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Abstract

Recent studies show that physiological data can detect changes in mental effort, making way for the development of wearable

sensors to monitor mental effort in school, work, and at home. We have yet to explore how such a device would work with a

single participant over an extended time duration. We used a longitudinal case study design with ˜38 hours of data to explore

the efficacy of electrodermal activity, skin temperature, and heart rate for classifying mental effort. We utilized a 2-state Markov

switching regression model to understand the efficacy of these physiological measures for predicting self-reported mental effort

during logged activities. On average, a model with state-dependent relationships predicted within one unit of reported mental

effort (training RMSE = 0.4, testing RMSE = 0.7). This automated sensing of mental effort can have applications in various

domains including student engagement detection and cognitive state assessment in drivers, pilots, and caregivers.
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1 Introduction 

Researchers often strive to measure how focused someone is on a task, or how much mental effort 

they are putting into it. One domain where this is an important question is education and the study 

of learning. For more than three decades many researchers interested in this question, or related 

questions, have relied on a prominent theory called Cognitive Load Theory (CLT; [1–3]). 

According to CLT, we can put mental effort towards learning the salient material, known as 

intrinsic cognitive load, or towards other features of the instruction that do not support the learning 

task, known as extraneous cognitive load [1, 3, 4]. Researchers suggest that the complexity of the 

task and the learner’s level of prior knowledge in the subject determine the amount of mental 

effort that will be needed to learn the material and thus determine the intrinsic cognitive load, 

whereas mental effort put into parsing non-supporting elements of the instruction, such as 

interesting but ultimately unrelated stories, or visually searching for references needed to 

understand components of the learning materials, determine the extraneous cognitive load [1–4]. 

Since the working memory is limited in both capacity [5, 6] and duration [1, 3], CLT suggests that 



it is important to minimize the mental effort learners have to expend on tasks that are not essential 

to learning the material [7].  

Cognitive load theory is well-established in the education literature, with a number of highly cited 

papers centering on the theory (e.g., [7–9]). Unsurprisingly, CLT has been used to theoretically 

support a number of specific task design principles, such as the worked example effect, the 

redundancy effect, and the split-attention effect [2, 4], and has become widespread outside of the 

educational psychology literature, appearing, for example, in the medical education literature as 

well [10–12]. The notion of cognitive load is an important theoretical paradigm in many types of 

educational research, but a lingering question persists in the CLT literature: how do we measure 

cognitive load?  

The construct of cognitive load, as explained by CLT, is relatable to many; however, the 

measurement of such a construct has been a psychometric challenge for more than a decade. 

Researchers have used methods as varied as self-reports [13], eye-tracking measures [14], 

secondary task techniques [15], or physiological data [16]. Outside of the education literature 

researchers have measured a similar construct, mental workload, using similar methodologies like 

self-reports [17] or physiological measures [18] like facial skin temperature [19]. 

Recently, perhaps due to the increasing accessibility of wearable sensors or the psychometric 

issues associated with current methods for cognitive load assessment [20–22], researchers have 

been using physiological measurements and investigating their relation to learning relevant 

outcomes. Some of this work has shown promising results. For example, in relation to learning 

relevant processes, [23] used heart rate variability as an indicator of sustained attention. In 

addition, [24] measured electrodermal activity and examined these data in relation to self-reported 

emotional engagement. They found that students who were more engaged showed more frequently 

high levels of electrodermal activity. Taking a multimodal physiological approach, [25] 

differentiated between when students worked on high, moderate, and low mental effort activities, 

and further were able to predict a user’s self-reported mental focus. It is noteworthy, however, that 

not all studies have shown such promising results. For example, examining task complexity in 

relation to physiological measures, [26] found that electrodermal activity and heart rate mean 

scores did not differ depending on the complexity of the task.  

