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Abstract

Free-space optical (FSO) communications is an important technology that will be used for supporting high data-rates in the

backhaul of next generation of wireless communication networks. In this paper, we have compared the probability of error

performance of two types of receivers used in FSO today: a receiver based on a single detector, and a receiver based on an array

of detectors. The performance of these two receivers is compared for a number of fusion algorithms for an array of detectors such

as equal gain combiner (EGC), selection combiner (SC), switched combiner (SWC) and the maximal ratio combiner (MRC).

From this study, we conclude that even though the array of detectors adds more noise in the sufficient statistic by virtue of

large number of detectors, using more computationally expensive fusion algorithms (such as SC and MRC) can help us achieve

a superior probability of error performance as opposed to a single-detector receiver for practical channel conditions.
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I. Introduction

Free-space optics is slated to become an enabler of high data-rates in the backhaul of next generation

of wireless communication networks due to the availability of large chunks of unused spectrum in the

optical domain of the electromagnetic spectrum [1]. However, due to the narrow beamwidth associated

with the optical signal (the beamwdith angle is proportional to λ
D

where λ is the wavelength of light

and D is diameter of transmit aperture), pointing and tracking requirements become more stringent for

the performance of an FSO communications link. Thus, the pointing and tracking subsystems form an

important part of an FSO communication system. At the receiver, the received light is focused on a

detection element—which is either a single-detector or an array of detectors—that lies in the focal plane of

the aperture lens. Typically, noncoherent energy detection (intensity modulation/direct detection or IM/DD)

scheme is used in FSO receivers because of its relative simplicity as opposed to coherent receivers.

Typically, IM/DD based detector arrays are used in deep-space optical communications where the link

distances are so long that the transmitted signal pulse is decoded based on a few received signal photons

[2], [3]. Another reason for a low number of received signal photons is the phenomenon of “blocking”

associated with avalanche photodetectors (APD) that are operated in Geiger mode as photon counters.

The blocking occurs because the detection of the first photon causes an avalanche of electrons due to high

gain of an APD, and this avalanche has to be quenched by an avalanche recovery circuit, and the bias has

to be restored, before the next incoming signal photon can be detected. Thus, the APD gets “blocked” for

a few microseconds after a single photon detection before it is ready to detect the next incoming photon.

Thus, for a deep space optical communication receiver, it makes sense to spread the beam energy over an

array of individual detectors in order to minimize the effect of blocking, and thereby increase the number

of detected photons per pulse to improve the SNR.

A single-detector IM/DD receiver based on a single PIN photodiode is typically used for short link

terrestrial FSO systems where the received signal power is enough for the purpose of a satisfactory bit

error rate performance. The PIN diodes are not as sensitive as an APD when it comes to the detection of

low-energy pulses. However, they do a satisfactory job for moderate to high amounts of received signal

power. For a more detailed comparison on these two types of detectors, a good reference is [4].

Fig. 1 shows the profile of the Gaussian-approximated airy pattern in the focal plane, whereas Fig. 2

depicts an array of detectors and a single-detector receiver.
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Fig. 1. Profile of the incident beam in the focal plane.
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Fig. 2. This figure shows an array of detectors (on the left) versus a single-detector receiver (right).

A. Motivation

One might ask the following question: "Should one choose a single PIN detector, or should one choose an

array of PIN detectors for short-to-medium link FSO communications1 in order to minimize the probability

of error?" The answer to this question depends on a number of factors. So, before we answer this question,

it is important that we first understand the pros and cons of an array of detectors versus a single-detector

receiver.

1) Pros of a Single Detector Versus an Array of Detectors

Let us initially look at some of the pros of a single-detector receiver as opposed to an array of detectors.

Firstly, the bandwidth of the detector depends on its physical size or surface area [5]. A larger surface

area leads to a larger junction capacitance which implies a slower response to the changing optical signal.

Thus, in order to improve the switched response of the detector, it is important to reduce its size so that

the detector can detect fast changes in the received optical signal. Additionally, a small detector also adds

1By short-to-medium link lengths, we mean link distances anywhere between a few kilometers to a few hundred kilometers.
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Fig. 3. This figure shows the block diagram of a single-detector receiver. Only a fraction of received energy (denoted by α) goes into the
data channel, and (1− α) finds its way into the tracking channel. The parameter α can be varied between 0 and 1 by turning a knob on a
variable beam splitter.

less noise in the sufficient statistic (the amount of dark current and background radiation captured by a

detector is proportional to its area). For an array of detectors, the number of detectors M , A
A

where A
is the area of the detector array, and A is the area per detector. The area of the array A depends on the

variance of the pointing error (also called jitter in the FSO literature) or the deviation of the beam about

its mean position. The magnitude of the pointing error variance depends on the physical parameters of the

channel: The larger the variance of the pointing error, the larger the area A required in order to effectively

capture all the beam energy. The area of each detector A has to be small enough in order to support a

high enough data rate of symbol transmission on the channel. Thus, it may be that a large variance of

the jitter or beam deviation may lead to a large number of detectors M in the array which may be too

complex—both from the hardware as well as the computational resource perspectives—to realize.

Secondly, an array of detectors will also add more noise in the sufficient statistic since each detector

in the array will be adding background radiation/thermal noise into the total noise power. In order to

counter this noise resulting from each detector, a fusion algorithm—such as a maximal ratio combiner or

a selection combiner—may be used that will weight the output of each detector optimally or suboptimally

before the fusion takes place. However, the inclusion of such a fusion device will add its own computational

complexity to the resulting receiver.
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Fig. 4. This figure shows the block diagram of a detector array receiver.

