst-case cost, then choosing ǫ < 1 does not affect its

payoff significantly. However, for ǫ > 1, (or for δK 6= 1)

the aggregator is always worse-off than making a truthful

declaration (ǫ = 1) and implementing the instruction (δK = 1).

This is demonstrated in Fig. 7 and Fig. 8. In case the focal
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Fig. 7. Aggregator’s payoff with ECPM as a function of the deviation δK
from the instruction for various choices of declaration ǫ, with β = 0.05,
γ = 1000.
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from the instruction for various choices of declaration ǫ, with β = 0.1,
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aggregator is the one that is the worst-off, then declaring ǫ < 1
also has detrimental effects on its payoff. This is demonstrated

in Fig. 9 and Fig. 10.

As can be observed, when an aggregator i falsely declares

a low flexibility cost (ǫ < 1), then the DSO allocates more

flexibility, i.e., lower K∗
i,t to i. Then, i has the incentive to

not follow the instruction, and activate less flexibility, i.e., a

K̃i,t that is closer to 1, (δ > 1), in order to decrease its actual

flexibility costs and receive a lower penalty from the second

factor of the payment function (14). Therefore, as can be

seen for all tested cases, the aggregator’s payoff-maximizing

strategy is to make a truthful declaration (ǫ = 1) and then

perfectly follow the instruction given by the DSO (δ = 1).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we formulated the problem of satisfying the

constraints of the distribution system in a max-min fair way,

through a flexibility market for aggregators. We provided an

incentive compatible mechanism, so that aggregators truthfully

declare their flexibility costs and then follow the DSO’s

instructions. Without such a mechanism, aggregators would

inflate their bids, which results in detrimental effects on the

system’s efficiency. In particular, our simulations show that

without accounting for truthful declarations, the cost of the
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worst-off player in the system can grow by a factor of up to

four times, compared to the optimal min-max allocation. The

property of incentive compatibility was theoretically proven,

while the system’s behavior was tested in a number of scenar-

ios. In these scenarios, we are able to show that the proposed

mechanism can be fine-tuned effectively, so that aggregators

are not heavily penalized for small deviations that can occur in

practice, while at the same time the property of incentivizing

truthful declarations is preserved.

Future work can include a detailed modelling of the aggre-

gators’ flexible assets, while also extend the proposed scheme

to be iteratively executed (in a rolling horizon fashion) and

maintain the property of incentive compatibility. Moreover,

future work can study the properties of incentive compatibility

and optimality in cases of multi-objective optimization, e.g.,

when the operator pursues a combination of social welfare

maximization and max-min fairness.

APPENDIX A

PROOF OF LEMMA 1

With payment rule (13), the aggregator’s payoff πi from

(12), considering K̃i = K
∗
i is given by

πi = −βmax
{
c̃i, max

j∈Ωb:j 6=i
{cj(K

∗
j , L̂j)}

}
(18)

Thus, the aggregator’s penalty is over its actual flexibility cost,

or over the maximum declared flexibility cost of other players,

whichever is highest. Let c∗i = ci(K
∗
i ,Li) denote the cost of

player i at the instruction K
∗
i which resulted by (11), under

truthful declarations. Also, let Ksub
i denote the instruction of

i under a non-truthful declaration from any of the players.

Finally, let ci(K
sub
i ) denote the actual cost of player i under

non-truthful declarations. With ties broken arbitrarily, we have

the following two cases:

• under truthful declarations, i is not the player with

the highest flexibility cost at the instructions point i.e.

c∗i < max
j∈Ωb:j 6=i

{c∗j} (19)

and also

max
j∈Ωb:j 6=i

{c∗j} = max
n∈Ωb

{c∗n} (20)

By (18), i’s payoff under truthful declarations is

πi = −β max
j∈Ωb:j 6=i

{c∗j} (21)

Let us assume that i declares a higher flexibility cost

(λ̂i,t > λi,t, and/or K̂i,t > Ki,t and/or K̂i,t < Ki,t).

Then, it would cause the DSO to allocate more flexibility

to other players j, which can only increase their flexibility

cost, i.e.

max
j∈Ωb:j 6=i

{cj(K
sub
j )} > max

j∈Ωb:j 6=i
{c∗j} (22)

There are two subcases:

– i is still not the player with the highest flexibility cost

at the new instructions point

ci(K
sub
i ) < max

j∈Ωb:j 6=i
{cj(K

sub
j )} (23)

In this subcase i’s payoff is equal to

−βmaxj∈Ωb:j 6=i{cj(K
sub
j )}, which, from (22)

and (21), is lower than i’s payoff under truthful

declarations.

– i’s flexibility cost at the new instruction point is the

highest

ci(K
sub
i ) = max

n∈Ωb

{cn(K
sub
n )} (24)

In this subcase i’s payoff is equal to −βci(K
sub
i ). For

i to be better-off, it needs to be:

ci(K
sub
i ) < max

j∈Ωb:j 6=i
{c∗j} (25)

which, by (24) and (20), gives

max
n∈Ωb

{cn(K
sub
n )} < max

n∈Ωb

{c∗n} (26)

However, this is not possible because it contradicts the

fact that problem (11) provides the optimal solution,

i.e. the one that minimizes the maximum cost.

Now let us assume that i declares a lower flexibility cost

(λ̂i,t < λi,t, and/or K̂i,t < Ki,t and/or K̂i,t > Ki,t).