As noted, the use of wearable sensors to collect physiological data in relation to education-relevant 

outcomes is becoming more widespread in the literature. While there have been some promising 

results, the literature also shows some null results, highlighting the complexity of this area of 

work. When looking at recent studies [20-26], an important missing piece is understanding how 

we can use these data to track mental effort in an individual over extended periods of time, and the 

diagnostic utility of easily-obtainable physiological measures like EDA, skin temperature, and 

heart rate towards this goal.  In this case study, we utilize a longitudinal interpretable machine 

learning approach to understand how these data can be used to track the mental effort of an 

individual student in the context of both school activities and activities of daily living.  

2 Methods 

2.1 Study Design 

In this study we sought to understand how EDA, skin temperature, and heart rate can be used to 

learn trends in mental effort for a single participant, and the extent to which we can model this in a 

robust way. We were first interested in using interpretable machine learning models to understand 

relationships between the participant’s EDA, skin temperature, and heart rate measures and her 

reported mental effort.  Second, we were interested in the diagnostic strength of these measures, 

and their efficacy in predicting mental effort in the context of future activities.  To satisfy these 

goals, we used a longitudinal n = 1 case study design [27]. The goal of a case study is to generate 



rich description of a single case, which typically constitutes a single participant or entity [28]. 

Since our aim in this study was to evaluate the efficacy of a device for long-term monitoring of 

mental effort, it made sense to focus on a single participant over an extended time period. 

Researchers who place a premium on generalizability across contexts argue that a case study is 

disadvantaged by its focus within a single specific context [28].  However, [28] argues that this 

focus on a specific context is a strength in that it supports more accurate generalization to similar 

contexts. With the fields of psychology and medicine focusing less on giving general answers 

applying to everyone, and more on individualizing care, it is little surprise that the n = 1 design 

has increased in popularity in the medical research community [29, 30].  

2.2 Description of the Case and Instrumentation 

Since the focus of this study was to detect mental effort associated with school-related activities as 

well as activities of daily living, we chose an undergraduate university student as the case. This 

student was 19 years of age. She was a Psychology major with a concentration in Neuroscience in 

the second year of her undergraduate degree. Her primary hobbies included painting and spending 

time with her dog. Through the study, she identified her school-related activities, painting, 

learning to groom her dog with clippers and scissors, and watching brain games with her family as 

activities constituting high mental effort, and spent 48% of her time engaging in these types of 

activities.  The remainder of her time was spent on low self-reported mental effort activities 

including eating, talking on the phone, watching television, driving, running errands, napping, and 

walking her dog. A total of 37 hours, 33 minutes, and 34 seconds of data were collected. At a 

sampling rate of one sample per second, this constituted 135,214 total observations. These data 

were collected over approximately 3 weeks during the last half of the Spring 2020 semester. 

The methodology relied on matching physiological data for EDA, skin temperature, and heart rate 

to self-reported data for mental effort dedicated to specific activities. EDA, skin temperature, and 

heart rate data were collected using the Empatica E4 wristband. The E4 measures blood volume 

pressure, heart rate, interbeat interval, skin temperature, and 3-axis acceleration. The E4 sampled 

EDA at 4 Hz, skin temperature at 4 Hz, and calculated heart rate (1 Hz) based on the BVP signal 

(64 Hz). In order to minimize noise in the data, we elected to downsample the EDA and skin 

temperature signals to 1 Hz in order to match the heart rate signal.     

The participant was asked to place the E4 band on her wrist approximately 3 cm from the base of 

the hand. She indicated that she wore the device on her right wrist since she was left-handed. As 

she engaged in different activities throughout the day while wearing the device, she logged them 

in a journal along with assigning a measure of mental effort to each activity. Mental effort was 

self-reported on a Likert scale of 1-4, where a “1” indicated very low effort, a “2” indicated low 

effort, a “3” indicated high effort, and a “4” indicated very high effort. Individual activities varied 

in length from under a minute to over an hour. During the course of her activities, the student’s 

data transitioned between low (1 and 2) and high (3 and 4) mental effort states 30 times. 

