
P
os
te
d
on

26
J
an

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
36
35
06
5.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Security-Aware Data Offloading and Resource Allocation For MEC

Systems: A Deep Reinforcement Learning

Ibrahim Elgendy 1, Ammar Muthanna 2, Mohammad Hammoudeh 1, Hadil Ahmed Shaiba
1, Devrim Unal 1, and Mashael Khayyat 1

1Affiliation not available
2SPbSUT

October 30, 2023

Abstract

The Internet of Things (IoT) is permeating our daily lives where it can provide data collection tools and important measurement

to inform our decisions. In addition, they are continually generating massive amounts of data and exchanging essential messages

over networks for further analysis. The promise of low communication latency, security enhancement and the efficient utilization

of bandwidth leads to the new shift change from Mobile Cloud Computing (MCC) towards Mobile Edge Computing (MEC).

In this study, we propose an advanced deep reinforcement resource allocation and securityaware data offloading model that

considers the computation and radio resources of industrial IoT devices to guarantee that shared resources between multiple

users are utilized in an efficient way. This model is formulated as an optimization problem with the goal of decreasing the

consumption of energy and computation delay. This type of problem is NP-hard, due to the curseof-dimensionality challenge,

thus, a deep learning optimization approach is presented to find an optimal solution. Additionally, an AES-based cryptographic

approach is implemented as a security layer to satisfy data security requirements. Experimental evaluation results show that

the proposed model can reduce offloading overhead by up to 13.2% and 64.7% in comparison with full offloading and local

execution while scaling well for large-scale devices.

1

1

Security-Aware Data Offloading and Resource
Allocation For MEC Systems: A Deep

Reinforcement Learning
Ibrahim A. Elgendy, Ammar Muthanna, Member, IEEE, Mohammad Hammoudeh, Senior Member, IEEE, Hadil

Ahmed Shaiba, Devrim Unal, and Mashael Khayyat

Abstract—The Internet of Things (IoT) is permeating our daily
lives where it can provide data collection tools and important
measurement to inform our decisions. In addition, they are
continually generating massive amounts of data and exchang-
ing essential messages over networks for further analysis. The
promise of low communication latency, security enhancement
and the efficient utilization of bandwidth leads to the new
shift change from Mobile Cloud Computing (MCC) towards
Mobile Edge Computing (MEC). In this study, we propose an
advanced deep reinforcement resource allocation and security-
aware data offloading model that considers the computation and
radio resources of industrial IoT devices to guarantee that shared
resources between multiple users are utilized in an efficient way.
This model is formulated as an optimization problem with the
goal of decreasing the consumption of energy and computation
delay. This type of problem is NP-hard, due to the curse-
of-dimensionality challenge, thus, a deep learning optimization
approach is presented to find an optimal solution. Additionally,
an AES-based cryptographic approach is implemented as a
security layer to satisfy data security requirements. Experimental
evaluation results show that the proposed model can reduce
offloading overhead by up to 13.2% and 64.7% in comparison
with full offloading and local execution while scaling well for
large-scale devices.

Index Terms—Computation Offloading, Mobile-edge Comput-
ing, 5G, Security, Deep Reinforcement Learning.

I. INTRODUCTION

TODAY, the Internet of Things (IoT) network technology
is fully embraced into virtually every aspect of our lives.

Advances in sensor and communication technologies lead to
the proliferation of complex, delay- and computation-intensive
industrial IoT applications that often generate and process

I.-A. Elgendy is with the School of Computer Science and Technology,
Harbin Institute of Technology, China and with Department of Computer
Science, Faculty of Computers and Information, Menoufia University, Egypt.
E-mail: ibrahim.elgendy@hit.edu.cn.

A. Muthanna is with the St. Petersburg State University of Telecom-
munication, 193232 St. Petersburg, Russia and with Peoples’ Friendship
University of Russia (RUDN University), 117198 Moscow, Russia. E-mail:
ammarexpress@gmail.com.

M. Hammoudeh is with the Department of Computing, Manch-
ester Metropolitan University, Manchester M15 6BH, U.K.. E-mail:
M.Hammoudeh@mmu.ac.uk.

H. A. Shaiba is with the College of Computer and Information Sciences,
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. E-mail:
HAShaiba@pnu.edu.sa.

D. Unal with Qatar University, College of Engineering, KINDI Center for
Computing Research, Doha, Qatar. E-mail: dunal@qu.edu.qa.

M. Khayyat is with the University of Jeddah, College of Computer Science
and Engineering, Department of Information systems and Technology, Jeddah,
Saudi Arabia. E-mail: Mkhayyat@uj.edu.sa.

large volumes of data [1]. Such applications include, effi-
cient manufacture inspection, virtual/augmented reality, image
recognition, Internet of Vehicles (IoV) and e-Health [2]–[4].
To alleviate the resource constrains of mobile IoT devices
and meet the communication/processing delay requirement
complex computations can be offloaded to more resourceful
devices [5].

Cloud computing was firstly exploited as a resource-rich
service for mobile devices via the Mobile Cloud Comput-
ing (MCC) paradigm. MCC provides flexible processing,
storage and services capabilities while reducing battery con-
sumption. High latency is considered one of the key chal-
lenges facing MCC, especially in real-time and delay-sensitive
applications. Additionally, security poses a critical challenge
that faces MCC, where applications data and services may be
vulnerable to many types of attacks during various stages of
data transmission and processing [6].

Mobile Edge Computing (MEC) was recently introduced as
a viable and promising solution to address MCC’s challenges.
In MEC, the computation capabilities of the cloud are pushed
to the edge of the radio access network, which is in close
proximity to mobile devices, resulting in a cost-efficient and
low-latency architecture [7], [8]. Application domains such as
predictive maintenance of industrial machines benefit from the
MEC provision to provide fast and highly localised feedback
to modify a live representation of the world [9].

