
P
os
te
d
on

29
J
an

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
36
26
75
5.
v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
07
/s
11
22
7-
02
1-
04
16
6-
9

Hybrid-based Framework for COVID-19 Prediction via Federated

Machine Learning Models

Ameni Kallel 1, Molka Rekik 2, and Mahdi Khemakhem 2

1Laboratoire OLID
2Affiliation not available

October 30, 2023

Abstract

The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly transmissible across the people. Therefore, a

smart monitoring system that detects and tracks the suspected COVID-19 infected persons may improve the clinicians decision-

making and consequently limit the pandemic spread. This paper entails a new framework integrating the Machine Learning

(ML), cloud, fog, and Internet of Things (IoT) technologies to propose a COVID-19 disease monitoring and prognosis system.

The proposal leverages the IoT devices that collect streaming data from both medical (e.g., X-ray machine, Lung UltraSound

machine, etc.) and non-medical (e.g., bracelet, smartwatch, etc.) devices. Moreover, the proposed hybrid fog-cloud framework

provides two kinds of federated ML as a Service (federated-MLaaS); (i) the distributed batch-MLaaS, which is implemented on

the cloud environment for a long-term decision-making, and (ii) the distributed stream-MLaaS installed into a hybrid fog/cloud

environment for a short-term decision-making. Stream-MLaaS use a shared federated prediction model stored into the cloud;

whereas the real-time symptom data processing and COVID-19 prediction are done into the fog. The federated ML models are

determined after evaluating a set of both batch and stream-ML algorithms from the Python’s libraries.

1

1

Hybrid-based Framework for COVID-19
Prediction via Federated Machine Learning

Models
Ameni Kallel, Laboratoire OLID,LR19ES21, École Nationale d’Électronique et des Telécommunications,

University of Sfax, 3021, Tunisia
Molka Rekik, Department of Information System, College of Computer Engineering and Sciences, Prince

Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
Mahdi Khemakhem, Department of Information System College of Computer Engineering and Sciences

Prince Sattam Bin Abdulaziz University Alkharj, 11942, Saudi Arabia

Abstract—The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly transmissible across the people. Therefore, a
smart monitoring system that detects and tracks the suspected COVID-19 infected persons may improve the clinicians decision-making
and consequently limit the pandemic spread. This paper entails a new framework integrating the Machine Learning (ML), cloud, fog,
and Internet of Things (IoT) technologies to propose a COVID-19 disease monitoring and prognosis system. The proposal leverages
the IoT devices that collect streaming data from both medical (e.g., X-ray machine, Lung UltraSound machine, etc.) and non-medical
(e.g., bracelet, smartwatch, etc.) devices. Moreover, the proposed hybrid fog-cloud framework provides two kinds of federated ML as a
Service (federated-MLaaS); (i) the distributed batch-MLaaS, which is implemented on the cloud environment for a long-term
decision-making, and (ii) the distributed stream-MLaaS installed into a hybrid fog/cloud environment for a short-term decision-making.
Stream-MLaaS use a shared federated prediction model stored into the cloud; whereas the real-time symptom data processing and
COVID-19 prediction are done into the fog. The federated ML models are determined after evaluating a set of both batch and
stream-ML algorithms from the Python’s libraries.

Index Terms—COVID-19 pandemic, machine learning, IoT devices, batch/streaming data, hybrid fog-cloud federation, federated
MLaaS, real-time prediction, decision-making

F

1 INTRODUCTION

Healthcare is one of the important application fields that re-
quire real-time and accurate results. Technologies including
big data, Internet of Things (IoT), cloud and fog computing
[1] have gained significance due to their available abilities to
provide diverse services based on latency-sensitive or real-
time applications [2]–[4]. Since the manual processing has
not been effective, the use of the Artificial Intelligence (AI) in
healthcare [5] has become prominent for monitoring, prog-
nosis and diagnosis purposes [6]–[8]. Regarding the contin-
uous COronaVIrus Disease 2019 (COVID-19) [9] pandemic
growth across the world, several researchers are attempt-
ing to find solutions for exploring accurately the infected
persons and isolate them to reduce the pandemic spread.
The Machine Learning (ML)-based systems can improve the
decision-making for clinicians and consequently limit the
spread of this pandemic. The literature survey focused on
discussing the learning-based COVID-19 combating propos-
als. In [10]–[12], the authors proposed learning-based ap-
proaches for detecting the facemask wearing state based on
integrated monitoring cameras and ML techniques. Other

• Corresponding author: M. Rekik was with the Department of Information
System, College of Computer Engineering and Sciences, Prince Sattam
Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia.
E-mail: molka.rekik@gmail.com, m.rekik@psau.edu.sa

works [13]–[17] dealt with the COVID-19 prediction and
the early prognosis of this disease. They suggested COVID-
19 medical image recognition models based on clinical and
chest radiological imaging such as Computed Tomography
(CT) and X-ray. Some other studies [18]–[20] presented ML-
based framework for predicting whether a suspected person
is COVID-19 infected or not. Their frameworks adopted a
set of IoT devices such as temperature, heartbeat, oxygen
saturation monitor, etc., which might collect health data and
help to monitor the users in real-time. However, such frame-
works, were based on traditional batch ML-models, treated
only the historical existing data. Although, our approach
considers both the historical and streaming data collected
from different medical devices like X-ray machine, Lung
UltraSound (LUS) machine, etc; as well as non-medical
devices (e.g., drones, wearable devices like smartwatch,
bracelet, etc.). In this work, we propose a new framework for
a smart monitoring system detecting the suspected COVID-
19 infected peopole as well as other critical diseases’ patients
such as Pneumocystis, Legionella, Streptococcus, etc. As
the data stream learning differs from the traditional batch
learning (i.e, the environment settings are mainly different)
[21], the proposed framework enables collaborative learning
into a hybrid (i.e., fog/cloud) federation system; whereas we
adopt three kinds of federated ML as a Service (federated-
MLaaS). In fact, we provide (i) a batch-MLaaS implemented

on the cloud environment for the long-term decision mak-
ing, (ii) a stream-MLaaS installed on the fog environment
for the short-term decision making, and (iii) the both ML
types simultaneously based on their dependencies and their
connections. Indeed, this paper is an extension of a previous
publication [22]. It extends the original work in various
points:

• The framework is adapted to be customized for the
COVID-19 disease monitoring and prognosis. In fact,
to customize the previous framework, we were based
on the expert (i.e., physicians and medical staff) experi-
ences through sharing a survey with them.

• According to the survey’s results, the framework en-
ables the data pre-processing and features selection in
order to extract relevant indicators for the COVID-19
disease classification. It is worth mentioning that the
data is collected from the medical as well as the non-
medical devices.

• The learning-based framework maintains an accurate
decision-making model shared between the two fed-
erated stream-MLs (i.e., the same learning model is
adopted by the stream-ML existing in the cloud layer
as well as by the one installed on the fog layer).
Moreover, the proposal ensures an accurate long-term
decision-making using the federated batch-ML, which
is installed on cloud layer.

• The proposed framework is able to learn and train
the collected data incrementally over time as well as
historical stored data. In the best of our knowledge,
our proposal is the first one handling both batch and
streaming data.

• The evaluation of the proposed framework demon-
strates its performance in terms of accuracy, response
time, precision, etc. for COVID-19 monitoring and prog-
nosis.