2.3 Markov Switching Regression Model 

The goal of modeling was two-fold: (1) to generate longitudinal predictions for mental effort and 

evaluate their robustness, and (2) to understand the role of measured EDA, skin temperature, and 

heart rate in generating these predictions. In light of these goals, we utilized the Markov switching 

dynamic regression model [31], which is an interpretable machine learning model that describes 

how an outcome changes its state over time. At their most basic level, Markov models predict a 

current state based on the previous state and a transition probability matrix. Markov switching 

models build upon this by allowing incorporation of state-specific relationships, thereby 

improving our understanding of how the physiological parameters relate to mental effort within 

each state.  



Given our interest in a device that is able to distinguish between high and low states of mental 

effort, we utilized a 2-state Markov switching model. We tested models with four hierarchical 

levels of complexity: (1) a 2-state intercept-only model, (2) a 2-state model which held the effects 

of EDA, heart rate, and skin temperature constant across state, (3) a 2-state model which allowed 

the effects of EDA, heart rate, and skin temperature to switch across states, and (4) a 2-state model 

allowing for switching effects and variances. The likelihood ratio test was used to test the null 

hypothesis that adding an additional level of complexity did not improve model fit (95% 

confidence level used). The generalized r-square was calculated from the ratio of deviance values 

from the null and alternative models as a measure of the extent to which the alternative model 

improved fit over the null model.  

Upon arriving at the best model using the above procedure, our interest shifted to evaluating the 

model’s ability to provide robust temporal predictions. For validation, we fit the model to the first 

22 hours (58%) of the data, and tested that model on the final 16 hours (42%) of the data. The root 

mean square error and mean absolute error were used to compare the fit of the raw output between 

the training and testing sets. We also discretized the reported mental effort and output to 2 states in 

order to evaluate the model’s strength as a classifier based on its precision, recall, and F1 measure 

for the training and testing sets.  

3 Results 

3.1 Descriptive Analysis 

The participant spent 9 hours 18 minutes and 29 seconds in activities requiring very low mental 

effort and 10 hours 8 minutes and 6 seconds in activities requiring low mental effort. 12 hours 48 

minutes and 46 seconds were spent at high mental effort, and 5 hours 18 minutes and 13 seconds 

were spent at very high mental effort. Small but significant differences in EDA, skin temperature, 

and heart rate were found between each level of mental effort (Table 1). 

Table 1. Average values for EDA, skin temperature, and heart rate at each reported level of 

mental effort. 

    EDA (µS) Temperature (ᵒC) Heart Rate (bpm) 

Mental Effort Time (s) Mean SD Mean SD Mean SD 

1 33509 0.12 0.08 32.55 1.56 94.74 17.42 

2 36486 0.12 0.06 31.70 2.64 97.79 21.50 

3 46126 0.15 0.18 32.30 1.80 91.65 17.59 

4 19093 0.13 0.04 32.40 1.93 92.55 16.14 

Total 135214 0.13 0.12 32.21 2.05 94.20 18.67 

 

A MANOVA omnibus test indicated at least one significant difference in the multivariate mean 

across levels of mental effort (Wilk’s Λ = 0.94, F9,329061 = 948.97, p << 0.001, η2
partial = 0.021). 

Univariate ANOVA tests indicated that skin temperature exhibited the largest differences between 

levels of mental effort (F3,135210 = 1159.92, p << 0.001, η2
partial = 0.025). EDA (F3,135210 = 649.63, p 

<< 0.001, η2
partial = 0.014) and heart rate (F3,135210 = 810.04, p << 0.001, η2

partial = 0.018) also 

exhibited significant differences, but the effect sizes were less than that for skin temperature. Due 

to the large number of observations, Scheffe tests indicated that all differences between 

subsequent levels of mental effort were significant at the 99% confidence level. However, given 

the longitudinal nature of the data, it was difficult to specify how the physiological data support 

classification of high and low mental effort states over time using the MANOVA procedure.  