Numerous approaches and models for computation offload-
ing in MEC emerged in the literature with the goal of
decreasing the consumption of energy, reducing computation
latency and/or allocating radio resources efficiently [10]–[14].
Obtaining an optimum offloading solution in complex and
dynamic multi-user wireless MEC system is a challenging
task. Additionally, the security threats encountered during
data transmission have not been addressed in most offload-
ing approaches in the literature [15]. Moreover, the lack of
adequate data protection controls can quickly overshadow the
advantages of the MEC paradigm. Motivated by these afore-
mentioned considerations, we present a deep reinforcement
learning model to handle performance optimization in a multi-
user and multi-task MEC systems as well as a security layer
for protecting data during edge server transmission. The main
contributions of our paper are summarized as follows:

• A new security layer that uses the standard AES cryp-
tosystem.

2

• Formulating a combination model of computation of-
floading, security and resource allocation as an optimiza-
tion problem with the goal of decreasing the total time
and energy overhead of mobile devices.

• Transforming the formulated problem into an equivalent
form of reinforcement learning, in which all the possible
solutions are modeled as state spaces and the movement
between different states as actions. Then, a Deep-Q-
Network-based algorithm has been proposed for solving
this problem and obtaining the near-optimum solution in
an efficient way.

The reminder of this study is organized as follows. The
related works on offloading strategies are introduced in Sec-
tion II. In Section III, our system model is presented and
the formulation of our optimization problem is defined. Then,
the Deep-Q-Network-based proposed algorithm is presented
in Section IV. Section V presents the experimental evaluation
and discussion. Finally, this study is concluded in Section VI
and the future work directions are presented.

II. RELATED WORK

Numerous optimization models and approaches for com-
putation offloading in MEC environment have been proposed
in the literature. Some of these models handle only multi-
user single-task MEC systems, e.g. [16], whereas others deal
with multi-user multi-task environments, e.g., [17]. In addition,
offloading conventional methods such as Lyapunov and convex
optimization techniques [18] have been used to solve these
models, whereas new algorithms based on artificial intelli-
gence and deep learning have recently emerged [11], [19]–
[21]. This section will review a brief overview of the common
offloading optimization models.

A. Conventional Optimization Methods

Minimizing the total consumption of energy under a latency
constraint for a multi-user, single-task MEC environment is
the objective of [22]. The authors formulated an optimization
problem to jointly optimize the resources of computation and
communication and the decisions of offloading. Further, an
efficient algorithm based on separable semi-definite relaxation
approach is developed for obtaining the near-optimum solution
for this problem. However, this work neglects the deadline
delay requirement for the computation tasks. Tuysuz et al. [23]
proposed a novel approach for addressing the video streaming
mobility based on quality of experience (QoE), which can be
deployed at the MEC servers. More precisely, this method first
generates a session on the basis of QoE level and collects
a set of information from the user. Afterward, three core
manipulations have been performed to maintain the quality
of experience level for each mobile device and to balance the
load between mobile users based on user locations and their
mobility via handover operations.

Nur et al. [24] applied the caching concept with com-
putation offloading for a multi-user system, in which the
application code and their related data for the completed tasks
are cached at the edge server for the next execution. To reduce
the energy and delay costs, [24] considers the priority for

the computation task which is calculated by task popularity,
deadline, data size and computing resource. Nevertheless,
the common drawback of [24] is the absence of security
mechanisms to protect application’s data from attacks during
the transmission.

Dai et al. have addressed the computation offloading for
multi-user environment with multi-task in [25] and [26].
Specifically, in [25], a new offloading framework of two-tier
is proposed for a heterogeneous network. An optimization
problem is formulated with the aim of decreasing the overall
consumption of energy and MEC servers in which compu-
tation offloading, user association, allocation of transmission
power and allocation of computation resource are considered.
Furthermore, an algorithm is developed to find the optimum
offloading decision. Whereas in [26], the authors have jointly
considered the resource allocation and offloading along with
mobility factors of vehicular edge computing systems. The
load among vehicular edge computing servers is balanced by
selecting the optimal offloading decision for the computation
tasks while maximizing the system utility is the main goal.
However, the main drawback in [25] and [26] is that the
security and privacy of data during the offloading process are
not considered.

The authors of [27] and [28] presented solutions to ef-
fectively secure applications data on MEC systems for com-
putation offloading. Similarly, Meng et al. [27] presented a
secure and efficient offloading framework for MCC, by regular
renewing of the server key and random padding are jointly
combined to protect against timing attacks. In addition, a
hybrid and queuing model based on Markov chain is utilized
to optimize security and performance. Whereas, Elgendy et
al. [28], introduced a new security layer based on the AES
cryptographic algorithm with a genetic algorithm to protect
application data during transmission. However, management
of offloading and processing in [27] are achieved via cloud
data center, which results in increased delay. However, [28]
only addressed a multi-user single-task environment and used a
computationally prohibitive method for solving the associated
offloading problem, especially for large-scale environments.

B. Deep Learning Methods

Deep learning algorithms are widely used in offloading
for multi-user environments [11]. For example, an offloading
scheme based on deep reinforcement learning for devices of
IoT was proposed in [29] with the goal of minimizing the
total system overhead. Specifically, the level of battery, the
predicted amount of the consumed energy and the capacity of
the channel are used in the optimal edge server for offloading
the computation tasks. Then, a deep-Q-Network learning-
based algorithm is proposed to decrease the dimensionality of
the states space and to accelerate the learning speed. However,
in [29], the application data is not protected from cyber-attacks
during the transmission process.