In this work, the federated-MLs evaluation is two-fold; the
first focuses on selecting the best-performing algorithm/-
model for the batch-ML from the widely used Python’s
library called Scikit-learn [23]. For do so, we follow three
data splitting strategies no-shuffle train/test split, K-fold Cross
Validation (KCV), and shuffle Split Cross Validation (SCV) with
a train/test split of 70/30. The obtained results demonstrate
that (i) the most accurate predictions are those of shuffle split
strategy while using 10 random samples and (ii) Random
Forest Classifier outperforms other algorithms by providing
prediction obtained up with 71,4% precision, 75% accuracy,
25% Root Mean Square Error (RMSE), and 71,7% F1 Score.
The second evaluation considers the stream-ML models
while taking into account of Python’s River library [24],
which offers a set of streaming classification algorithms.
The obtained results involve two classification kinds, the
multi- and binary-class. It is worthy mentioned that with the
multi-class kind, the prediction model can distinguish nor-
mal, COVID-19, and non COVID-19 pneumonia patients.
While with the binary classification kind, the patients are
categorized to COVID-19 Vs. non COVID-19 cases. In fact,
the evaluation results demonstrate that, when considering
multi-class, (i) AdaptiveRandomForestClassifier algorithm out-
performs others by providing predictions obtained up with
76% precision, 75% accuracy, 49% RMSE, and 85% F1 Score

and (ii) LogisticRegression algorithm is the best-performing
algorithm in term of the execution time, which is a key
metric for real-time predictions. While taking into account a
binary classification, we obtain the best values of accuracy,
RMSE, precision, F1 score, and execution (i.e., training)
time, which are 89.26%, 32.76% , 92.48%, 92.48%, and 0.22
seconds, respectively.

The remainder of the paper is structured as follows: the
next section, on the first hand, defines the basic concepts
related to the learning approach. On the second hand, it
discusses some relevant works dealing with adopting the
fog, cloud, IoT and deep learning in the battle against the
COVID-19 pandemic. Section 3 presents the survey, which
we are based in order to propose a customized framework
for COVID-19 monitoring and prognosis. The proposed
framework is presented in Section 4. The implementation of
our framework and its evaluation are discussed in Section
5. Finally, Section 6 concludes the paper and provides some
perspectives for future work.

2 BACKGROUND AND RELATED WORK

2.1 Background
Nowadays, the ML has acquired a favorable position within
the healthcare arena. The ML is beneficial since its capability
to detect patterns and run predictive analysis. In data min-
ing, data are divided into 3 sets of sequences [25], such as (i)
Training set for training the ML model by using one or more
algorithm(s), (ii) Validation set for predicting the ML model
and finding the best one, and (iii) Testing set for predicting
final model performance. Indeed, each sequence contains
(xi,yi) where xi = xi,1, xi,2, ...xi,n and yi = yi,1, yi,2, ...yi,n.
In fact, the ML adoption serves to build a classifier for
predicting a label ypred for a given x. In the literature,
researchers have analyzed three ML approaches: traditional
batch learning, incremental batch learning, and streaming
learning [25].

1) Traditional batch learning: is characterized by an of-
fline phase of training the classifier/algorithm once
the complete training set of data is used (see Figure
1). Afterwards, such model is deployed online. In the
second phase, the on-line testing phase, the predictions
are made while testing the set of data. Therefore, the
traditional batch-model is treated as a static object. In
order to learn from new data, the model has to be re-
trained from scratch. Moreover, training the full dataset
requires resources with high computing capabilities in
terms of CPU, memory size, disk size, network I/O, etc.
[26]. It is worth mentioning that adopting a traditional
batch learning approach is not the best choice to do if
the amount of data is huge (i.e., in the case of big data).
In addition, the traditional batch algorithms cannot
ensure a dynamic ML model adaptation (i.e., according
to new data arrival).

2) Incremental batch learning: this approach is able to
override above-mentioned cons. Thus, the ML algo-
rithm loads a subset of the data forming a batch, and
when the batch contains all the dataset, the algorithm
loops over the batch in order to run the training step
on that batch (see Figure 2a). Consequently, the testing
step occurs between a set of batchs [27]. However, it

2

Fig. 1: Traditional batch learning technique

should define a parameter to specify the size of the
batch for this learning approach; in fact, the inference is
only possible after a batch has been completed [27] as
well as the model can not be learned from the arrival of
the new data but until a new batch has been completed
[21]. Moreover, trained models should be removed af-
terwards to make space for new ones that may affect the
ability of these algorithms to immediately learn from
new data arrival.

3) Streaming learning: here, the ML algorithm use the
instance-incremental models [21]. In fact, the algo-
rithms learn from each training stream upon the data
arrival in order to quickly auto-adapt. In contrast with
the traditional batch learning models, the streaming
ones are appropriate for adopting when we have a huge
dataset. Indeed, the ML does not access to dataset at
once but the data is continuously loaded as a stream.
Therefore, the ML must learn the flow stream one by
one, and update the model each time a new stream
arrives (see Figure 2b). Moreover, this does not require
important computing resources capabilities; since once
the ML algorithm learns from the new stream, the ML
deletes it and keeps free its associated space. Conse-
quently, the streaming learning might optimizing the
resources utilisation.

2.2 Related Work
The COVID-19 pandemic becomes one of the biggest threats
facing humanity. Since its emergence in December 2019,
several research studies have addressed the benefits, threats
and challenges of new technologies such as fog, cloud, IoT
and deep learning in the battle against the COVID-19 pan-
demic. Some researches focused on the identification of face-
mask wearing state. In this context, Loey et al. [10] proposed
a facemask detection model based on integrated monitoring
cameras. The model detected the people who did not wear
facemasks by applying a deep transfer learning. The authors
defined three classical ML-classifiers such as SVM, Decision
Tree, and Ensemble. In [11], the authors utilized deep learn-
ing model for automatic facemask wearing detection based
on three categories: correct facemask wearing, incorrect
facemask wearing, and no facemask wearing. The proposed
model achieved 98.70% accuracy. Similarly, Chowdary et
al. [12], introduced a facemask detection model based on
deep transfer and ML techniques. The model ensured an
accuracy obtained by 99.9% in training and 100% during
testing. Other research works proposed COVID-19 medical
image recognition models. Nora El-Rashidy [13] suggested
a neural network-based deep learning model. The proposed