2) Pros of an Array of Detectors Versus a Single Detector

Now, we look at some of the pros of a detector array versus a single-detector receiver. Firstly, because

of angle-of-arrival (AoA) fluctuations of the beam at the receiver, the focused light beam impinging on a

(small) single detector is always moving about or deviating about its mean position. We term this random

deviation as the pointing error or jitter in this paper. Due to the pointing error, the beam radius has to be

kept large enough so that any deviations of the beam do not lead to an outage of the signal at the detector.

Additionally, even if the center of the detector and the center of the beam are aligned, the detector does

not capture all the energy in the beam. If we replace this single detector with an array of detectors, and

make the area of the array large enough by adding enough number of detectors, we may be able to capture

all the received signal energy after the aperture lens.

Secondly, for a single-detector receiver, a separate beam tracking assembly/channel is needed. The

tracking assembly is typically made up of a quad-detector or a 2× 2 detector array where each detector

has an area large enough so as to accommodate for any deviation of the beam or beam wander. Thus,

the net fraction of energy going into the data channel (indicated by α in Fig. 3) is reduced in order to

divert a fraction of received energy into the tracking channel. For the array of detectors, a separate beam

tracking assembly is not required since the same array can be used for beam tracking as well as symbol

detection (please see Fig. 4).
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Thus, in order to answer the question posed at the beginning of Section I-A, we have to make a

performance comparison (bitter error rate and computational complexity comparison) between the single-

detector and the detector array receivers while keeping in mind the various factors and conditions that are

discussed in the pros and cons sections (Section I-A2 and Section I-A1). This comparison will highlight

the advantages (or disadvantages) of one scheme over another, and will give the reader an idea of which

system to choose under a given set of system parameters and conditions. This is the main motivation

behind the study conducted in this paper.

II. Literature Review and Model Assumptions

A. Background Literature Review

The authors in [2], [6] have proposed beam position estimation and tracking algorithms for a detector

array photon-counting receiver concerning a joint beam position tracking and symbol detection scheme

for PPM symbols. The authors in [7] analyze the probability of error in detail for the joint beam position

tracking and symbol detection system, and show that the probability of error of a maximal ratio combining

scheme is minimized if the beam is tracked accurately enough in time. The authors in [8] consider time

synchronization schemes for a detector array receiver in a photon-counting channel in deep space optical

communications. The authors in [9] have considered the communications performance for an array of

detectors and discussed the effects of the number of detectors and the beam parameter information on the

performance. They showed that for a maximal ratio combining scheme, the probability of error decays

monotonically with the number of detectors in the array if the area of the array is kept fixed. The authors

in [10] have deliberated upon the signal acquisition performance obtained with an array of detectors

receiver for a photon-counting optical channel. The work [11] analyzes the performance of a free-space

optical multiple-input single-output receiver for noncoherent and coherent beam combining schemes and

pointing errors. For more information on the performance of an array of detectors in a deep-space optical

communications, references [12], [13], [14] provide an excellent read.

Regarding pointing errors, the authors in [15] consider the optimization of outage capacity of an FSO

link in terms of the beam radius. The link employs a single detector at the receiver, and the outage capacity

is optimized for a Gaussian beam. The authors in [16] examine the maximization of link availability as

a function of beam radius for a single-detector FSO receiver.

Finally, references [17], [18], [19] present a good overview of diversity combining schemes in wireless

communications.
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B. Contributions of This Paper

The references mentioned in the literature review section either focus only on the performance analysis

of an array of detectors, or they solely deal with the performance evaluation of single-detector receiver

without considering a comparison of the two systems. In our opinion, there is no reference available in

FSO literature that has attempted to compare the performance of these two systems under different channel

conditions.

In this paper, we have compared the bit error rate performance of a single-detector receiver with a

detector array receiver for a pulse position modulation (PPM) scheme. In this regard, we have compared

the performance keeping in view a number of physical factors such as the pointing error or jitter variance

σ2
R, the beam or spot radius ρ in the focal plane, and the SNR. Additionally, concerning the array of

detectors, the probability of error performance for different fusion algorithms such as equal gain combiner

(EGC), selection combiner (SC), switched combiner (SWC), and the maximal ratio combiner (MRC) are

compared.

C. Model Assumptions

Without a loss of generality, we make the following assumptions before we begin the analysis in this

study:

1) The shape of the airy pattern or the spot on the focal plane is approximated by a Gaussian distribution

in two dimensions. Additionally, we assume that the noise intensity is distributed uniformly over

the array. The noise results due to thermal effect that leads to dark current in detectors. We assume

that the effect of unwanted background radiation—that is location dependent on the array instead

of being uniformly distributed—is minimized significantly by the use of optical filters, and hence

the background radiation effect is negligible.

2) The Gaussian beam center (x0, y0) deviates about the origin (0, 0) in the focal plane. The origin

(0, 0) is also the location of the center of the detector in the single-detector receiver, or in case of

the array of detectors, (0, 0) is the center of the array. The beam moves about in a random fashion

due to vibrations of the transmitter/receiver mechanical assemblies and the beam wander due to

atmospheric turbulence. The deviation of the center of the beam from the origin is represented by

random variable R. The random variable R is also known as the pointing error in our case.
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3) The distribution of the pointing error R is assumed to be Rayleigh. In future work, we will consider

a more general model such as a Beckmann distribution [16].

4) The detector radius a for the single-detector receiver is smaller than the radius ρ of the beam. A

circular detector is chosen in this case.

5) The shape of the array is a square and the size/area of the array depends on the standard deviation

of pointing error σR. Additionally, the shape of each detector in the array is also a square so that

all the detectors fill up the space inside the array. Thus, the optical fill factor of a hundred percent

is assumed in this case2.