Then, the DSO allocates more flexibility to i and less to

other players, which means that

max
j∈Ωb:j 6=i

{cj(K
sub
j )} ≤ max

j∈Ωb:j 6=i
{c∗j} (27)
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There are two subcases:

– i is still not the player with the highest flexibility cost

at the new instructions point, as in (23). In this subcase

i’s payoff is equal to −βmaxj∈Ωb:j 6=i{cj(K
sub
j )}. For

i to be better-off, it needs to be

max
n∈Ωb

{cn(K
sub
n )} < max

n∈Ωb

{c∗n} (28)

However, since problem (11) provides the optimal

solution that minimizes maxn∈Ωb
{c∗n}, eq. (28) could

only stand if

K
sub
j < Ki,t (29)

or

K
sub
j > Ki,t (30)

either of which would constitute Ksub
j an infeasible so-

lution to problem (11). Therefore, it would not be pos-

sible for the aggregator to follow the instruction, which,

in turn, contradicts the assumption of Lemma 1.

– i’s flexibility cost at the new instruction point is the

highest, as in (24). This can be equivalently written as

ci(K
sub
i ) = max

n∈Ωb

{cn(K
sub
n )} (31)

In this subcase, i’s payoff is equal to −βci(K
sub
i ). For

i to be better-off, it needs to be as in (25). Because of

(19), this means that

ci(K
sub
i ) < max

n∈Ωb

{c∗n} (32)

which, by (31), becomes equivalent to (28) and thus

contradictory by the same argument made in the pre-

vious subcase.

• under truthful declarations, i is the player with the

highest flexibility cost at the instructions point i.e.

c∗i > max
j∈Ωb:j 6=i

{c∗j} (33)

In this case, if i declares a lower flexibility cost,

then it would cause the DSO to allocate more flexi-

bility to i. This would increase i’s flexibility cost i.e.

ci(K
sub
i ) > c∗i . However, by (18), i’s payoff is less

than or equal to −βci(K
sub
i ). Thus, i can only be made

worse-off by increasing ci(K
sub
i ) in this case.

On the other hand, if i declares a higher flexibility cost,

the DSO allocates less flexibility to i. Again, there are

two subcases:

– i is still the player with the highest flexi-

bility cost at the new instructions point, i.e.,

ci(K
sub
i ) > maxj∈Ωb:j 6=i{cj(K

sub
j )}. For i to be

better-off, it has to be

ci(K
sub
i ) < c∗i (34)

Since, by assumption of this subcase, i is the player

with the highest flexibility cost under both truthful and

non-truthful declarations, we have that ci(K
sub
i ) =

maxn∈Ωb
{cn(K

sub
n )} and c∗i = maxn∈Ωb

{c∗n}. Thus,

eq. (34) becomes equivalent to (26), which contradicts

the fact that maxn∈Ωb
{c∗n} is the optimal solution to

(11).

– i is no longer the player with the highest flexibility

cost i.e.

ci(K
sub
i ) < max

j∈Ωb:j 6=i
{cj(K

sub
j )} (35)

or, equivalently

max
j∈Ωb:j 6=i

{cj(K
sub
j )} = max

n∈Ωb

{cn(K
sub
n )} (36)

Similarly, (33) can also be written as

c∗i = max
n∈Ωb

{c∗n} (37)

For i to be better-off, it needs to be

max
j∈Ωb:j 6=i

{cj(K
sub
j )} < c∗i (38)

which, by (36) and (37), is equivalent to (26), and

therefore contradictory.

Thus, the aggregator cannot benefit from false declarations.

APPENDIX B

PROOF OF THEOREM 1

With payment structure (14), the aggregator’s payoff is

πi = Ri − β max
{
c̃i, max

j∈Ωb:j 6=i

{
cj(K

∗
j , L̂j)

}}

−
∑

t∈ΩT

γ
(
K̃i,t −K∗

i,t

)2

(39)

Consider the aggregator’s problem of deciding on the

actual flexibility profile K̃i. Parameter Ri and term

maxj∈Ωb:j 6=i

{
cj

(
K

∗
j , L̂j

)}
are fixed numbers. The aggre-

gator’s payoff optimization problem reads as

min
K

∗

j
,L̂j

{
max

{
c̃i, max

j∈Ωb:j 6=i

{
cj(K

∗
j , L̂j)

}}

+
∑

t∈ΩT

γ
(
K̃i,t −K∗

i,t

)2
}

(40)

After introducing slack variable ζ, (40) is rewritten as

min
K

∗

j
,L̂j

ζ +
∑

t∈ΩT

γ
(
K̃i,t −K∗

i,t

)2

ζ ≥ max
j∈Ωb:j 6=i

{
cj

(
K

∗
j , L̂j

)}

ζ ≥ c̃i

The worst possible case happens when

maxj∈Ωb:j 6=i

{
cj

(
K

∗
j , L̂j

)}
= 0, since in this case

the aggregator has maximum freedom to minimize its penalty.

Hence, since c̃i ≥ 0, we have min
K̃i,t

{
f
(
K̃i,t

)}
, where

f
(
K̃i,t

)
=

{
c̃i +

∑

t∈ΩT

γ
(
K̃i,t −K∗

i,t

)2

}
(41)

By taking the stationary point of (41) for K̃i,t, we have

K̃i,t =
λi,t + γK∗

i,t

λi,t + γ
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for γ ≫ λi,t, we have K̃i,t ≈ K∗
i,t. Thus, the aggregator is

incentivized to follow the instruction, which, combined with

Lemma 1, completes the proof.
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