model classified the patients’ X-ray scan images to two
classes, COVID-19 and normal classes. The model was
trained on COVID-19 dataset and the evaluation perfor-
mance carried out were 97.78% accuracy, 97,2% F1 score,
97,4% precision, and 97,5% recall. Similarly, Ozturk et al.
[14] proposed a DarkNet model trained on 125 chest X-
ray. The proposed model provided predictions with 98.08%
accuracy for a binary-class classification (COVID-19 Vs. No-
Findings classes) and 87.02% for a multi-class classification
(COVID-19 Vs. No-Findings Vs. Pneumonia). Along with
chest x-rays, Computerized Tomography (CT) scans play a
crucial role in effectively discriminating against COVID-19
[19], [28], [29]. In this context, several research studies [15],
[16] proposed a deep learning model to classify COVID-19
cases by considering their chest CT images. In [15], the pro-
posed model achieved 99.68% accuracy with 10-fold cross-
validation using a SVM classifier. Despite all the above pro-
posals demonstrated optimal results regarding the combat
against COVID-19 pandemic by training models applicable
with clinical trials, they adopt the classical ML classifiers
(i.e. batch-ML classifiers) having a set of drawbacks that
we mentioned above (see previous subsection). To the best
of our knowledge, our work is the first one that considers
both the batch and stream ML classifiers. The batch one is
for long-term predictions and analytical dashboards while
the second ML is for short-term (i.e., real-time) predictions
regarding COVID-19 prognosis. Besides, it is so important
to consider (i) the Internet of Medical Things (IoMT) al-
lowing interconnection between medical devices (e.g., CT
scans and/or X-ray imaging devices found in all hospitals),
patients and medical systems [20] and, (ii) the integration of
fog/cloud environments to support the stream-ML models
for a real-time predictions in the hospitals. Other literature
studies explored the relationship between the risk of to
be COVID-19 infected and other factors, such as diabetic
disease, smoking, respiratory/lung disease, cardiovascular
disease, hypertension, etc. [30], [31]. Moreover, the high-
risk patients should be frequently monitored even if they
are outside hospitals by checking their vital signs such
as temperature, oxygen saturation, etc. [13]. Several stud-
ies suggested IoT frameworks for determining suspected
COVID-19 cases [18], [19]. Thus, the end-users might use
a set of sensors on the user’s body to collect the real-time
symptom data such temperature, heart rate, cough quality,
etc. Kumar et al. [20] proposed an artificial intelligence-
based framework, which enables the data collection not only
from wearable sensors and drones. The proposed frame-
work enables, in addition, the exchange between edge, fog,
and cloud servers in order to share computing resources,
data, and analytics. The authors integrated a drone-level
federated learning for analyzing changing COVID-19 symp-
toms and strategies. This algorithm consists of detecting the
patient’s body temperature, making decision when critical
value is detected, and sharing the training data with the
edge, fog, or cloud computing environments. However,
these works did not detail how the decision were made
using the ML models, how the MLs were deployed in the
three layers, how their frameworks supported the connec-
tivity between the edge, fog and cloud computing, and how
they evaluated their frameworks’ performances in terms of
accuracy, precision, etc. To the best of our knowledge, all the

3

(a) Incremental batch learning technique (b) Streaming learning technique
Fig. 2: Incremental learning technique

existing studies focused on the batch learning approaches to
predict if whether a person suspected COVID-19 infected or
not. However, our approach is the first one that considers
both the batch and streaming learning approaches for more
accurate COVID-19 disease predictions.

3 SURVEY

The IoT devices are the primary sources of collecting the
real-time symptom data from COVID-19 suspected infected
users. The collected data must be pre-processed to filter the
relevant information that can help in COVID-19 monitoring
and prognosis. In a previous work [22], the authors pro-
posed an IoT-fog-cloud based architecture for smart systems
supporting the distributed communication, real-time stream
processing, and multi-application execution. In this work,
we focus on customizing such architecture and proposing a
framework tailored for COVID-19 monitoring and progno-
sis. For doing so, we conducted a survey of 19 questions
in which 50 experts of the medical staff were engaged.
The survey aims to find out the experts’ requirements and
recommendations to combat the COVID-19 pandemic by
limiting its spread. Thus, the first question is about whether
they are interested by adopting an automatic system for
detecting suspected COVID-19 cases. As shown in Figure
3, 94% of the medical staff are interested by such system.
The second question is what about connecting an equipped

Fig. 3: Experts feedback regarding adopting a COVID-19
automatic monitoring and detecting system

object through sensors (e.g., smartwatch, bracelet) that the
suspected infected person may wear? Figure 4 depicts that
the doctors find that this idea is more effective than shar-
ing a questionnaire with the COVID-19 suspected infected
people. Moreover, they suggest integrating (i) a Global Posi-
tioning System (GPS) device to locate individuals who may

be contaminated by transmission and (ii) a set of sensors
helping to detect whether the disease symptoms appear at
the individuals. As shown in Figure 4, about 48% of the
experts go to integrate a temperature sensor, 38% of them
desire to use a saturation sensor, 5% require to utilize an
Electrocardiogram (ECG) sensor, and 9% of them propose
other types of sensors such as respiratory rate, lung scan-
ner, cough sensor, etc. In addition, physicians recommend

Fig. 4: Experts feedback regarding integrating sensors to
detect COVID-19 symptoms

remotely monitoring the health state of their registered
patients through an alert system that may send, in the case
of COVID-19 symptom detection, a real-time notification
either to them or to the COVID-19 pandemic center. As well,
they require that the system can enable to launch a call to the
connected person through their bracelet in order to assign
with him/her an appointment to do a rapid test. As depicted
in Figure 5, about 81.3% of the medical staff recommend
the alert system and suggest that it should be configurable
and customized according to the patient’s health state (i.e.,
if the patient has one or more chronic disease(s) such as
diabetic, renal failure, heart ,etc.). Obviously, the survey
results help us in the data pre-processing phase; whereas we
take into consideration the different sensor values as well
as the health state of the patient, whether the patient was
traveling or not, and the people who have been in contact
with the suspected infected person.

4

Fig. 5: Experts feedback regarding adopting a customized
monitoring system based on the patient’s health state

4 CUSTOMIZED FRAMEWORK FOR COVID-19
MONITORING AND PROGNOSIS

As above-mentioned, we adopt the previous architecture
[22] in order to propose a customized framework for
COVID-19 monitoring and prognosis. In fact, we define
a hybrid framework dealing with several hardware and
software components described as follows.

4.1 Hardware components

The hardware components include the IoT devices, end-user
devices, fog broker, fog node, and cloud datacenters.

1) IoT device: The IoT device may be either a medical or
a non-medical device (see Figure 6). A medical device
such as (i) a Real-Time Polymerase Chain Reaction (RT-
PCR) machine that detects the COVID-19 virus in upper
and lower respiratory specimens, or (ii) X-ray machine
like a CT scan, or (iii) LUS machine, which provides
X-ray images depicting a possible aspect of COVID-19
disease. It is worth mentioning that the medical devices
are currently widely used by researchers since they
achieve accurate results of COVID-19 prediction [13]–
[16]. Therefore, we adopted the medical devices as key
sources of training data. The non-medical device like
a bracelet, smartwatch, drone, etc. may be connected
by several sensors and equipped with a rechargeable
battery. Indeed, the non-medical devices help a COVID-
19 suspected person in storing the sensor values and
transferring them to the fog layer for real-time data
processing and decision making. Hence, an AI module
classify whether these values are normal or require
more treatment (i.e., It shall send a notification to
the connected person to do a rapid test). It is worth
mentioning that multiple sensors can be integrated into
a non-medical device such as (i) temperature sensor,
(ii) passive GPS location tracking, (iii) microphone may
be used to facilitate the communication between the
person and the medical staff, (iv) ring-type pulse oxime-
ter sensor might monitor both heart rate and oxygen
saturation in the body, (v) cough sensor to detect the
nature, duration and time of the cough, (vi) blood
pressure sensor might track changes in blood pressure,
and (vii) respiratory rate sensor enables breathing rate
monitoring.

2) Fog broker: The fog broker represents a gateway be-
tween the IoT devices, fog, and cloud computing envi-
ronments (see Figure 6). Its main role is (i) collect real-
time streams from connected IoT devices, (ii) choose
the appropriate node for the real-time and/or batch
processing, and (iii) stream data to the appropriate node
(usually to the fog node if the streams contain testing
data whilst to the cloud node whether the streams move
training data).

3) Fog node: It is a worker or a computer node, which
performs the tasks received from the fog broker. As
shown in Figure 6, it serves for running the stream-
MLaaS for the real-time decision-making. It should
mention that the federated stream-ML wherever it is
installed at the fog or cloud environment, it behaves as
follows:
• If the streams move training data (i.e,. the data

collected from the the medical devices or staff), the
stream-ML updates the prediction model, which is
stored in the cloud.