 



3.2 Longitudinal Modeling of Mental Effort Using Physiological Data 

Contribution of Physiological Measures. The log-likelihood tests (Table 2) suggested that the 

most complex model, allowing effects and variances to switch across states, provided the best fit 

to the data, and offered a significant improvement over the intercept-only null model (R2
 = 0.023, 

χ2
partial, df=7 = 4195.0, p << 0.001). 

Table 2. Hypothesis tests for significance of change in model fit as model complexity increased. 

Type 1 tests were used for calculating R2
partial and 2

partial. R2
 and χ2 were calculated with respect to 

the intercept-only null model. 

Two-State Markov Model R2 2 R2
partial 2

partial 

Intercept-Only (k = 5)     

Intercept + Constant Effects (k = 8) 0.012 2200.4* 0.012 2200.4* 

Intercept + Switching Effects (k = 11) 0.021 3838.2* 0.0090 1637.8* 

Intercept + Switching Effects and Variances (k = 12) 0.023 4195.0* 0.0020 356.8* 

*p << 0.001 

Adding EDA, skin temperature, and heart rate as constant effects to the 2-state intercept-only 

model resulted in a significant improvement in the model (R2 = 0.012, χ2
df=3 = 2200.4, p << 

0.001). Allowing the effects of EDA, skin temperature, and heart rate to switch between states 1 

and 2 resulted in a further improvement (R2
partial = 0.009, χ2

partial, df=3 = 1637.8, p << 0.001). Finally, 

allowing variances to switch across the two states resulted in a smaller, but nonetheless 

significant, improvement in model fit (R2
partial = 0.002, χ2

partial, df=1 = 356.8, p << 0.001).   

The 2-state model with state-dependent effects and variances (Table 3) showed that State 1 was 

associated with low mental effort (Intercept = 1.508, SE = 0.002, z = 800.4, p << 0.001), and State 

2 was associated with high mental effort (Intercept = 3.296, SE = 0.002, z = 1823.7, p << 0.001). 

With this qualification, we can begin to understand how this student’s EDA, skin temperature, and 

heart rate changed with mental effort within these two states as well as across the two states. 

Within State 1, an increase in mental effort was accompanied by a decrease in skin temperature 

and EDA, and an increase in heart rate. Skin temperature provided the strongest diagnostic for 

mental activity (Coef = -0.089, SE = 0.002, z = -52.0), followed by heart rate (Coef = 0.042, SE = 

0.002, z = 24.2). EDA was significant (Coef = -0.034, SE = 0.003, z = -11.0), but nonetheless had 

a weaker effect size than skin temperature and heart rate. This ordering of importance matched the 

conclusions from the MANOVA test. 

Upon transition to State 2, EDA retained its negative relationship with mental effort (Coef = -

0.025, SE = 0.001, z = -17.1), and heart rate retained its positive relationship (Coef = 0.016, SE = 

0.002, z = 8.1). However, skin temperature switched to a being positive indicator of mental effort 

(Coef = 0.018, SE = 0.002, z = 8.9) in State 2. The ordering of importance also changed from State 

1. When the participant entered State 2, EDA became the strongest diagnostic, followed by skin 

temperature and heart rate. 

  



Table 3. Parameter estimates for the 2-state Markov switching model with switching effects and 

variances. 

Mental Effort Feature Coef SE z 

State 1     

 EDA -0.034 0.003 -11.0* 

 TEMP -0.089 0.002 -52.0* 

 HR 0.042 0.002 24.2* 

 Intercept 1.508 0.002 800.4* 

 Variance 0.488 0.001  
State 2     

 EDA -0.025 0.001 -17.1* 

 TEMP 0.018 0.002 8.9* 

 HR 0.016 0.002 8.1* 

 Intercept 3.296 0.002 1823.7* 

 Variance 0.454 0.001  

     

Transition p11 0.99976 0.00006  
Probabilities p21 0.00025 0.00006   

           *p << 0.001 

Utility for Prediction. From the perspective of correct classification, our data indicate that the 

Markov switching regression model has high predictive utility both on the training and testing 

sets. The model predicted whether the participant was in a high or low state of mental effort with 

high accuracy (Accuracytrain = 0.9995 , F1train =  0.9995, Accuracytest =  0.9996, F1test = 0.9996). 