D. Organization of This Paper

This paper is organized as follows. Section III discusses the signal and noise model and the probability

of error expressions for the single-detector receiver. Section III-A considers the probability of error for a

single detector case as a function of the area of the detector for the case of perfect alignment (or zero

pointing error). Section IV considers the probability of error for an array of detectors, and the probability

of error expressions for different fusion algorithms are either presented or derived. Section V contains

the commentary on simulation results and Section VI argues a brief complexity analysis between the

single-detector and the detector array receivers. Section VII sums up the conclusions of our study.

Fig. 5 shows the list of important mathematical symbols used in this paper.

Notation Name & Units

ρ Beam radius (mm)

(x0, y0) Beam center location

λp Peak signal intensity (Watt)

a Radius of single detector (mm)

α Power split factor of single detector

σ2
R Jitter or pointing error variance (mm)

N0 Noise Parameter (Watts/mm2)

M Number of detectors in the array

|A| Area of detector array (mm2)

M PPM modulation order

Λm Signal intensity in mth detector of the array

Fig. 5. List of Mathematical Symbols

2Even if the optical fill factor is less than a hundred percent, we can get close to a hundred percent effect by using a microlens array
before the array of detectors in the focal plane.
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III. Probability of Error for a Single-Detector Receiver

Let the intensity profile of the airy pattern at the focal plane be modeled by a Gaussian distribution.

Then, for any point (x, y) in the focal plane, the total intensity is given by

λs(x, y) , λp
ρ2 exp

(
−(x− x0)2 − (y − y0)2

2ρ2

)
+N0, (1)

where λp is peak intensity in Watts/mm2, ρ is the beam radius in millimeters, (x0, y0) is the beam center

location, and N0 is the constant noise intensity or power in Watts/mm2.

Let the total received signal energy be given by

PR =
∫ ∞
−∞

∫ ∞
−∞

λp
2πρ2 exp

(
−(x2 + y2)

2ρ2

)
dy dx. (2)

Then the signal energy received by a detector whose center lies at a distance R from the center of the

beam is,

P (R) =
∫ R+a

R−a

∫ +
√
a2−(x−R)2

−
√
a2−(x−R)2

α
λp

2πρ2 exp
(
−(x2 + y2)

2ρ2

)
dy dx, (3)

where 0 < α < 1 is the power split factor. For the single-detector receiver, the fraction α of the total

received power goes into the data channel assembly, and the fraction (1 − α) goes into the tracking

assembly (please see Fig. 3). As discussed before, the deviation R is modeled by a Rayleigh distribution

whose scale parameter is denoted by σR.

For the purpose of computing the probability of error, let the output of the detector be given by

Y = S(R) + V, (4)

where

S(R) =
∫ Ts

0
P (R) dt, (5)

and V ∼ N (0, σ2
v) is the noise due to background radiation and thermal effect. The quantity σ2

v represents

the variance of noise due to background radiation, and it is defined as µv = N0πa
2, where N0 is a constant

measured in in Watts/mm2. Let us transmit symbol 0 ≤ j < M for an M-PPM scheme. For an EGC

receiver that operates on the maximum likelihood principle, we say that a symbol j is detected if Yj > Yi
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for all i 6= j, 0 ≤ i <M. Then, the conditional probability of the correct decision is [7]

P(C|j) = (P ({Yj − Yi > 0}))M−1 , (6)

where C represents the event that a correct decision is made on a PPM symbol, Yj ∼ N (S(R), σ2
v)

and Yi ∼ N (0, σ2
v). For an equiprobable symbol scheme, we have that P(C|j) = P(C). Therefore, the

probability of error, P(E), is P(E) = 1−P(C).
The quantity (Yj − Yi) ∼ N (S(R), 2σ2

v). Therefore,

P(E|R = r) = 1−
(
Q

(
− S(r)√

2σv

))M−1

, (7)

and

P(E) =
∫ ∞

0
P (E|r)fR(r) dr =

∫ ∞
0

1−
(
Q

(
− S(r)√

2σv

))M−1
 fR(r) dr. (8)

The distribution of R is given by

fR(r) = r

σ2 exp
(
− r2

2σ2

)
, r > 0. (9)

Additionally, for a high data-rate scheme (very small symbol period Ts), S(R) ≈ P (R)Ts. For the sake

of simplicity, let Ts be equal to one time unit. Then,

P(E) =
∫ ∞

0

1−
(
Q

(
− P (r)√

2σv

))M−1
 r

σ2
R

exp
(
− r2

2σ2
R

)
dr. (10)

The P(E) for the single detector case is minimized in terms of the beam radius ρ:

minimize
ρ

P (E) (11)

subject to ρ0 < ρ < ρ1, (12)

where ρ0, ρ1 ∈ R. We denote the minimized P(E) by P(E)∗ and the optimum ρ by ρ∗.

A. Probability of Error for the Limiting Case of Detector Radius and Zero Jitter

In this section, we digress to show the effect of detector radius a on the probability of error of a

single-detector receiver under the ideal condition that the pointing error is zero. We will examine the

error probability for two asymptotic regimes: when a → 0 and when a → ∞. Especially, the effect of
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small a on the probability of error may not be straightforward to predict since the signal and the noise

power both go to zero as a→ 0.