• If the streams transmit testing data (i.e., the data
collected from the non-medical devices), the stream-
ML applies the last generated prediction model on
such data for real-time diagnosis and prognosis.

• The stream-ML transfers the training and/or testing
data to the cloud in order to store it for a later usage
by the batch-ML.

4) Cloud: As shown in Figure 6, the cloud system provides
for the end users as on demand services; a stream-ML
having the same functionalities as one exists in the fog,
a batch-ML, and both. The batch-MLaaS reacts with
the historical dataset for a long-term decision-making
(e.g., inferring the importance of COVID-19 symptoms,
determining the most infected regions, etc.). In addi-
tion, the cloud stores all predictive models generated
by these MLs.

5) End-user devices: might be a personal computer, mo-
bile phone, tablet, etc. used by the patient, the medical
staff, the emergency medical aid service, COVID-19
rapid test center, etc. Such devices facilitate the in-
teraction between the end-users and our system (e.g.,
display in real-time the analytic dashboards, send SM-
S/Email notifications, etc.). In this context, it should be
noted that the end-users may enter new training data
through their devices, which will be taken into account
by stream-ML and/or update existing data processed
by batch-ML (see Figure 6).

4.2 Software components
The proposed framework includes a set of interrelated
software components ensuring the (i) interaction between
the IoT devices, the fog and cloud layers (see Figure 7),
(ii) resources management for running the federated MLs
as a Service (MLaaS). Indeed, the computational tasks are
distributed on the compute instances (i.e. virtual machine or
docker container), (iii) orchestration service according to the
load balancing, and (iv) reliability and security constraints.
In the following, we detail the set of software components,
which is offered as cloud and fog services. Obviously, each
service has its own Application Programming Interface

5

Fig. 6: Customized learning-based framework for COVID-19 monitoring and prognosis

(API) permitting the end users managing and adopting the
service according to their requirements.

1) Security service: To improve the security level, we
adopt the Transport Layer Security (TLS) to encrypt
the streams moving from the IoT Devices to upstream
servers running the ML. In fact, encryption is an ef-
fective technique for protecting both the training and
testing data as it moves the public and/or private net-
works. Indeed, our framework consists of establishing a
secured tunnel between the hardware components via
a Virtual Private Network (VPN) protocol like Inter-
net Protocol Security (IPSec) or a secure general pur-
pose protocol like HyperText Transfer Protocol Secure
(HTTPS) or Secure Shell (SSH). In this regard, we think
for creating a tunnel over SSH for the Message Queuing
Telemetry Transport (MQTT). First, we carried out an
IoT device agent and an SSH daemon on the remote
device. Next, we configure the remote device with the
MQTT topic subscription and the authentication by
using public/private key pair in order to connect to the
MQTT server via SSH without asking for a password.
This ensures unique use of the keys in order to mini-
mize additional server-side checks and also maximize
the security level.

2) Distributed database service: Its mainly role is to store
the two catalogs: resource catalog and service or ap-
plication catalog. The resource catalog is maintained at
the orchestration service and it represents the holistic
and abstracted view of the computing resources [22].
Whilst, the service catalog illustrates information about
our framework provided services and/or applications
like their operations, their requirements and dependen-
cies. The main services of the proposed framework are
the stream-MLaaS and batch-MLaaS. Here, it should

mention that, our work is the first one that aims at
offering to the end users a distributed stream-ML, a
distributed batch-ML or both at the same time by
basing on their dependencies and their connections,
respectively. These federated-MLaaS services include,
obviously, a set of services such as predictive analytics,
data mining, data visualization, APIs, etc. That’s why,
the end-users can get started with an ML-based system
without having to install any software, or develop algo-
rithms (They can select one or more classification algo-
rithm(s) according to the chosen ML type.). In addition,
they may choose the most appropriate configuration
fitting their requirements.

3) Identity service: It enables end-users to remain con-
nected to several applications while ensuring the single
sign-on (SSO) between the applications. That’s why,
the identity server federates identities between multiple
heterogeneous and distributed systems (at the edge,
fog and cloud computing layers). Such component al-
lows the user authentication before accessing to any
on demand provided service. For instance, users can
use Identity as a Service (IDaaS) [32] by specifying
connection with SQL database (e.g., Mysql), NoSQL
database (e.g., Cassandra), Lightweight Directory Ac-
cess Protocol (LDAP) or Active Directory (AD) user
stores. Additionally, they can use MLaaS and link it
with IDaaS in order to analyze user activity, assign
risk to each access request, and create policies to be
triggered when an abnormal behavior is detected.

4) Container orchestration service: It allows the manage-
ment of the application services across multiple con-
tainers, the automation of the containers deployment
within clusters, scaling the containers, and the real-
time management of the end-user health thanks to the

6

Fig. 7: Software components view of the proposed framework

provided federated-MLaaS. In the following, we detail
further the federated-MLaaS services:
• Batch-MLaaS: It is based on the micro-services ar-

chitecture and it is deployed in a Pod. The micro-
services are deployed in containers; the first container
includes a NoSQL database representing the dataset
treated by the batch-ML. In fact, the batch-ML is
deployed in a second container that can access to
the dataset for the model generation enabling the
pre-processing, clustering, classifying and building
analytical dashboards.

• Stream-MLaaS: Similarly, it adopts a micro-services
architecture. It is deployed by using two Pods into
a hybrid fog/cloud environment. Each Pod con-
tains a micro-service involving the message broker
that receives real-time streams from distributed data-
sources and then sends them to another micro-service
representing by stream-ML. The stream-ML allows
to receive training streams for updating the model
in order to (i) apply the latest predictive model in
real time to testing streams and (ii) display the real
time analytics. The two Pods use a shared federated
prediction model, which is stored into the cloud;
whereas the real-time symptom data processing and
COVID-19 prediction are done into the fog.

The end-user is able to (i) deploy the stream-MLaaS
into a fog/cloud hybrid environment and the batch-
MLaaS into a public, private or hybrid cloud and (ii)
define the interaction between them; so that the testing
and training data generated by stream-MLaaS should
be stored in the database offered by batch-MLaaS. The
provided federated-MLaaS are scalable services ensur-
ing a high performance level for building/updating
batch/real-time predictive models. In this context, it
should be noted that the container orchestration ser-

vice mainly serves to (i) scale up/down the active
fog/cloud nodes number according to the system re-
quirements, (ii) improve the portability of workloads
(i.e., services/applications), and (iii) efficiently balance
between the workloads.

5) Load Balancing (LB): The adoption of the micro-
services architecture requires an effective infrastructure
services management in order to ensure the resource
availability and scalability, and consequently to meet
the end-users requirements. Precisely, when the con-
tainers are deployed on a cluster, the role of the LB is to
balance the workload (especially, in the case if there are
multiple containers on a single node being accessed on
the same port), monitor the cluster and its containers,
and continuously upgrade the micro-services inside the
containers without services disruption.

6) Monitoring service: We should monitor the model gen-
eration and its performance in term of predictions. So,
monitoring as a service should be a key service offered
to the end users into the hybrid fog/cloud environ-
ment. That’s why, our framework allows the end users
to (i) ensure that the data is trust to be used in training,
(ii) track the accuracy of their predictions at run time,
and (iii) adjust the model and the input data while
updating, adding, or removing features and/or metrics.
For example, the end users, in particularly the medical
staff, can specify that the predictive model shall use
temperature, O2 saturation, and cough level features
as the sensors detected COVID-19 symptoms. Over
time, new COVID-19 symptoms may be discovered
and old symptoms that may affect model performance
degradation may be ignored. Therefore, in addition to
the monitoring service, users can identify a new set of
metrics and key performance indicators (KPIs) that are
more directly correlated to the overall performance.