A stochastic policy of computational offloading for a multi-
user and multi-server environment was proposed in [30]. In
this work, the task arrival, computation resources and the time-
varying communication qualities between mobile users and

3

the edge server are jointly considered. The authors formulated
a Markov decision process as a problem whose aims is to
increase the long-term utility performance of the entire system.
Then, two efficient algorithms based on double Deep Q-
Network are proposed to address the curse-of-dimensionality.
In [31], Dai et al. proposed a novel artificial intelligence
empowered vehicular network architecture for IoV which
can intelligently orchestrate the edge computing as well as
caching resources. In addition, they jointly formulate the edge
computing and caching as a Markov decision process problem
and design a Deep Deterministic Policy Gradient (DDPG)
algorithm to locate the computation resources in an efficient
manner. However, in [31], the popular contents are shared
between the vehicles at the edge caching which are vulnerable
to different types of attacks.

More recently, Huang et al. [32] proposed a framework
based on deep reinforcement learning for an online com-
putation offloading, where the resource allocation and the
offloading decision are jointly formulated as a non-convex
problem. The aim is to increase the rate of computation
in wireless networks. Then, a deep reinforcement learning-
based online algorithm is developed for solving this problem
via decomposing it into two sub-problems, namely, decision
of offloading and allocation of resource. In addition, for
rapid algorithm convergence, an order-preserving quantization
method and an adaptive procedure are designed. Meanwhile,
a multi-user with a multi-task offloading model for IoT was
proposed in [33], in which the latency of service, energy
consumption and success rate of task are jointly formulated to
enhance the QoE-oriented computation offloading. However,
the common drawback of [32], [33] is the absence of security
mechanisms to protect application’s data from attacks during
the transmission.

It is evident from the literature review that computation
offloading was investigated for multi-user environment in
which conventional methods and deep learning are used to
solve these problems. However, handling the security issue
in a MEC system, especially a multi-user environment with
a multi-task is not addressed. In this class of systems, most
mobile applications send multimedia services and generate
a substantial data which may be offloaded via the mobile
networks. This motivates this study of jointly considering
the resource allocation challenge and offloading for an en-
vironment of a multi-user and with a multi-task. In addition,
we attempt to address the data security requirement during
transmission to protect against various types of attacks.

III. SYSTEM MODEL

We study a multi-user MEC system with a single wire-
less base station and N mobile devices, represented by a
set N = {1, 2, . . . , N}, as shown in Fig. 1. In addition,
an edge server is associated with the wireless base station
to provide computational and storage services. Furthermore,
each mobile device has a set of M = {1, 2, . . . ,M} different
types of computation tasks requirements that need to be
accomplished locally or will be transmitted and executed
remotely through a wireless channel. In our study, a quasi-
static approach is assumed in which the number of users does

not change through the offloading period whereas it may vary
over different periods [28].

The next subsections are present the modeling of commu-
nication, computation and security followed with more details
on the formulation of our optimization problem.

A. Communication Model

The assumed environment has a set of N = {1, 2, . . . , N}
users that are connected to a single wireless base station via
a wireless channel. Each mobile device has a set of M =
{1, 2, . . . ,M} computationally intensive tasks that need to be
completed either locally or remotely. Our aim is to reduce the
system overhead in terms of communication/processing time
and consumption of energy.

We refer ai,j ∈ {0, 1} as the offloading decision for the
computation task j of user i. Specifically, (ai,j = 0) indicates
that the mobile device i selects to execute its computation
task j locally, while (ai,j = 1) indicates that the device i
selects to transmit and execute its computation task j remotely.
So, we define A = {a1,1, a1,2, . . . , aN,M} as the profile
decision of offloading for users.

Subsequently, in the offloading case, the data rate of uplink
for the user i can be expressed as follows:

ri = Blog2(1 +
pig

2
i

θ0B
) (1)

where B and pi refer the bandwidth and the power of user i
transmission and gi and θ0 refer the gain and the density of
power noise.

Consequently, the simultaneous offloading of mobile de-
vices is limited by the following bandwidth constraints:

N∑
i=1

M∑
j=1

ai,jri ≤ R (2)

In this study, an Orthogonal Frequency Division Multiple
access (OFDM) method is considered for addressing the
transmission of multi-users at the same cell where the up-
link transmission interference of intra-cellular is significantly
reduced [28]. Furthermore, the consumption overhead for
transmitting the result is neglected due to the small output
size (result) of the computation task in comparison with the
input data size [34].

B. Computation Model

This section presents the computation model for our system
model that is composed of N number of mobile devices
in which each device has an M number of intensive com-
putation tasks that need to be completed. We use a tuple
{Ii,j , Ci,j , τi,j} to represent a computation task requirement
in which Ii,j , Ci,j and τi,j denote the input size of data
for each task (code and parameters), cycles of CPU needed
to accomplish the task and the maximum tolerable delay for
task j completion of user i. The values of Ii,j and Ci,j depend
on the nature of the application which is obtained using a
program profiler [35].

4

MEC Server

Mobile Device

Users

Wireless

Base-station

Fig. 1: An illustration of the assumed system model.

In the following subsections, the computation overhead for
local and edge server computing approaches will be introduced
with respect to both time of execution and consumption of
energy.

1) Local Execution Approach: In local execution approach,
each user i decides to execute its task j locally on its com-
putation resources. So, the consumption of energy and time
for processing the task j of user i locally can be calculated as
follows:

T l
i,j =

Ci,j

f li
(3)

El
i,j = ξiCi,j (4)

where f li and ξi denote the computational capability (CPU
cycles/seconds) and the CPU cycle’s consumed energy of
user i.