However, much of this was due to the fact that reported mental effort in association with certain 

activities was stable and sustained over extended time periods. This is illustrated by the model 

probabilities: given an initial state, the probability of staying in the same state was 0.99975, and 

the probability of transitioning to the other state was 0.00025. This means that when the model 

encountered a transition from one level of mental effort to another, it tended to misclassify the 

initial observation within the new activity. However, once the model observed that initial 

observation, it tended to classify the rest of the observations correctly until it encountered another 

transition. It is for this reason that the Intercept-Only model (RMSE = 0.48, MAE = 0.46) 

predicted nearly as well as the Switching Effects and Variances model (RMSE = 0.47, MAE = 

0.45) despite its lack of explanatory utility. The Switching Effects and Variances model predicted 

the testing set (RMSEtest = 0.70, MAEtest = 0.61) slightly less accurately than the training set 

(RMSEtrain = 0.40, MAEtrain = 0.32), illustrating some deterioration in performance when 

predicting into the future.  However, these measures of fit sat within one unit of reported mental 

effort, illustrating the model’s usefulness for classification of discrete states of mental effort both 

in the training and testing sets.      

4 Discussion and Conclusions 

Our findings suggest that the Markov switching model is useful as an explanatory tool for 

understanding the diagnostic utility of EDA, skin temperature, and heart rate for measuring mental 

effort. Providing that information about the participant’s previous state is available, we can expect 

this model to perform well in predicting the participant’s state at the next time point.  This means 

that for extended activities, we will be able to discern the participant’s level of mental effort at the 

next time point with reasonable certainty. However, the utility of Markovian assumptions reduces 

when we do not have knowledge of the previous state, or if that knowledge is highly tentative. The 



utility of this framework could be improved if it were combined with another machine learning 

approach which is less sensitive to prior states.  Previous work suggests that machine learning 

models invoking the assumption that the data are independent and identically distributed (i.i.d.) 

may be useful for detecting transitions between states [25]. For example, a simple logistic 

regression model applied to this data set using EDA, skin temperature, and heart rate as main 

effects (Accuracy = 0.55, F1 = 0.50) was able to detect 2 of the 30 total transitions in the data 

despite performing relatively poorly as a classifier. In this sense, traditional machine learning 

approaches could be used to generate time-independent predictions, and then the Markov model 

could act as a smoother over the temporal dimension which would improve the coherence of 

predictions while a user is within a particular state of mental effort. Our next steps include 

exploring linear dynamical systems and variants that incorporate both the temporal information, as 

well as utilize the i.i.d. nature to be able to detect both stability and transitions with high certainty.  

Previous work has shown the promise of using physiological data collected from wearable sensors 

to facilitate automated monitoring mental effort and cognitive load [23-26], and [25] proposed the 

application of this framework toward development of an Educational Fitness Sensor (EduFit) 

system to help students track the duration and quality of their studies in real time. However, for 

EduFit to have utility as a personal device, models have to work in less structured environments 

over relatively long time durations. This study shows that EDA, skin temperature, and heart rate 

have diagnostic utility in these types of less controlled settings. It has been argued that the EduFit 

system would enable building of personal understanding of one’s study endeavors through 

interpretable biofeedback and enablement of personal accountability [25]. Beyond engagement in 

studies, we believe this type of system may also be useful in other contexts where mental effort is 

important such as fields involving high-stakes operation of machinery. Monitoring of mental effort 

may also be useful for detecting cognitive decline in gerontology contexts. Within any of these 

contexts, the ability to specify and train models which are accurate and robust over time is 

essential if EduFit is to be useful, and our data indicate that interpretable machine learning models 

specified for time series data provide a step in the right direction.    
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