7

5 PROPOSED COVID-19 MONITORING AND
PROGNOSIS SYSTEM

5.1 Dataset preparation
Based on the above presented framework, we propose a
COVID-19 monitoring and prognosis prototype. The first
phase consists in collecting real-time symptom data. There-
fore, we adopt the IEEE COVID-19 dataset1, which is open
and widely used. It takes into consideration different types
of pneumonias, such COVID-19, SARS, Streptococcus, Pneu-
mocystis, etc. Indeed, the raw data can be gathered from
smart medical and non-medical based IoT sensors. The
dataset needs to be accumulated before it can be put to use.
It has missing data values, that may be produced from faulty
sensors or lack of communication among the components in
the system. These missing values affect the system perfor-
mance and they need to be addressed appropriately. In this
work, missing values are replaced with their normal values
(e.g., 37 for the temperature). Thus, we prepare the data
of effective environment indicators relating to COVID-19
prediction (i.e., before using the ML models). Therefore, we
apply a pre-processing module written in python extracts
various COVID-19 symptoms from the ”clinical-notes” col-
umn based on the survey results. In addition, our module
promotes the normalizing, converting and structuring all
the obtained data in order to better suited for ML. We select
10 features, such as temperature, O2-saturation, diabetes,
heart-disease, smoking, hyper-tension, travel, obesity and
cough. Additionally, we categorize 3 classes: (0) normal
patient, (1) COVID-19 patient, and (2) non-COVID-19 pneu-
monia patient. After pre-processing, the dataset includes 307
records of confirmed COVID-19 cases and 139 records of
non-confirmed cases (containing 17 normal patient and 122
non-COVID-19 pneumonia patient).

5.2 Learning algorithms application for data classifica-
tion
In this phase, we implement an algorithm written in Python
language that will be running in the Raspberry Pi simulator
in order to convert the dataset into event streams transmit-
ted to the broker node (see Listing 1).

Then, the fog broker receives the collected event streams
and transfers them to the appropriate node (i.e., fog or cloud
node) through MQTT protocol. For doing so, we install
Docker on ubuntu 18.04 with Intel Core i5 3210M@2.50GHz
processor and 6.00GB RAM and then instantiate a container
for running Mosquitto as MQTT broker.

Listing 1: Pseudo code for data classification written in
Python language
#Non−Medica l Dev i c e (R a s p b e r r y Pi s i m u l a t o r)
. . .
c l i e n t = mqtt . C l i e n t ()
rc= c l i e n t . connect (” @IP Brocker ” , 1883)
EventStreams=stream . i t e r c s v (’ t e s t i n g D a t a . csv ’ ,
t a r g e t = ’ Class ’ ,
conver ters={ ’ Class ’ : int , ’ temperature ’ : f l o a t ,
’ O2 saturat ion ’ : f l o a t , ’ d i a b e t e s ’ : int , })
for x , y in EventStreams :

es={”x” : x , ”y” : y}
c l i e n t . publ ish (” t o p i c /TestingData ” ,
j son . dumps(es)) ;

#End− u s e r o r Med ica l Dev i c e (R a s p b e r r y Pi
s imulator)
. . .
EventStreams=stream . i t e r c s v (’ t ra in ingData . csv ’ ,
. . .)

1. https://github.com/ieee8023/covid-chestxray-dataset

for x , y in EventStreams :
es={”x” : x , ”y” : y}
c l i e n t . publ ish (” t o p i c /TrainingData ” ,
j son . dumps(es)) ;

Stream −ML (Fog Node)
def on connect (c l i e n t , userdata , f l a g s , rc) :

c l i e n t . subscr ibe (” t o p i c /TestingData ”)
def on message (c l i e n t , userdata , msg) :

global metr ic
eventStream=json . loads (msg . payload)
x= eventStream [”x”]
y= eventStream [”y”]
. . . .
model= p i c k l e . load (open (”model . csv ” , ’ rb ’))
make a p r e d i c t i o n
y pred=model . predict one (x)
u pd a t e t h e m e t r i c
metr ic=metr ic . update (y , y pred)

. . .
c l i e n t = mqtt . C l i e n t ()
rc= c l i e n t . connect (” @IP Brocker ” , 1883)
c l i e n t . on connect=on connect
c l i e n t . on message=on message
. . .
Stream −ML (Cloud Node)
def on connect (c l i e n t , userdata , f l a g s , rc) :

c l i e n t . subscr ibe (” t o p i c /TrainingData ”)
def on message (c l i e n t , userdata , msg) :

eventStream=json . loads (msg . payload)
. . .
model= p i c k l e . load (open (”model . csv ” , ’ rb ’))
u pd a t e t h e model
model=model . learn one (x , y))
p i c k l e .dump(model , open (”model . csv ” , ’wb ’))
. . .

c l i e n t = mqtt . C l i e n t ()
. . .

As illustrated in Listing 1, the experiments are implemented
using ML algorithms of python’s libraries; whereas the first
stream-ML, deployed in a fog node, is running on other
Docker container while the second one and the batch-ML,
deployed on OpenStack private cloud, is running on ubuntu
18.04 Docker machine with 6.00GB RAM.

At the first time, we evaluate the eight classifiers of
Python’s Scikit-learn library, named Adaptive Boosting (Ad-
aBoost) Classifier [33], Linear Support Vector Classification (Lin-
earSVC) [34], KNeighbors Classifier [35], Decision Tree Classifier
[36], Random Forest Classifier [37], Multi-Layer Perceptrons
(MLP) Classifier [38], Gaussian Naive Bayes [39], and Gra-
dient Boosting Classifier [40] in order to choose the best-
performing as our batch-ML for a long-term decision mak-
ing. In fact, we should select the algorithm displaying
an analytic dashboard for the medical staff in order to
help them in determining the critical symptom to detect
a COVID-19 infected case. Moreover, the algorithm should
allow our system to exclude the irrelevant indicators that
may decrease the model accuracy as well as to find out
new symptoms, which may be relevant and useful for our
model retraining. Obviously for each new streaming event,
the stream-ML model is updated and makes a real-time
prediction. Such new data is then transmitted to the cloud
environment for the batch processing. At the second time,
we evaluate the Python’s river library including several
stream-ML classifiers, such as Logistic Regression, Adaptive
Random Forest Classifier, Hoeffding Apadtive Tree Classifier,
Extremely Fast Decision Tree Classifier, Gaussian Naive Bayes,
and KNearest Neighbors Classifier. It is worth mentioning that
all these algorithms might be used to build a stream-ML
model for a real-time COVID-19 prediction.

5.3 Federated-MLs Performance Analysis
5.3.1 Performance Metrics
To evaluate the performance of each federated-ML model,
four performance metrics were carried out: Accuracy, Root
Mean Square Error, Precision and F1 score. These metrics
can be further detailed through the confusion matrix con-
cept [41]. In fact, the confusion matrix is a table that illus-

8

trates the relations between the real and predicted values
within a classification problem (see Table 1). There are:
(i) True Positive (TP) quarter representing the number of
instances correctly identified while the prediction indicates
COVID-19 disease and it’s true, (ii) True Negative (TN)
quarter indicating the number of instances correctly iden-
tified while the prediction indicates non COVID-19 disease
and it’s true, (iii) False Positive (FP) quarter, which is the
number of incorrectly instances while the COVID-19 prog-
nosis is negative and it’s false, and (iv) False Negative (FN)
quarter illustrating the number of the opposite error where
the prediction instances are incorrectly (i.e., fail to indicate
the presence of a COVID-19 disease when it is present).
Obviously, the four performance metrics are computed as
follows:

a) The accuracy is computed as the number of correctly
classified instances (i.e., true and false positive) to the
total number of instances (see Equation (1)).