2) Edge Server Execution Approach: In the edge server
execution approach, the task j of user i will be transmitted and
processed remotely. Therefore, the consumption of energy and
time for offloading and executing task j of user i remotely, i.e.,
task transmission and execution, can be calculated as follows:

T e
i,j =

Ii,j
ri

+
Ci,j

fei
(5)

Ee
i,j = pi

Ii,j
ri

(6)

where fei denotes the capability of computation for edge (CPU
cycles/seconds) which is allocated to each user i. This study
assumed that the edge server’s computational resources are
equally shared between all users.

C. Security Model

During offloading of computation tasks and their related
data to an edge server, the offloaded data may be vulnerable
to different types of attacks. In order to eliminate the data
security risks, a new layer is introduced to fulfil the data

security requirements. AES is used to encrypt/decrypt applica-
tion data during transmission due to its efficient security and
performance [36].

First, each user receives the offloading decision from the
edge server which determines if the mobile user will offload
their computation task or not. For the offloading decision case,
the user is issued with a secret key to encrypt the transmitted
data using 128-bit AES before transmitting the encrypted
data to the edge server. Afterwards, the edge server uses the
same key to decrypt the received data and then executes the
computation task upon this data. Finally, the edge server sends
the result back to the user.

We denote βi ∈ {0, 1} as the decision of security for user i.
Specifically, (βi = 0) refers that the computation task’s data of
a user i will be offloaded without encryption. Whereas, (βi =
1) indicates that the computation task’s data of each user i will
be encrypted using our security layer before being transmitted
to the edge. Therefore, we define β = {β1, β2, . . . , βN} as a
security profile. Accordingly, the extra-overhead for applying
this layer could be defined as follows:

tseci,j =
ηi,j
f li

+
δi,j
fei

(7)

eseci,j = ξiηi,j (8)

where ηi,j and δi,j refer the CPU cycles needed for encrypting
and decrypting the data at user i and edge server, respectively
[37], [38].

Moreover, regarding the security, computation and commu-
nication models the total consumption of time and energy for
processing a tasks j of the user i can be defined as:

Ti,j =
[
(1− ai,j)T l

i,j + ai,jT
r
i,j

]
(9)

Ei,j =
[
(1− ai,j)El

i,j + ai,jE
r
i,j

]
(10)

5

where T r
i,j and Er

i,j refer the total time and energy for our
model with security consideration which can be expressed as
follows:

T r
i,j =

[
βi(t

sec
i,j + T e

i,j) + (1− βi)T e
i,j

]
(11)

Er
i,j =

[
βi(e

sec
i,j + Ee

i,j) + (1− βi)Ee
i,j

]
(12)

Finally, from Eq.(9) and Eq.(10), the total time and energy
overhead can be calculated as follows:

κi,j = wt
iTi,j + we

iEi,j (13)

where wt
i and we

i ∈ [0, 1] refer to parameters for the consump-
tion of time and energy for user i.

D. Problem Formulation

In this section, an optimization model for a multi-user
environment with a multi-task is formulated with the goal of
decreasing the total system overhead for users with respect to
communication/processing time and energy. The formulation
is given as follows:

min
a

[M∑
i=1

N∑
j=1

κi,j

]
s.t

[
Ei,j − El

i,j

]
≤ 0 C1

Ti,j ≤ τi,j C2
N∑
i=1

M∑
j=1

ai,jri ≤ R C3

N∑
i=1

M∑
j=1

ai,jf
e
i ≤ F C4

ai,j ∈ {0, 1}, ∀i,j C5

(14)

The first two constraints are the energy and time limits
for each computation task j. C3 and C4 constraints are the
uplink data rate capacity and CPU computation capacity of an
edge server node where F is the total CPU resources at each
edge server. Finally, constraint C5 ensures that the variable of
decision offloading is binary.

Eq.(14) is considered as a linear problem where the optimal
solution can be given by obtaining the offloading decision
vector’s values a. However, as a is considered as a binary vari-
able, then, the set of feasible and the objective is considered
as a non-convex, which makes the solving for this problem
difficult, especially for a huge users’ number. This is due to
the problem of curse of dimensionality, in which problem
size increases rapidly as the number of users increase [39].
Therefor, an deep reinforcement learning-based algorithm is
proposed to obtain the near-optimum values for a.

IV. PROBLEM SOLUTION

A. Reinforcement Learning

Reinforcement learning is considered as a variant of ma-
chine leaning that allows a system to learn how to behave
within an unknown dynamic environment and make differ-
ent decisions in an optimal way without explicitly being
programmed or human intervened. Fig. 2 shows a general

illustration of a reinforcement learning scenario in which the
agent, environment, state, action and reward are considered the
main components. It is observed from the figure that, at time
step t, the agent receives an observation regarding state st and
chooses an action at which translates the agent from state st to
a new state st+1 on the basis of the policy π = P (at|st). Then,
the agent obtains a reward rt and transitions to the state st+1

on the basis of function of reward and transition probability
of state which are defined as R(s, a) and P (st+1|st, at)
respectively [40]. Subsequently, these steps are repeated until
the agent reaches to the terminal state, where maximizing the
expected cumulative rewards is the main goal which is defined
as Rt =

∑∞
k=0 γ

krt+k with a discount factor γ ∈ [0, 1].