The signal energy captured by the single detector—when its center is perfectly aligned with the beam

center—is

P (0) =
∫ a

0
αλp

r

ρ2 exp
(
− r2

2ρ2

)
dr = αλp

(
1− exp

(
− a2

2ρ2

))
. (13)

The probability of error from (10) is

P(E) = 1−
(
Q

(
− P (0)√

2σv

))M−1

, (14)

where σ2
v , N0πa

2. Thus,

P(E) = 1−
Q

−αλp
(
1− exp

(
− a2

2ρ2

))
√

2N0πa2

M−1

. (15)

When a→ 0, we have that the numerator and the denominator of the argument of Q both go to zero. In

this case, we apply the L’Hôpital’s Rule to the argument to obtain

lim
a→0

αλp
(
1− exp

(
− a2

2ρ2

))
√

2N0πa2 = lim
a→0

d
da
αλp

(
1− exp

(
− a2

2ρ2

))
d
da

√
2N0πa2

= lim
a→0

α/ρ2λp exp
(
− a2

2ρ2

)√
2N0πa2

2N0π
= 0. (16)

Since Q(0) = 1
2 , we have that,

lim
a→0

P(E) = 1−
(1

2

)M−1
. (17)

When a→∞, we have that the argument of the Q function in (15) is

lim
a→∞

αλp
(
1− exp

(
− a2

2ρ2

))
√

2N0πa2 = 0 (18)

which implies that lim
a→0

P(E) = lim
a→∞

P(E) = 1 −
(1

2

)M−1
. This gives us a hint that for a fixed beam

radius ρ, there might be an optimum detector radius (or radii) a∗ that will minimize the probability of

error.

Fig. 6 shows the probability of error (see (15)) as a function of detector radius a for different values of

beam radius ρ. We note that when a→ 0, the probability of error takes a hit since the rate of decrease in
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the signal energy captured by the detector is greater than the rate of decrease in the total noise power. On

the other hand, as a→∞, the captured signal power approaches λp, but the noise power goes to infinity.

Hence, the probability of error degrades significantly—approaches 1−
(

1
2

)M−1
— in this case.

Finally, even though we assume that the pointing error is zero for the sake of simplicity in this short

analysis, the results obtained here can be easily extended to the case when the pointing error is not zero.

0 0.5 1 1.5 2

10−9

10−7

10−5

10−3

10−1

a (mm)

P
(E

)

ρ = 0.5 mm
ρ = 0.6 mm
ρ = 0.7 mm
ρ = 0.8 mm
ρ = 0.9 mm

Fig. 6. This figure shows the probability of error as a function of detector radius a for different values of beam radius ρ. The value of peak

signal power λp = 1 Watts, and N0 = 0.05 Watts/mm2. These curves are plotted for an 8-PPM scheme.

IV. Probability of Error of an Array of Detectors

A. Equal Gain Combiner

It can be shown that the probability of error obtained with an array of detectors for an equal gain

combining scheme is given by [11]

P(E|x0, y0) = P(E) = 1−
(
Q

(
−
∑M
m=1 Λm√
2N0A

))M−1

, (19)

where Λm is the signal power in themth detector of the array: Λm ,
∫∫
Am

λp

2πρ2 exp
(
− (x−x0)2+(y−y0)2

2ρ2

)
dy dx.
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B. Maximal Ratio Combiner

It can be shown that the probability of error for the maximal ratio combiner is [11]

P(E|x0, y0) = 1−

Q
−

√√√√∑M
m=1 Λ2

m

2N0A(M)



M−1

, (20)

where A(M) is the area of a single detector in the array and it is a function of M if A is fixed.

C. Selection Combiner

In this section, we look at two types of selection combining schemes: the SC (Max SNR) and the SC

(Max Output).

1) SC (Max SNR)

In this case, we choose the detector that has the highest signal power (or SNR since noise power in

each detector is the same). For this scenario, we note that the information of beam center location (x0, y0)

is required in order to select the detector with the maximum SNR. For SC (Max SNR), we choose a

detector of the array whose signal power is

Λmax , max (Λ1,Λ2, . . . ,ΛM) . (21)

The output of the detector containing the maximum SNR is denoted by Ys during a PPM signal slot, and

the output of the same detector during a noise-only slot is denoted by Yn. For M-PPM, the probability

of a correct decision in this case is

P(C|x0, y0) = (P ({Ys > Yn}))M−1 . (22)

We know that Yn ∼ N (0, N0A
(M)). Then P (C) = (FYn(Ys))M−1 which implies that the conditional

probability is

P({Yn < Ys}|{Ys = y}) = FYn(y) = Q

− y√
N0A(M)

 . (23)

Therefore,

P({Yn < Ys}) =
∫ ∞
−∞

Q

− y√
N0A(M)

 fYs(y) dy (24)
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where

fYs(y) = 1√
2πN0A(M)

exp
(
−(y − Λmax)2

2N0A(M)

)
. (25)

Thus,

P(E|x0, y0) = 1−P(C|x0, y0) = 1−
∫ ∞
−∞

Q

− y√
N0A(M)

 fYs(y) dy
M−1

. (26)

a) Asymptotic Result: M → ∞: For large M , the signal energy in the detector having maximum

SNR (for any (x0, y0)) is approximately

S ≈ λp
2πρ2A

(M) (27)

Thus, in this case, the probability of error expression concering anM-PPM for large M is

P(E|x0, y0) ≈ 1−
Q

− λp

2πρ2A
(M)√

2N0A(M)

M−1

= 1−
Q

− λp

2πρ2

√
A(M)

√
2N0

M−1

. (28)

Since M →∞ =⇒ A(M) → 0, for (28) we have that

lim
M→∞

P(E|x0, y0) = 1−
(1

2

)M−1
, (29)

which is the same asymptotic expression as the probability of error for the single detector case (please

see (17)).

2) SC (Max Output)

In this case, we choose the detector that has the largest output for the purpose of detecting the symbol.