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

b) The RMSE, as shown in Equation (2), it is computed
as the square root of the average of squared differences
between the predicted and actual values.

RMSE =

√√√√(
1

n
)

n∑
i=1

(Yi − Y ′i)
2 (2)

Where Yi is the real value and Y ′i is the predicted value.
c) The precision is the fraction of relevant instances to the

retrieved instances (see Equation (3)).

Precision =
TP

TP + FP
(3)

d) The F1 score, as illustrated by Equation (4), it is com-
puted by multiplying 2 by the precision and recall
measures and then dividing the result by the sum of
the precision and recall measures.

F1score = 2× Precision×Recall

Precision+Recall
(4)

where,

Recall =
TP

TP + FN
(5)

TABLE 1: Confusion matrix based performance metrics

Non-COVID COVID
Non-

COVID
True Negative

(TN)
False Positive

(FP)
Specificity

TN/(TN+FP)

COVID False Negative
(FN)

True Positive
(TP)

Recall
TP/(TP+FN)

Negative Predictive Value
TN/(TN+FN)

Precision
TP/(TP+FP)

Accuracy
(TP+TN)/(TP+TN+FP+FN)

For stream-ML model evaluation, we consider the train-
ing time metric in addition to the four above-mentioned
ones. Obviously, the response time is a key metric for the
real-time predictions.

5.3.2 Batch-ML model evaluation
The Batch-ML model evaluation aims at selecting the best-
performing algorithm for our multi-class classification prob-
lem (i.e., classify the collected symptoms data as normal,
COVID-19, or non COVID-19 pneumonia patient). This

second evaluation is two-goal. The first one is to compare
the different ML classifiers based on three data splitting
strategies:

a) The no-shuffle train/test split strategy consisting of split-
ting without shuffling the dataset into two parts as
70% of the dataset for training and 30% for testing the
performance of the batch-ML algorithm deployed into
the cloud.

b) The KCV strategy splits the dataset into k number of
subsets; some of them are randomly selected to be used
to learn the model, while the rest are used to assess the
model performance [42]. Thanks to such strategy, one
can test the entire dataset [6]. In this work, we adopt
3-fold, 5-fold and 10-fold cross-validation to split our
dataset to train and test the used models.

c) The shuffle SCV or repeated learning-testing [43], [44]
strategy is similar to the KCV one; whereas the data
is split into k-folds where one of the folds will be the
test set and the rest (k − 1) folds will be the training
set. In contrast in the shuffle split cross-validation, the
data is not shuffled after each iteration [45]. Like the
previous experiment, we adopt 3, 5, and 10 iterations of
shuffle SCV with a train/test split rate by 70/30.

The obtained results are illustrated in Table 2. Based on the
results analysis, we select the best strategy and parameters.
In fact, we remark that: (i) Random Forest Classifier achieves
the higher accuracy using shuffle SCV data splitting strategy
after 10 iterations (see the circled value in Table 2) and (ii)
the most accurate result for LinearSVC, Decision Tree Classi-
fier, Random Forest Classifier, and Gradient Boosting Classifier
belongs to shuffle SCV strategy using 10 random samples
with 70% of data. Likewise, the shuffle SCV strategy has the
most accurate result for KNeighbors Classifier and MLP Clas-
sifier while randomly splitting 3 folds. Regarding AdaBoost
Classifier and Guassian Naive Bayes, the more accurate result
is achieved by using KVC with k = 10 (see the bold values
in Table 2). Moreover, we conclude that the most accurate
result for the majority of classifiers belongs to shuffle SCV
strategy using 10 random samples. Based on these results,
we choose a Shuffle SCV strategy while using 10 random
folds with 70% of data in order to assess the performance of
the ML-algorithms in terms of precision, RMSE and F1 score.
As shown in Figure 8a, Random Forest Classifier outperforms
other algorithms by providing prediction obtained up with
71,4% precision, 75% accuracy, 25% RMSE, and 71,7% F1
Score. Therefore, we suggest to use Random Forest Classifier
in order to ensure the better accuracy and RMSE for our
proposed batch-ML model.

Furthermore, we are interested in assessing the features
importance, which may help us determine the predictive
capability of the COVID-19 symptoms within the dataset.
In this context, we evaluate AdaBoost, Decision Tree, Random
Forest, and Gradient Boosting Classifiers. Figure 8b shows
that the temperature, O2-saturation and cough are the key
features may mainly contribute in COVID-19 predictions
and consequently improve our federated model.

5.3.3 Stream-ML model evaluation
The evaluation’s second goal consists in finding out the
best-performing algorithms for our stream-ML models. Fig-
ures 9a and 9b depict the performance-based comparisons

9

(a) Performance evaluation of COVID-19 disease classification (b) Feature evaluation for COVID-19 disease classification
Fig. 8: Batch-ML model evaluation for multi-class classification

(a) Performance evaluation of COVID-19 disease classification (b) Time training evaluation of COVID-19 disease classification
Fig. 9: Stream-ML model evaluation for multi-class classification

TABLE 2: Accuracy Average (AA) of the eight classifiers using shuffle SCV, KCV, and no-shuffle train/test split strategies

PPPPPPPPPPML-Algo

AA%
with Shuffle Split

10 splits
Shuffle Split
5 splits

Shuffle Split
3 splits

10-fold Cross
Validation

5-fold Cross
Validation

3-fold Cross
Validation

No-shuffle
train/test
split

AdaBoost
Classifier 70.96 70.37 67.9 71.47 69.52 66.44 69.62

LinearSVC
(SVM) 74.51 74.07 74.07 72.10 71.09 70.46 71.11

KNeighors
Classifier 74.22 74.66 74.81 73.19 71.32 72.7 71.11

DecisionTree
Classifier 74.44 73.77 73.33 71.2 69.52 70.69 71.1

RandomForest
Classifier 75.55 74.22 74.32 73.25 70.19 70.69 70.37

MLPClassifier
(NeuralNetwork) 74.44 74.37 74.56 72.96 71.53 71.58 71.11

GaussianNaiveBayes 33.58 32 31.6 35.23 30.68 30.64 34.07
GradientBoosting
Classifier 74.66 73.33 72.09 70.77 70.42 70.91 69.62

TABLE 3: Stream-ML model evaluation for binary classification (COVID vs. No-COVID)

ML-Algorithm Performance Metrics
Accuracy
(%)

RMSE
(%)

Precision
(%)

F1 Score
(%)

Execution Time
(seconds)

LogisticRegression
(LinearModel) 89.26 32.76 92.48 92.48 0.22

AdaptiveRandomForest 74.05 50.77 75.13 83.30 4.45
HoeffdingAdaptiveTree 68.01 56.42 68.79 80.96 0.45
ExtremelyFastDecisionTree 69.8 54.81 70.54 81.59 0.24
GaussianNB
(NaiveBayes) 68.68 55.82 68.83 81.54 0.35

K-NearestNeighbors 68.23 56.22 76.43 77.29 1.1

between the different stream-ML algorithms in terms of
accuracy, RMSE, precision, F1 score, and training time while

considering a multi-class (i.e., the three classes, normal,
COVID-19, non COVID-19 pneumonia) problem. Indeed,