Agent

Environment

Action

At

State

st

reward rt

Policy

RL

Algorithm

Policy

Update

Fig. 2: Reinforcement Learning Illustration

The Q-learning algorithm is one of the most popular re-
inforcement learning algorithms where its learning method
is defined based on recording a Q-value in the form of Q-
table. This table declares the state-action pairs in which the
row’s headers represent the system states S, the column’s
headers represent the system actions A whereas the cell value
represents the quality value, Q(s, a), of taking an action from
that state having a long-term accumulative reward. Q(s, a) is
calculated as:

Q(s′, a′) = Q(s, a) + α
[
r(s, a) + γmaxQ(s′, a′)−Q(s, a)

]
(15)

where Q(s, a) and Q(s′, a′) denote the current and the new Q
values for that state and action respectively. In addition, r(s, a)
denotes the reward value obtained when selecting the action a
at state t. maxQ(s′a′) denotes the maximum expected future
reward obtained given the new state s′ and all possible actions
at that state. Finally, α and γ denote the learning rate and
discount factor respectively. In this study, the computation of-
floading decision ai,j is used to represent the state s = {ai,j}
while the corresponding movement among different states
represent the action space A; this will be discussed with more
details in the following subsection.

Regarding our optimization problem in Eq.(14), the Q-
learning algorithm is not considered as effective for obtaining
the optimal solution as the complexity of the problem increases
rapidly as the number of users and their computation tasks

6

increase; this leads to an increase in the state-action pairs.
Moreover, it becomes difficult to store and compute the
corresponding Q value for the Q table and solving this problem
becomes computationally prohibitive as the number of state-
action pairs increases exponentially [39]. Therefore, Deep
Q-Network (DQN) is considered to handle the Q-learning
limitation through estimating the Q-value function instead of
storing the Q-table as we will show in the next subsection.

B. Deep Q-Network

DQN is one of the effective reinforcement learning algo-
rithm in which the neural network with parameter ω is used to
approximate the function of Q-value and to generate the values
for action as shown in Fig. 3. For DQN, the state is given as an
input for the neural network and the Q-value is generated as
the output, for all actions. In addition, ε-greedy strategy is used
to select the action. A random action is selected for ε ∈ (0, 1),
i.e., exploration, and a = argmaxat

Q(s(t), a(t);ω) for 1-ε
probability, i.e., exploitation.

In this study, an efficient DQN algorithm is proposed for
solving our optimization problem and obtaining the near-
optimum offloading decision. This problem is presented in
Eq.(14). The optimization problem firstly, needs to be trans-
formed into an equivalent reinforcement learning form, in
which all the possible solutions are modeled as state spaces
and the movement between different states as actions. In
addition, the rewards value can be calculated based on the
objective function. Consequently, the state space, actions and
reward for the problem can be defined as follows:
• State: State space S is represented by the computation

offloading decision X = {a1,1, a1,2, . . . , aN,M} which is
a 1×NM vector. Therefore, at an arbitrary index t, the
system state can be defined as follows:

s(t) ={a1,1(t), a1,2(t), . . . , aN,M (t)} (16)

• Action: The action space A is represented by the move-
ment between two different states. Additionally, in this
study, the system action can be defined as an index-
selection within the state vector length in which the agent
can move from the current state to a specific neighboring
state based on the selected index. Specifically, a vari-
able v is defined to denote the index of selection, in
which v = 1, 2, . . . , NM , and the action a(t) = {av(t)}
is considered as 1×NM vector.

• Reward: The agent gets a reward R(s, a), at each step
t, on the basis of a state s and after executing an action
a which is considered as a scalar feedback signal for
indicating how well the agent is doing. While the system
state s(t) represents the computation offloading decision,
the objective function in our problem, Z(t), can be
derived based on the state s(t) and can be denoted as
follows:

Zs(t)(t) = ({ai,j(t)}}) (17)

where {ai,j(t)} is given by the state s(t) according to the
definition in Eq.(16). Additionally, based on the values of

Zs(t)(t) and Zs(t+1)(t+1), the reward of the state-action
pair (s(t), a(t)) is defined as follows:

rs(t),a(t),s(t+1) =

1, Zs(t)(t) > Zs(t+1)(t+ 1)

−1 Zs(t)(t) < Zs(t+1)(t+ 1)

0 Zs(t)(t) = Zs(t+1)(t+ 1)
(18)

In this study, a pre-classification step has been applied on the
state space in which the computation tasks that do not satisfy
the completion time deadline constraints, i.e., T l

i,j <= τi,j),
must be forced to execute locally on the mobile device, i.e,
ai,j = 0.

As shown in Fig. 3 and Algorithm (1), the DQN can be used
to solve our optimization problem in Eq.(14). Firstly, given
state, action and reward, the evaluation and target Q-network
are initialized with random numbers ω and ω′, respectively.
Also, the replay memory Y is initialized with a capacity L.
Then, for each episode k, an initial state sinit is chosen.
Afterward, for each time step t and based on the ε strategy,
the evaluation network generates a random action a(t) for
ε ∈ (0, 1) probability and a = argmaxat Q

pre(s(t), a(t);ω)
for 1-ε probability. Then, on the basis of Eq.(18), the re-
ward r(t) as well as the next state s(t + 1) are obtained.
In addition, the transition (s(t), a(t), r(t), s(t + 1)) is stored
in the experience replay Y . Consequently, for updating the
evaluation network, a sample random minibatch of transitions
(s(k), a(k), r(k), s(k + 1)) is selected from experience re-
play Y and the predicted and labeled Q values, Qpre and
Qlab, are calculated respectively as Q(s(t), a(t);ω), r(t) +
γmax′aQ

tar(s(t + 1), a′(t);ω′) using evaluation and target
networks shown in Procedure 1. This study is adopted as a
loss function of a neural network which can calculate the loss
between predicted and labeled Q values. In addition, Gradient
Decent Algorithm (GDC) [41] is used to minimize this value.
Finally, the parameter ω′ of target network is updated every C
steps.

V. EXPERIMENTAL EVALUATION AND ANALYSIS

This section firstly introduces the setup of experimental.
Afterward, an extensive discussion on the simulation results
is presented to critically assess our proposed model’s perfor-
mance.