For the signal slot of a PPM symbol:

Y (s)
max , max(Y (s)

1 , Y
(s)

2 , . . . , Y
(s)
M ), (30)

where Y (s)
m ∼ N (Λm, N0A

(M)). Similar to this argument, we have that when we have a noise-only slot,

Y (n)
max , max(Y (n)

1 , Y
(n)

2 , . . . , Y
(n)
M ), (31)

where Y (n)
m ∼ N (0, N0A

(M)). Now,

P(C) =
(
P

({
Y (s)

max > Y (n)
max

}))M−1
. (32)
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In this case,

P

({
Y (n)

max < Y (s)
max

}∣∣∣ {Y (s)
max = y

})
= P({Y (n)

max < y}) = P({Y (n)
1 < y} ∩ {Y (n)

2 < y} ∩ . . . ∩ {Y (n)
M < y})

=
Q

− y√
N0A(M)

M . (33)

Now, the cumulative distribution function of Y (s)
max is

FYmax(y) , P({Y (s)
max < y}) = P

(
{Y (s)

1 < y} ∩ {Y (s)
2 < y} ∩ . . . ∩ {Y (s)

M < y}
)

(34)

=
M∏
m=1

Q

− (y − Λm)√
N0A(M)

 . (35)

Since ∂
∂x
Q(x) = − 1√

2π exp
(
−x2

2

)
, we have that the probability density function of Y (s)

max is

fYmax(y) =
M∑
m=1

 ∂

∂y
Q

− (y − Λm)√
N0A(M)

 M∏
i=1
i 6=m

Q

− (y − Λi)√
N0A(M)




=
M∑
m=1

 1√
2πN0A(M)

exp
(
−(y − Λm)2

2N0A(M)

)
M∏
i=1
i 6=m

Q

− (y − Λi)√
N0A(M)


 . (36)

Therefore,

P

({
Y (n)

max < Y (s)
max

})
=
∫ ∞
−∞

Q
− y√

N0A(M)

M fYmax(y) dy. (37)

where fYmax(y) is given by (36). Finally, the probability of error is

P(E|x0, y0) = 1−P(C|x0, y0) = 1−

∫ ∞
−∞

Q
− y√

N0A(M)

M fYmax(y) dy


M−1

. (38)

a) Asymptotic Result: M → ∞: For the noise-only slot of M-PPM, we know (from (33)) that the

maximum output—denoted by Y (n)
max—has the cumulative distribution given by F (y) =

(
Q
(
− y√

N0A(M)

))M
.

For the case of the slot containing the signal pulse, the cumulative distribution function of the maximum

output—denoted by Y (s)
max—is

F (y) =
M∏
m=1

Q

− (y − Λm)√
N0A(M)

 . (39)
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For large M , Λm ≈ SmA(M) where Sm = λp

2πρ2 exp
(
− (xm−x0)2+(ym−y0)2

2ρ2

)
, where (xm, ym) denotes the

center of the mth detector. Therefore, for large M ,

F (y) ≈
M∏
m=1

Q

−
(
y − SmA(M)

)
√
N0A(M)

 =
M∏
m=1

Q

− y√
N0A(M)

+ Sm
√
A(M)

√
N0

 (40)

and since A(M) ≈ 0 for large M ,

F (y) ≈
M∏
m=1

Q

− y√
N0A(M)

 =
Q

− y√
N0A(M)

M . (41)

Comparing (39) and (41), we note that Y (s)
max and Y

(n)
max are identically distributed and independent for

large M . In this case, P
({
Y

(s)
max > Y

(n)
max

})
= 1

2 which can be shown by the following argument. For two

identically distributed random variables X and Y , FX(z) = FY (z) = F (z), where FX(·) and FY (·) are

cumulative distribution functions of X and Y , respectively. Then, the probability that Y < X is,

P ({Y < X}) =
∫ ∞
−∞
P ({Y < x}) dF (x) =

∫ ∞
−∞

F (x) dF (x)

=
∫ 1

0
u du = 1

2 . (42)

Therefore, for large M , the probability of error for SC (Max Output) is

lim
M→∞

P(E|x0, y0) = 1−
(1

2

)M−1
, (43)

which is the same result as the asymptotic results for SC (Max SNR) (see (28)).

D. Switched Combiner

The Selection Combiner (Max Output) sorts through the detector outputs every symbol time in order

to choose the detector that has the maximum output. This leads to a larger complexity overhead that may

be reduced if the sorting procedure is carried out at a less frequent rate.

The switched combining scheme is a low complexity version of the selection combining scheme in

that the search for the maximum SNR detector is not carried out every symbol time but rather at a much

longer period [20]. In the switched combining scheme discussed in this paper, we begin by choosing

the output of the detector with the maximum SNR as our sufficient statistic for making a decision on

a symbol. However, for the next group of symbols, we use the output of the same detector for symbol

decisions unless the SNR of the said detector goes below a certain predefined threshold. In this sense,
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we save ourselves the sorting complexity every symbol time that we run into with a selection combining

scheme. However, since we do not necessarily use the output of the maximum SNR detector in this case

in order to make decisions, the error probability of the switched combiner will be strictly larger than the

error probability of the selection combiner.

Before we begin on the definition of the switched combiner, let us first explain a few preliminaries. Let us

assume that the beam position is a random process (specifically, a Gauss-Markov Process), and we denote

this random process by X [n] ,
[
X0[n] Y0[n]

]T
, where (x0[n], y0[n]) is a realization of (X0[n], Y0[n]).

We further assume that we can perfectly track (X0[n], Y0[n]) on the array.

The beam center evolves in time as a Gauss-Markov process by the following rule:

X [n] = ΦX [n− 1] + V [n], (44)

where V [n] is a zero-mean 2 × 1 vector that represents a white noise process. Specifically, V [n] =[
Vx[n] Vy[n]

]T
, where Vx[n] ⊥ Vy[m] for any discrete-time indices n and m. Additionally, we assume

that Vx[n] ⊥ Vx[m] and Vy[n] ⊥ Vy[m] whenever n 6= m. Moreover, for the sake of simplicity, we assume

that E[V 2
x [n]] = E[V 2

y [n]] = σ2
V .