10

Adaptive Random Forest Classifier and Logistic Regression can
better perform, but each one of them do so with its own
manner. In fact, Adaptive Random Forest Classifier outper-
forms other algorithms in providing prediction obtained up
with 76% precision, 75% accuracy, 49% RMSE, and 85% F1
Score. Whilst Logistic Regression spends the minimum train-
ing time, which is a key metric for the real-time predictions.
It should mention that all the above-mentioned performance
results correspond to both stream and batch-ML models
evaluation while considering a multi-class problem. In the
following, we will present a binary-class (i.e., COVID Vs.
Non-COVID classes) performance evaluation. The proposed
stream-ML model is chosen based on the confusion matrices
shown in Figure 10 as well as on the accuracy, precision, F1
score, RMSE, and execution time metrics illustrated in Table
3. Thus, for a binary classification solution for the COVID-
19 prognosis cases, we have the best obtained values of
accuracy, RMSE, precision, F1 score, and execution time are
89.26%, 32.76%, 92.48%, 92.48%, and 0.22 seconds, respec-
tively. Here, it should be noted that we decide to adopt
Logistic Regression for our stream-ML model. Moreover, it
should notice that, by adopting certain ML algorithms,
a binary-classification is more performing than a multi-
classification regarding the COVID-19 prognosis problem.
In contrast, as depicted in Table 3, we obtain worse values
by using a binary-classification when adopting certain other
algorithms.

According to these results, we conclude that the stream-
ML algorithms have the potential to be integrated into the
COVID-19 prognosis best practices since they allow the
early predictions of the suspected COVID-19 cases.

6 CONCLUSION

The proposed work aims to propose a COVID-19 moni-
toring and prognosis system. The system follows a hybrid
framework integrating the IoT, fog, and cloud technologies.
Our framework enables the data collection from medi-
cal and non-medical devices, pre-processing, classification
models, and training using a set of federated MLs (i.e.,

(a) (b) (c)

(d) (e) (f)
Fig. 10: Confusion matrix-based performance metrics
for a binary classification by using (a) LogisticRegres-
sion (b) AdaptiveRandomForest (c) HoeffdingAdaptive-
Tree (d) ExtremelyFastDecisionTree (e) GaussianNB (f) K-
NearestNeighbors

batch and stream-MLs) provided as services. The batch-
MLaaS was implemented on the cloud environment for
a long-term decision-making and the stream-MLaaS was
installed into a hybrid fog/cloud environment for a short-
term decision making. The proposed federated batch and
stream models were determined after a series of evaluation
based on Python’s libraries algorithms and the widely used
IEEE COVID-19 dataset. The performance metrics of the
federated MLs evaluation demonstrated that the proposed
framework promising efficient results for the detection of
COVID-19 disease. In the future work, we plan to involve
other deep learning algorithms to improve the prediction
of COVID-19 cases as well as the determination of the key
features impacting the predictions. In addition, we intend
to make our federated models more robust and accurate by
testing and training more real data (i.e., consider COVID-
19 cases as much as possible). Finally, we aim at providing
the proposed federated-MLaaS services on the large scale
demand.

REFERENCES

[1] I. Stojmenovic, “Fog computing: A cloud to the ground support
for smart things and machine-to-machine networks,” in 2014
Australasian telecommunication networks and applications conference
(ATNAC). IEEE, 2014, pp. 117–122.

[2] S. Tuli, R. Mahmud, S. Tuli, and R. Buyya, “Fogbus: A blockchain-
based lightweight framework for edge and fog computing,” Jour-
nal of Systems and Software, vol. 154, pp. 22–36, 2019.

[3] T. N. Gia, M. Jiang, V. K. Sarker, A. M. Rahmani, T. Westerlund,
P. Liljeberg, and H. Tenhunen, “Low-cost fog-assisted health-
care iot system with energy-efficient sensor nodes,” in 2017 13th
international wireless communications and mobile computing conference
(IWCMC). IEEE, 2017, pp. 1765–1770.

[4] O. Debauche, S. Mahmoudi, P. Manneback, and A. Assila, “Fog
iot for health: A new architecture for patients and elderly moni-
toring.” Procedia Computer Science, vol. 160, pp. 289–297, 2019.

[5] T. Davenport and R. Kalakota, “The potential for artificial intelli-
gence in healthcare,” Future healthcare journal, vol. 6, no. 2, p. 94,
2019.

[6] Z. Nematzadeh, R. Ibrahim, and A. Selamat, “Comparative studies
on breast cancer classifications with k-fold cross validations using
machine learning techniques,” in 2015 10th Asian Control Confer-
ence (ASCC). IEEE, 2015, pp. 1–6.

[7] S. Tuli, N. Basumatary, S. S. Gill, M. Kahani, R. C. Arya, G. S.
Wander, and R. Buyya, “Healthfog: An ensemble deep learning
based smart healthcare system for automatic diagnosis of heart
diseases in integrated iot and fog computing environments,”
Future Generation Computer Systems, vol. 104, pp. 187–200, 2020.

[8] M. Munir, S. A. Siddiqui, M. A. Chattha, A. Dengel, and S. Ahmed,
“Fusead: unsupervised anomaly detection in streaming sensors
data by fusing statistical and deep learning models,” Sensors,
vol. 19, no. 11, p. 2451, 2019.

[9] J. R. Hageman, “The coronavirus disease 2019 (covid-19),” Pedi-
atric annals, vol. 49, no. 3, pp. e99–e100, 2020.

[10] M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, “A
hybrid deep transfer learning model with machine learning meth-
ods for face mask detection in the era of the covid-19 pandemic,”
Measurement, vol. 167, p. 108288, 2020.

[11] B. QIN and D. LI, “Identifying facemask-wearing condition using
image super-resolution with classification network to prevent
covid-19,” Research Square, 2020.

[12] G. J. Chowdary, N. S. Punn, S. K. Sonbhadra, and S. Agarwal,
“Face mask detection using transfer learning of inceptionv3,”
arXiv preprint arXiv:2009.08369, 2020.

[13] N. El-Rashidy, S. El-Sappagh, S. Islam, H. M. El-Bakry, and S. Ab-
delrazek, “End-to-end deep learning framework for coronavirus
(covid-19) detection and monitoring,” Electronics, vol. 9, no. 9, p.
1439, 2020.

11

[14] T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim,
and U. R. Acharya, “Automated detection of covid-19 cases using
deep neural networks with x-ray images,” Computers in Biology and
Medicine, p. 103792, 2020.

[15] M. Barstugan, U. Ozkaya, and S. Ozturk, “Coronavirus (covid-19)
classification using ct images by machine learning methods,” arXiv
preprint arXiv:2003.09424, 2020.

[16] Y. Pathak, P. K. Shukla, A. Tiwari, S. Stalin, S. Singh, and P. K.
Shukla, “Deep transfer learning based classification model for
covid-19 disease,” IRBM, 2020.

[17] N. Tsiknakis, E. Trivizakis, E. E. Vassalou, G. Z. Papadakis, D. A.
Spandidos, A. Tsatsakis, J. Sánchez-Garcı́a, R. López-González,
N. Papanikolaou, A. H. Karantanas et al., “Interpretable artificial
intelligence framework for covid-19 screening on chest x-rays,”
Experimental and Therapeutic Medicine, vol. 20, no. 2, pp. 727–735,
2020.