A. Experiment Setup

Our simulation is undertaken using a personal computer,
which has an Intel® CPU 3.4 GHz Core(TM) i7-4770 with
16 GB RAM capacity. Python for development. The soft-
ware environment is TensorFlow and Numpy with prein-
stalled Python 3.6 on Windows 10 Professional 64-bit [42].
A Multi-user environment with a multi-task is considered in
which we have five users. The system bandwidth, noise and
transmission power are set to 20 MHz, −100dBm and 100
mW, respectively. Each mobile user has a face recognition
application as an example which consists of three independent
computation tasks, namely, face detection, pre-processing and
feature extraction and classification. The data size is dis-
tributed uniformly in (0, 10)MB, while the cycles of CPU

7

.
.

.

.
.

.

.
.

Evaluation Network

Environment

Experience

Replay

(st,at,rt, st+1)

st

Loss = (Q
pre

- Q
lab

)
2

Q
pre

at

rt
st+1

Q
tar

Q
lab

=r+γmaxQ
tar

.
.

.

.
.

.

.
.

Target Network

Optimize Loss

and Update ω
Update ώ

after C steps

Policy

Action

at

MEC Server

Mobile Device

Users

Wireless

Base-station

Fig. 3: Deep Q-network (DQN) based MEC System

are set to 1000 cycles/bit. The user’s capability is assigned
randomly within the {0.5, 0.6, . . . , 1.0}GHz set, while edge
server’ CPU computational capability is set to 100GHz. We
also assume that the channel bandwidth, the transmission
power of each device and background noise are 20MHz,
100mW and −100dBm respectively. The energy consumption
for each mobile device is uniformly distributed within (0, 20 x
10−11)J/cycle [34]. For the DQN algorithm, the episode, size
mini-batch and replay memory are set to 20000, 32 and 512.
While, the discount factor, learning rate, and ε− greedy values
are set to 0.99, 0.01 and 0.1 respectively.

Finally, to verify the performance of our algorithm, five
different policies are introduced:
• Unsecure DQN: Our model is applied without security

layer addition.
• Secure DQN: Our model is applied after adding the

security layer.
• Local Execution: All the computation tasks will be

processed locally.
• Full Offloading: All the computation tasks will be pro-

cessed remotely.
• Random Offloading: A random set of computation tasks

are selected to be processed remotely while the remaining
tasks will be executed locally.

B. Experiment Results

1) Convergence Performance: This subsection studies the
convergence performance of the proposed algorithm, in which

different values of each parameter are tested and the proper
value will be selected for the next simulation.

Fig. 4 demonstrates the convergence performance of the
total cost over different values of learning rate, in which
the leaning rate can be used to adapt the updating speed of
ω. Figure shows that, with the 0.01 value, the process of
convergence is becoming faster than 0.001 value and this
speed increases the value of learning rate increases. However,
with the large value of learning rate i.e., 0.1, the convergence
process can not converge well in which it will be fallen into a
local optimum solution. Therefore, it is important to choose the
appropriate learning rate value suitable for specific situations.
Regarding this, we set 0.01 as a learning rate value, which is
the most appropriate value.

Fig. 5 depicts the effects of different memory sizes on the
convergence performance. Through the figure, we shows that
with the smaller value of memory size, the convergence is
becoming faster, but a local optimum solution is obtained
instead of global one. Therefore, in the following simulations,
the size of the replay memory is set to 1024 which is the most
appropriate value.

Fig. 6 demonstrates the convergence performance of the
proposed algorithm over different values of batch size in which
the batch size can be utilized to determine the experience
samples’ number which are extracted from the memory at each
training interval. From the figures, the batch size is set to 32
in the next simulations.

2) System Performance: This subsection presents and dis-
cusses the simulation results of our proposed model. First,

8

Algorithm 1 DQN based Computation Offloading Algorithm

1: Initialize the evaluation and target Q network parameters
with random weights ω and ω′, respectively. (ω′ = ω)

2: Initialize replay memory Y with capacity L
3: for each episode k ≤ 1, 2, . . . ,K do
4: Choose an initial state sinit

5: for each step t do
6: Generate a random number ϕ ∈ [0, 1]
7: if ϕ < ε then
8: Randomly select an action a(t). .Exploration
9: else

10: Set a(t) = argmaxaQ
pre(s(t), a(t);ω) where Q

is estimated. .Exploitation
11: end if
12: Execute the action a(t) and Calculate Zs(t)(t) ac-

cording to Eq. (18)
13: if Zs(t)(t) > Zs(t+1)(t+ 1) then
14: Set r(t) = 1
15: else if Zs(t)(t) < Zs(t+1)(t+ 1) then
16: Set r(t) = −1
17: else
18: Set r(t) = 0
19: end if
20: Save transition (s(t), a(t), r(t), s(t+ 1)) in Y
21: Execute Procedure 1 for updating the evalution

network
22: Reset ω′ = ω after each C steps.
23: end for
24: end for

Procedure 1 Evaluation Network Updating

1: Extract a sample random mini-batch of transitions
(s(k), a(k), r(k), s(k + 1)) from Y .

2: if s(k + 1) is terminal state then
3: Set Qlab = r(k).
4: else
5: Calculate the label Q-value Qlab:

Qlab = r(k)+γmaxa(k+1)Q
tar(s(k+1), a(k+1);ω′).