For the purpose of computing the probability of error for a switched combiner, let us assume that the

beam tracking system estimates the beam position every `s symbols, and adjusts the beam position to the

center of the array every `a symbols. Let us assume that `a = k0`s for some positive integer k0. This

means that the tracking algorithm “senses” or estimates the beam position every `s time units and “aligns”

or adjusts the beam center to the center of array every `a time units. We call `s the beam position sensing

period, and `a the beam position alignment period. We assume that the tracking system performs perfect

tracking and that the beam center and the center of the array are aligned perfectly (and instantly) every

`a time units. We thus have that

σ2
R , `aσ

2
V (45)

σ2
R0 , `sσ

2
V = `s

σ2
R

`a
= σ2

R

k0
, (46)

where σR0 is the scale parameter of the beam center (x0, y0) every sensing period, and σR is the scale

parameter every alignment period.

It is not straightforward to compute an analytical expression for the probability of error for a switched

combiner. Hence, we resort to the following Monte Carlo simulations based method for computing the
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average probability of error for the switched combining scheme.

1) Switched Combiner Scheme for a Single Detector Output

The algorithm to compute the average probability of error for our proposed switched combiner is as

follows:

1) Choose (x0, y0) = (0, 0).

2) Run selection combiner, which means that we choose the detector with maximum SNR: Λ(0) ,

max(Λ1,Λ2, . . . ,ΛM).

Note: Λm is a function of (x0, y0). Thus, Λm = Λm(x0, y0) =⇒ Λ(0) = Λ(0)(x0, y0).

3) Compute probability of error P(E) for the chosen detector:

P(C) = (P ({Ys − Yn > 0}))M−1 (47)

where Ys ∼ N
(
Λ(0), N0A

(M)
)
, and Yn ∼ N

(
0, N0A

(M)
)
. Then,

P(E) = 1−
Q

− Λ(0)√
2N0A(M)

M−1

. (48)

4) Choose a new (∆x0,∆y0) ∼ N (0,ΣR0), where ΣR0 ,

σ2
R0 0

0 σ2
R0

 and update the beam position

as

x0 = x0 + ∆x0 (49)

y0 = y0 + ∆y0. (50)

5) If Λ(0)(x0,y0)
N0A

< γ, then go to Step 2 and choose a new detector with maximum SNR and update Λ0.

Else, go to Step 3.

6) Repeat until k0 values of P(E) are obtained.

The average probability of error is obtained by averaging over all the probabilities of error obtained in

the simulation.

Finally, we consider an important point regarding the threshold γ. Let us define

Λ∗ ,
∫ `(A)/2

−`(A)/2

∫ `(A)/2

−`(A)/2

λp
2πρ2 exp

(
−x

2 + y2

2ρ2

)
dy dx, (51)

where `(A) is the length any one side of the square detector in the array. The quantity Λ∗ is the maximum
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possible signal power that can be obtained in any detector of the array at any time. Therefore, for any

γ ≥ Λ∗

N0A(M) , the SWC and the SC are essentially the same algorithm.

V. Simulation Results and Commentary

Notation(s) Name / Unit Default Values

λp Peak power (Watt) 1

N0 Noise power (Watts/mm2) 0.06

|A| Area of array detector (mm2) 4

ρ Beam radius (mm) 0.2

a Area of single detector (mm2) 0.05

σ2
R Jitter variance (mm) 0.05

(x0, y0) Beam location (mm) (0, 0)

M Number of Detectors 16

M PPM modulation order 8

Fig. 7. A table of default value(s) and its range for the experiment in the paper

We now illustrate the simulations results that we have obtained in this study. In these simulations, we

have considered the Gaussian channel. For all the experiments, the area of the detector array |A| = 4 mm2.

This detector array stretches from -1 mm to 1 mm in each of the two dimensions, and the center of the

array coincides with the origin. Additionally, we want to highlight that the area of the array |A| is fixed
irrespective of the number of detector M in the array. Therefore, a larger M implies a smaller area per

detector. The modulation scheme in all the simulations is 8-PPM.



20

0.1 0.2 0.3 0.4
10−6

10−5

10−4

10−3

10−2

10−1

100

ρ (mm)

P
(E

)
σ2

R = 0.002 mm, a = 0.05 mm
σ2

R = 0.008 mm, a = 0.05 mm
σ2

R = 0.05 mm, a = 0.05 mm
σ2

R = 0.002 mm, a = 0.1 mm
σ2

R = 0.008 mm, a = 0.1 mm
σ2

R = 0.05 mm, a = 0.1 mm
σ2

R = 0.002 mm, a = 0.2 mm
σ2

R = 0.008 mm, a = 0.2 mm
σ2

R = 0.05 mm, a = 0.2 mm

Fig. 8. The figure shows the probability of error of single detector receiver as a function of both jitter σ2
R and area of receiver a for different

values of beam radius ρ. The modulation scheme considered in this case is 8-PPM.

Fig. 8 shows the error probability of single detector receiver from (10) as a function of beam radius

ρ for different jitter and area. We note that the probability of error of the single detector is proportional

to the value of jitter parameter σ2
R and the radius (area) of the single detector a.

0.1 0.2 0.3 0.4
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EGC
SC M=4 Max Output
SC M=16 Max Output
SC M=36 Max Output
SC M=64 Max Output
SC M=4 Max SNR
SC M=16 Max SNR
SC M=36 Max SNR
SC M=64 Max SNR
MRC M=4
MRC M=16
MRC M=36
MRC M=64

Fig. 9. The figure shows the probability of error of different combiners which are equal gain combiner (EGC), selection combiner (SC) and

maximum ratio combiner (MRC) as a function of beam radius ρ at beam center (0.4, 0.4) for the 2 × 2, 4 × 4 and 8 × 8 detector arrays.