[18] M. Otoom, N. Otoum, M. A. Alzubaidi, Y. Etoom, and R. Banihani,
“An iot-based framework for early identification and monitoring
of covid-19 cases,” Biomedical Signal Processing and Control, vol. 62,
p. 102149, 2020.

[19] M. S. Hossain, G. Muhammad, and N. Guizani, “Explainable
ai and mass surveillance system-based healthcare framework to
combat covid-i9 like pandemics,” IEEE Network, vol. 34, no. 4, pp.
126–132, 2020.

[20] A. Kumar, K. Sharma, H. Singh, S. G. Naugriya, S. S. Gill, and
R. Buyya, “A drone-based networked system and methods for
combating coronavirus disease (covid-19) pandemic,” Future Gen-
eration Computer Systems, vol. 115, pp. 1–19, 2020.

[21] J. Read, A. Bifet, B. Pfahringer, and G. Holmes, “Batch-incremental
versus instance-incremental learning in dynamic and evolv-
ing data,” in International symposium on intelligent data analysis.
Springer, 2012, pp. 313–323.

[22] A. Kallel, M. Rekik, and M. Khemakhem, “Iot-fog-cloud based
architecture for smart systems: Prototypes of autism and covid-19
monitoring systems,” Software: Practice and Experience, 2020.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[24] J. Montiel, M. Halford, S. M. Mastelini, G. Bolmier, R. Sourty,
R. Vaysse, A. Zouitine, H. M. Gomes, J. Read, T. Abdessalem et al.,
“River: machine learning for streaming data in python,” arXiv
preprint arXiv:2012.04740, 2020.

[25] N. M. Jagirdar, “Online machine learning algorithms review and
comparison in healthcare,” Ph.D. dissertation, University of Ten-
nessee, The address of the publisher, 12 2018, an optional note.

[26] T. M. Mitchell et al., “Machine learning,” McGraw-hill New York,
Tech. Rep., 1997.

[27] T. L. Hayes and C. Kanan, “Lifelong machine learning with
deep streaming linear discriminant analysis,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2020, pp. 220–221.

[28] E. Tartaglione, C. A. Barbano, C. Berzovini, M. Calandri,
and M. Grangetto, “Unveiling covid-19 from chest x-ray with
deep learning: a hurdles race with small data,” arXiv preprint
arXiv:2004.05405, 2020.

[29] I. Yasser, A. Twakol, A. El-Khalek, A. Samrah, A. Salama et al.,
“Covid-x: Novel health-fog framework based on neutrosophic
classifier for confrontation covid-19,” Neutrosophic Sets and Sys-
tems, vol. 35, no. 1, p. 1, 2020.

[30] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan,
J. Xu, X. Gu et al., “Clinical features of patients infected with 2019
novel coronavirus in wuhan, china,” The lancet, vol. 395, no. 10223,
pp. 497–506, 2020.

[31] C. Wu, X. Chen, Y. Cai, X. Zhou, S. Xu, H. Huang, L. Zhang,
X. Zhou, C. Du, Y. Zhang et al., “Risk factors associated with
acute respiratory distress syndrome and death in patients with
coronavirus disease 2019 pneumonia in wuhan, china,” JAMA
internal medicine, 2020.

[32] B. Zwattendorfer, K. Stranacher, and A. Tauber, “Towards a fed-
erated identity as a service model,” in International Conference
on Electronic Government and the Information Systems Perspective.
Springer, 2013, pp. 43–57.

[33] R. Rojas et al., “Adaboost and the super bowl of classifiers a
tutorial introduction to adaptive boosting,” Freie University, Berlin,
Tech. Rep, 2009.

[34] Y. Tang, “Deep learning using linear support vector machines,”
arXiv preprint arXiv:1306.0239, 2013.

[35] Q. Hu, D. Yu, and Z. Xie, “Neighborhood classifiers,” Expert
systems with applications, vol. 34, no. 2, pp. 866–876, 2008.

[36] S. R. Safavian and D. Landgrebe, “A survey of decision tree
classifier methodology,” IEEE transactions on systems, man, and
cybernetics, vol. 21, no. 3, pp. 660–674, 1991.

[37] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[38] M. Egmont-Petersen, J. L. Talmon, A. Hasman, and A. W. Am-
bergen, “Assessing the importance of features for multi-layer
perceptrons,” Neural networks, vol. 11, no. 4, pp. 623–635, 1998.

[39] K. P. Murphy et al., “Naive bayes classifiers,” University of British
Columbia, vol. 18, p. 60, 2006.

[40] J. H. Friedman, “Greedy function approximation: a gradient boost-
ing machine,” Annals of statistics, pp. 1189–1232, 2001.

[41] M. Yildirim and A. Cinar, “A deep learning based hybrid approach
for covid-19 disease detections,” Traitement du Signal, vol. 37, no. 3,
pp. 461–468, 2020.

[42] D. Anguita, L. Ghelardoni, A. Ghio, L. Oneto, and S. Ridella,
“The’k’in k-fold cross validation.” in ESANN, 2012.

[43] S. Arlot, A. Celisse et al., “A survey of cross-validation procedures
for model selection,” Statistics surveys, vol. 4, pp. 40–79, 2010.

[44] G. Varoquaux, P. R. Raamana, D. A. Engemann, A. Hoyos-Idrobo,
Y. Schwartz, and B. Thirion, “Assessing and tuning brain decoders:
cross-validation, caveats, and guidelines,” NeuroImage, vol. 145,
pp. 166–179, 2017.

[45] D. Ologunagba and S. Kattel, “Machine learning prediction of
surface segregation energies on low index bimetallic surfaces,”
Energies, vol. 13, no. 9, p. 2182, 2020.

Ameni Kallel received her Diploma of Engineer in Computer Science
from the National School of Engineering of Sfax in 2012. Between 2012
and 2016, She worked in the Profesional Cloud and Network entreprise
in Sfax as an responsible for engineering and technical operations
for Infrastructure-as-as-Service (IaaS) platform. She joined the Higher
Institute of Technological Studies in Sidi Bouzid as an Technologiste
of Computer in 2016. Her main fields of interest include Virtualization,
Cloud Computing, Internet of Things, with a current focus on dynamic
allocation and management of virtualized compute and network re-
sources.

Dr. Molka Rekik received the PhD in Computer Science from the
Faculty of Economics and Management of Sfax (FSEGS)-University of
Sfax (Tunisia) in 2017. Since 2018, she has been Associate professor
at Information Systems department of Prince Sattam Bin Abdulaziz
University, Kingdom of Saudi Arabia. She is a member of the Multimedia,
Information systems and Advanced Computing Laboratory (Miracl), Uni-
versity of Sfax. Her research interests are in the Business Intelligence
area with focus on business process variability management, IoT-aware
BPM, fog and cloud computing and semantic cloud services description.
Contact her m.rekik@psau.edu.sa or molka.rekik@gmail.com

Dr. Mahdi Khemakhem has got his M.Sc. in computer science from
the University of Valenciennes UVHC (France) in 2003 and his Ph.D.
from the same university conjunctly with the University of Sfax (Tunisia)
in 2008. He has worked as lecturer and assistant professor at the
University of Gabes (Tunisia) from 2003 to 2011. He then joined the
department of Mathematics and Business Intelligence at the National
School of Electronics and Telecommunications (ENET’COM) of the
University of Sfax (Tunisia). Since 2017 he occupied the position of
Associate Professor in the same university. His research interests in-
clude combinatorial optimization, complex systems modeling, heuris-
tics, meta-heuristics and exact algorithms for combinatorial optimization
problems in transportation and networks, resources management, cloud
computing, etc.

12