6: end if
7: Optimize the parameter ω using gradient descent algo-

rithm which minimize the loss:
(Qlab −Qpre(s(k), a(k);ω))2.

the overhead of processing the computation tasks under the
defined five policies over the different value of users is seen
in Fig. 7. It is demonstrated from the figure that with 3 users,
the our proposed DQN algorithm’s overhead with and without
security addition is equal to the full offloading policy and less
than the other two policies. In addition, with the increasing the
users’ number, our model with and without security addition
is able to achieve a lower overhead relative to full offloading
policy. This is because the communication channels are shared
and overloaded thereby lead to increase the communication
time with users’ number increasing. Moreover, our model can
optimally select which computation tasks should be offloaded
and which should not while minimizing the total cost of users

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Episode

3.5

4

4.5

5

5.5

6

T
o

t
a

l
 C

o
s
t

10
5

Learning Rate=0.1

Learning Rate=0.01

Learning Rate=0.001

Learning Rate=0.0001

Fig. 4: Convergence performance versus different values of
learning rate

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Episode

3.5

4

4.5

5

5.5

6
T

o
t
a

l
C

o
s
t

10
5

Memory Size=512

Memory Size=1024

Memory Size=2048

Memory Size=4096

Fig. 5: Convergence performance versus different values of
memory size

via the deployment of task offloading and security.
Similarly, Fig. 8 illustrates the total cost of executing the

computation tasks under five different policies versus different
data size for each task. As seen in this figure, the total cost of
the five policies increases with the increasing size of input
data for each task. Additionally, our DQN algorithm with
and without a security layer outperforms the other policies.
Moreover, the full offloading policy curve increases much
more rapidly than the other four polices with the increasing
size of input data for each task. This is because of as the size
of data that is transmitted increases, the communication time
also increases which leads to a significant increase in the total
cost of the entire system.

Finally, Fig. 9 shows the total overhead of processing the
computation tasks for different MEC server’s capacity. It is
seen in this figure that the policy of local execution is not

9

Fig. 6: Convergence performance versus different values of
batch size

1 2 3 4 5 6 7

Number Of Users

0

2

4

6

8

10

12

14

16

18

T
o

ta
l

C
o

st

10
5

Local

Full Offloading

Random Offloading

UnSecure DQN

Secure DQN

Fig. 7: The total Cost over different number of mobile users

impacted by MEC capacity, whereas the total cost of the
other policies gradually declines with the MEC capacity’s
increasing. This is attributed to the shorter time of execution as
the users can be allocated more resources, whereas the MEC
resources are not used in the policy of local execution.

VI. CONCLUSION

Our study proposed a resource allocation and security-aware
data Offloading model for a multi-user environment with a
multi-task. A new efficient security layer is introduced using
the AES algorithm to protect the communicated data against
attacks. In addition, a combination model of security, resource
allocation and computation offloading is formulated as a
problem with the goal of reducing the total time and energy
overhead of mobile users. Furthermore, to practically obtain
the optimum solution, an equivalent form of reinforcement
learning is given, in which the state space is defined using

2 3 4 5 6 7 8 9 10

Average Data Size (MB)

0

2

4

6

8

10

12

T
o

ta
l

C
o

st

10
5

Local

Full Offloading

Random Offloading

UnSecure DQN

Secure DQN

Fig. 8: Total Cost over different data size

5 10 15 20 25

Edge Server Capacity (GHz)

6

7

8

9

10

11

12

13

14

T
o

ta
l

C
o

st

10
5

Local

Full Offloading

Random Offloading

UnSecure DQN

Secure DQN

Fig. 9: Total Cost over different MEC capacity

all available solutions and the movement between different
states is used to define the actions. Then, an efficient algorithm
based on DQN has been proposed for solving this problem and
finding the optimum solution. Simulation results demonstrate
that the proposed model can achieve performance gains of
up to 13.2% and 64.7% of overhead in comparison with
full offloading and local execution approaches. Additionally,
our DQN-based approach was proven to scale well for the
networks with a large-scale.

For a future work, an new layer of compression will be
added to our model. This addition will compress the trans-
mission data size to reduce the transmission time and enhance
the overall system performance. Additionally, mobile users’
mobility will be managed in an efficient manner, in which
each user can move dynamically among different edge servers
within an offloading period.

ACKNOWLEDGMENT

This research was funded by the Deanship of Scientific
Research at Princess Nourah bint Abdulrahman University

10

through the Fast-track Research Funding Program.

REFERENCES

[1] M. Hammoudeh, R. Newman, C. Dennett, S. Mount, and O. Aldab-
bas, “Map as a service: A framework for visualising and maximising
information return from multi-modalwireless sensor networks,” Sensors,
vol. 15, no. 9, pp. 22 970–23 003, 2015.

[2] J. Pan and J. McElhannon, “Future edge cloud and edge computing for
internet of things applications,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439–449, 2017.

[3] M. Hammad, P. Pławiak, K. Wang, and U. R. Acharya, “Resnet-attention
model for human authentication using ecg signals,” Expert Systems, p.
e12547, 2020.

[4] R. Yadav, W. Zhang, O. Kaiwartya, P. R. Singh, I. A. Elgendy, and
Y.-C. Tian, “Adaptive energy-aware algorithms for minimizing energy
consumption and sla violation in cloud computing,” IEEE Access, vol. 6,
pp. 55 923–55 936, 2018.

[5] S. Wan, X. Li, Y. Xue, W. Lin, and X. Xu, “Efficient computation
offloading for internet of vehicles in edge computing-assisted 5g net-
works,” The Journal of Supercomputing, pp. 1–30, 2019.

[6] T. H. Noor, S. Zeadally, A. Alfazi, and Q. Z. Sheng, “Mobile cloud com-
puting: Challenges and future research directions,” Journal of Network
and Computer Applications, vol. 115, pp. 70–85, 2018.

[7] H. Guo and J. Liu, “Uav-enhanced intelligent offloading for internet of
things at the edge,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 4, pp. 2737–2746, 2020.

[8] A. Abuarqoub, M. Hammoudeh, and T. Alsboui, “An overview of in-
formation extraction from mobile wireless sensor networks,” in Internet
of Things, Smart Spaces, and Next Generation Networking. Springer,
2012, pp. 95–106.