The modulation scheme considered in this case is 8-PPM.
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Fig. 9 shows the error probability of equal gain combiner (EGC) from (19), selection combiner (SC

Max SNR) from (26), selection combiner (SC Max Output) from (37), and maximum ratio combiner

(MRC) from (20) for the detector array receiver, as a function of beam radius ρ for 2 × 2, 4 × 4 and

8 × 8 array configurations for a fixed beam center position: (x0, y0) = (0.4, 0.4). We observe that the

MRC obtains the best error probability performance followed by SC (Max SNR), SC (Max Output) and

EGC. This is straightforward since MRC weights the output of each detector optimally [11] as compared

to other schemes that weight the detector outputs suboptimally before the fusion takes place.

Fig. 10 considers the probability of error for the combining schemes except that beam center (x0, y0)

is now modeled as a random variable. The distribution of (x0, y0) is (N (0,C)) where 0 is the two-

dimensional column vector of zeros, and C ,

σ2
R 0

0 σ2
R

. Here, we see the same trend: The MRC

provides the best probability of error performance, followed by SC (Max SNR), SC (Max Output) and

the EGC.
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SC (Max Output), M = 64, σ2
R = 0.05 mm

SC (Max SNR), M = 4, σ2
R = 0.05 mm

SC (Max SNR), M = 16, σ2
R = 0.05 mm

SC (Max SNR), M = 64, σ2
R = 0.05 mm

MRC, M = 4, σ2
R = 0.05 mm

MRC, M = 16, σ2
R = 0.05 mm

MRC, M = 64, σ2
R = 0.05 mm

Fig. 10. This figure shows the effect of beam radius on the average error probability with jitter σ2
R = 0.05 mm for the 2 × 2, 4 × 4 and

8× 8 EGC, SC and the MRC combining schemes. The value of noise parameter N0 is 0.06 Watt/mm2.
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Fig. 11. This figure shows the effect of beam radius on the average error probability. The performance of the single detector with radius

a = 0.05 mm is compared with the 4× 4 EGC, SC and MRC combining schemes. The jitter variance σ2
R = 0.05 mm. The value of noise

parameter N0 is 0.06 Watt/mm2.

Fig. 11 shows the comparison of single detector and different array detectors as a function of ρ for jitter

variance σ2
R in the range 0.001—0.05 mm. The result indicates that the single detector within a certain

range of beam radius ρ has the ability to outperform the detector array combining schemes, especially

for small jitter variance σ2
R. For the single detector, the beam radius ρ is indeed a parameter that can be

optimized in order to obtain a minimum probability of error.

Regarding the array of detectors, we note that the error probability performance degrades for a small

jitter variance σ2
R for the MRC and SC schemes of the 4× 4 array. This is explained (nonrigorously) as

follows: For a smaller jitter variance, the beam center (x0, y0) is practically localized at the point (0, 0),

which is the point at which the corners of the four inner detectors of the 4 × 4 array meet or conjoin.

When (x0, y0) is localized to (0, 0), then most of the energy in the beam is distributed uniformly in these

four detectors, and no single detector has a significantly better SNR than other detectors. However, in

the scenario when (x0, y0) coincides with the center of a given detector, a big chunk of energy will be

localized within the said detector which leads to a very high SNR in that detector. Since, the MRC weights

the output of each detector in proportion to its SNR, the detectors with higher SNR get substantially higher

weights than detectors with low SNR [9]. This leads to an overall increase in the SNR in the final sufficient

statistic which leads to a smaller probability of error. This roughly explains why the MRC and SC schemes
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do not perform so well for the 4 × 4 array for small jitter variance (when the beam center resides close

to the center of the array).

0 1 2 3 4 5
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EGC
SC (Max Output), M = 16
SC (Max Output), M = 64
SC (Max SNR), M = 16
SC (Max SNR), M = 64
MRC, M = 16
MRC, M = 64
Single Detector, a = 0.5 mm
Single Detector, a = 0.75 mm
Single Detector, a = 1 mm

Fig. 12. The figure shows the comparison of average error probability between the single detector and the array of detectors as a function

of jitter variance σ2
R. The value of noise parameter N0 is 0.06 Watt/mm2. The optimal beam radius is chosen for single detector in this case.

For the array of detectors, the minimum possible radius is chosen (ρ = 0.1 mm).

Fig. 12 shows the comparison of single detector for different detector size a and different array detectors

as a function of jitter σ2
R for 4× 4 and 8× 8 array configuration. In this figure, we are using the optimal

beam radius for the single detector, and the smallest possible beam radius for the array of detectors (whic

is 0.1 mm). The result indicates single detector with low jitter has ability to outperform some array

combining schemes. Besides that, the single detector probability of error experiences a performance gain

in proportion to the detector radius a.
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Fig. 13. The figure shows the comparison of average error probability between the single detector with different power spilt α from 0.5 to 1

and the 4× 4 and 8× 8 combiner (EGC), selection combiner(SC) and maximum ratio combiner(MRC) detector arrays as function of noise

N0. The value of noise parameter σ2
R is 0.05 mm and the beam location is (0.4, 0.4).

Fig. 13 shows the performance comparison between the single detector and the array of detectors as a

function of noise parameter N0 when (x0, y0) is fixed at (0.4, 0.4). The comparison is made for different

power split factors α for the single detector receiver3. As expected, the single detector performance

increases in proportion to power split factor α.

3Here, we want to emphasize that even though the case of α = 1 is also shown in Fig. 13, α is strictly less than 1 in a practical FSO
receiver.
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Fig. 14. The figure shows the error probability of single detector as a function of jitter variance σ2
R for different values of detector radius a

and the corresponding optimized beam radius ρ∗. The value of noise parameter N0 is 0.06 Watt/mm2. The optimum value ρ∗ is found over

the range 0.1 < ρ < 0.4 mm, and the optimum value a∗ is obtained over the range 0.05 < a < 0.4 mm.

Fig. 14 shows the comparison of optimized beam radius ρ of single detector for different radii a for

the single detector case as a function of jitter variance σ2
R. We note that we obtain a better probability

of error performance if the optimization is carried out over two dimensions (both a and ρ) as opposed to

just one dimension (only ρ).
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Fig. 15. The figure shows the error probability of 4×4 and 8×8 switched combiner (SWC) for different threshold γ and selection combiner

(SC) as a function of beam radius ρ. The value of noise parameter N0 is 0.06 Watt/mm2.

Fig. 15 illustrates the performance comparison between the SC (Max SNR) and the switched combiner

as a function of beam radius ρ for different switching threshold γ. For the SWC, we assumed that the data

rate on the optical channel is 107 8-PPM symbols every second. We additionally assumed that the beam

position sensing period `s = 10 symbol time, and the beam alignment update period `a = 104 symbol

time. This implies that k0 = 1000. The period `a = 104 means that the beam is aligned to the center of

the array every 1 milliseconds.

For SWC, a larger threshold γ implies a more frequent switching to the optimum (largest SNR) detector,

which means that the performance of SWC will be very close to the performance of SC (Max SNR).

However, a larger threshold γ shall also imply a larger computational complexity.
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Fig. 16. This figure shows the probability of error as a function of number of detectors M in the array. The values of parameters are as

follows: noise parameter N0 = 0.04 Watts/mm2, beam radius ρ = 0.25 mm, and the beam location (x0, y0) = (0.25, 0.25). The area of the

array A = 4 mm2.

Fig. 16 shows the probability of error obtained with an array of detectors for the limiting case of

M → ∞ when the array area is held constant at A = 4 mm2. We note that the error probability of

MRC decays monotonically with M . Meanwhile, the selection combiner SC (Max SNR) and SC (Max

Output) suffer an increase in the probability of error for large M—the probabilities of error for both types

converge to 1−
(

1
2

)M−1
from (28) and (43). The EGC shows no difference in performance regardless of

the number of detectors M .

VI. Complexity Analysis

In this section, we briefly analyze the complexity for different combining schemes and compare it with

the complexity of a single-detector receiver. Since the EGC simply adds the outputs of all the array

elements to form the sufficient statistic [11], it requires M additions. Therefore, its complexity is O(M).

Regarding the SC, both the Max SNR and Max output versions require a sorting algorithm to find the

maximum of the M output values. Therefore, selection combiner has a complexity of O(M log(M)) if we

use merge sorting. For the switching combiner (SWC), the sorting complexity is βO(M log(M)) where

0 < β < 1 and β depends on the threshold γ. For the MRC, we have M multiplications and M additions

[11]. Hence, its complexity is O(M2).
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The SC (Max SNR) and MRC incur additional complexity since they require the estimation of beam

parameters—such as peak intensity λp, the beam radius ρ and the location of the beam center (x0, y0)

on the array—in order to form the sufficient statistic. The value of beam radius ρ in the focal plane

depends on the lensing arrangement; hence it is treated as a known deterministic quantity. The estimation

of λp is straightforward via a method of moments estimator [21], and we may ignore its complexity.

Regarding the estimation of (x0, y0), if we use a centroid estimator, we need a total of 3M additions and

2M multiplications (please see the definition of the centroid estimator in [2] or [22]). Thus, this extra

complexity has to be incorporated into the total complexity of MRC, SC (Max SNR) and SWC schemes.

Additionally, we want to point out that there is some hardware complexity associated with an array of

detectors as well. For instance, if the number of detectors is very large, the optical fill factor might be too

small. Thus, in this scenario, we may have to place a microlens array in front of the array of detectors in

order to focus the energy away from the dead area into the active area (the detectors). This will minimize

the effect of a reduced optical fill factor.

Regarding the single-detector receiver, the total computational complexity is the complexity required

in the tracking assembly which—if a centroid estimator is used—turns out to be 3M ′ additions and 2M ′

multiplications, where M ′ is the number of elements used in the detector array in the tracking assembly.

Hence, the complexity of a single-detector receiver is O(M ′). In addition to this, there is a complexity

associated with the single-detector receiver concerning the optimization of the beam radius that depends

on the jitter variance σ2
R. However, if σ2

R remains almost stationary over the course of say, a few million

symbols (which takes less than a second for most short-to-medium distance FSO links), the complexity

associated with optimization of beam radius may be ignored relative to the complexity incurred every

symbol time.

Fig. 17 summarizes the complexities of different combining schemes for an array of detectors and a

single detector.
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Scheme Complexity

EGC O(M)

SC (Max Output) O(M log(M))

SC (Max SNR) O(M log(M)) +O(M)

SWC βO(M log(M)) +O(M)

MRC O(M2) +O(M)

Single-Detector O(M ′)

Fig. 17. A table summarizing the computational complexities of different combining schemes.

VII. Conclusion

In this paper, we have compared the probability of error performance of a single-detector receiver with

a detector array receiver in a free-space optical communication system. Concerning the array of detectors,

different combining schemes were considered in the probability of error comparison. We conclude that

except the equal gain combiner, all other combining schemes for the array of detectors yield a better error

probability performance than the single-detector receiver for high to moderate values of jitter standard

deviation. However, the array of detectors incur a higher computational overhead when compared to

the single-detector receiver. Additionally, when the jitter standard deviation is very small compared to

the detector radius of the single-detector receiver, the single-detector receiver outperforms the array of

detectors in terms of error probability.
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