[9] M. Khayyat, A. Alshahrani, S. Alharbi, I. Elgendy, A. Paramonov, and
A. Koucheryavy, “Multilevel service-provisioning-based autonomous
vehicle applications,” Sustainability, vol. 12, no. 6, pp. 2497–2513, 2020.

[10] K. Cao, L. Li, Y. Cui, T. Wei, and S. Hu, “Exploring placement of
heterogeneous edge servers for response time minimization in mobile
edge-cloud computing,” IEEE Transactions on Industrial Informatics,
2020.

[11] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133 – 3174, 2019.

[12] I. A. Elgendy, W.-Z. Zhang, Y. Zeng, H. He, Y.-C. Tian, and Y. Yang,
“Efficient and secure multi-user multi-task computation offloading for
mobile-edge computing in mobile iot networks,” IEEE Transactions on
Network and Service Management, 2020.

[13] W.-Z. Zhang, I. A. Elgendy, M. Hammad, A. M. Iliyasu, X. Du,
M. Guizani, and A. A. Abd El-Latif, “Secure and optimized load
balancing for multi-tier iot and edge-cloud computing systems,” IEEE
Internet of Things Journal, 2020.

[14] A. Alshahrani, I. A. Elgendy, A. Muthanna, A. M. Alghamdi, and
A. Alshamrani, “Efficient multi-player computation offloading for vr
edge-cloud computing systems,” Applied Sciences, vol. 10, no. 16, p.
5515, 2020.

[15] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et
al.: A survey and analysis of security threats and challenges,” Future
Generation Computer Systems, vol. 78, pp. 680–698, 2018.

[16] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-efficient offloading for mobile edge
computing in 5g heterogeneous networks,” IEEE Access, vol. 4, pp.
5896–5907, 2016.

[17] L. Huang, X. Feng, L. Zhang, L. Qian, and Y. Wu, “Multi-server
multi-user multi-task computation offloading for mobile edge computing
networks,” Sensors, vol. 19, no. 6, pp. 1446–1465, 2019.

[18] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[19] P. Pławiak, M. Abdar, J. Pławiak, V. Makarenkov, and U. R. Acharya,
“Dghnl: A new deep genetic hierarchical network of learners for
prediction of credit scoring,” Information Sciences, vol. 516, pp. 401–
418, 2020.

[20] M. Khayyat, I. A. Elgendy, A. Muthanna, A. Alshahrani, S. Alharbi,
and A. Koucheryavy, “Advanced deep learning-based computational
offloading for multilevel vehicular edge-cloud computing networks,”
IEEE Access, 2020.

[21] H. M. Zahera, M. A. Sherif, and A.-C. Ngonga Ngomo, “Jointly
learning from social media and environmental data for typhoon intensity
prediction,” in Proceedings of the 10th International Conference on
Knowledge Capture, 2019, pp. 231–234.

[22] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point,” in IEEE INFOCOM 2017-IEEE Conference
on Computer Communications. IEEE, 2017, pp. 1–9.

[23] M. F. Tuysuz and M. E. Aydin, “Qoe-based mobility-aware collaborative
video streaming on the edge of 5g,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 11, pp. 7115 – 7125, 2020.

[24] F. N. Nur, S. Islam, N. N. Moon, A. Karim, S. Azam, and B. Shan-
mugam, “Priority-based offloading and caching in mobile edge cloud,”
Journal of Communications Software and Systems, vol. 15, no. 2, pp.
193–201, 2019.

[25] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint computation offloading
and user association in multi-task mobile edge computing,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 12, pp. 12 313–
12 325, 2018.

[26] ——, “Joint offloading and resource allocation in vehicular edge com-
puting and networks,” in 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2018, pp. 1–7.

[27] T. Meng, K. Wolter, H. Wu, and Q. Wang, “A secure and cost-efficient
offloading policy for mobile cloud computing against timing attacks,”
Pervasive and Mobile Computing, vol. 45, pp. 4–18, 2018.

[28] I. A. Elgendy, W. Zhang, Y.-C. Tian, and K. Li, “Resource allocation and
computation offloading with data security for mobile edge computing,”
Future Generation Computer Systems, vol. 100, pp. 531–541, 2019.

[29] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for iot devices with energy harvesting,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1930–
1941, 2019.

[30] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 4005–4018, 2018.

[31] Y. Dai, D. Xu, S. Maharjan, G. Qiao, and Y. Zhang, “Artificial intelli-
gence empowered edge computing and caching for internet of vehicles,”
IEEE Wireless Communications, vol. 26, no. 3, pp. 12–18, 2019.

[32] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, 2019.

[33] H. Lu, X. He, M. Du, X. Ruan, Y. Sun, and K. Wang, “Edge qoe:
Computation offloading with deep reinforcement learning for internet
of things,” IEEE Internet of Things Journal, 2020.

[34] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2015.

[35] X. Lyu and H. Tian, “Adaptive receding horizon offloading strategy
under dynamic environment,” IEEE Communications Letters, vol. 20,
no. 5, pp. 878–881, 2016.

[36] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[37] I. Elgendy, W. Zhang, C. Liu, and C. Hsu, “An efficient and secured
framework for mobile cloud computing,” IEEE Transactions on Cloud
Computing, pp. 1–1, 2018.

[38] I. A. Elgendy, M. El-kawkagy, and A. Keshk, “Improving the perfor-
mance of mobile applications using cloud computing,” in 2014 9th
International Conference on Informatics and Systems. IEEE, 2014,
pp. 109–115.

[39] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for mec,” in 2018 IEEE
Wireless Communications and Networking Conference (WCNC). IEEE,
2018, pp. 1–6.

[40] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[41] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[42] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

