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Abstract

Radars are expected to become the main sensors in various civilian applications, ranging from health-care
monitoring to autonomous driving. Their success is mainly due to the availability of both low cost integrated
devices, equipped with compact antenna arrays, and computationally efficient signal processing techniques. An
increasingly important role in the field of radar signal processing is played by machine learning and deep learning
techniques. Their use has been first taken into consideration in human gesture and motion recognition, and in
various healthcare applications. More recently, their exploitation in object detection and localization has been
also investigated. The research work accomplished in these areas has raised various technical problems that need
to be carefully addressed before adopting the above mentioned techniques in real world radar systems. In this
manuscript, a comprehensive overview of the machine learning and deep learning techniques currently being
considered for their use in radar systems is provided. Moreover, some relevant open problems and current trends
in this research area are analysed. Finally, various numerical results, based on both synthetically generated and
experimental datasets, and referring to two different applications are illustrated. These allow readers to assess the
efficacy of specific methods and to compare them in terms of accuracy and computational effort.

Index Terms

Radar, multiple-input multiple-output, machine learning, beamforming, micro-Doppler, range-azimuth esti-
mation.

I. INTRODUCTION

ECENT advances in the production of monolithic microwave integrated circuits (MMIC) have paved the

way for the implementation of low cost and compact colocated multiple-input multiple-output (MIMO)
radar devices. These devices, being equipped with transmit and receive antenna arrays, are able to detect multiple
targets, and estimate their spatial coordinates and their velocity. Moreover, unlike cameras and lidars, they can
operate in adverse weather and lighting conditions, guaranteeing the privacy of people that act in the surrounding
propagation environment. For this reason, in recent times, substantial research efforts have been devoted to the
development of new MIMO radar systems and to the assessment of their accuracy in a number of applications.
It is well known that the full exploitation of the potentialities offered by modern colocated MIMO radar devices
requires the use of proper detection and estimation methods. In the last two decades, significant advances have
been made in the development of deterministic methods accomplishing these tasks. These are mainly based on a
maximum likelihood approach [1], [2] or on sub-space methods, like the MUItiple Signal Classification (MUSIC)
technique [3]. Moreover, they are model-based, since they require the full knowledge of the employed radar
device and rely on a parametric description of the propagation environment; note that, in such a description,
targets are usually represented as points reflecting electromagnetic energy. An overview of deterministic methods
is provided by refs. [4], [S], whereas some interesting applications of them can be found in refs. [6]—[8]; relevant
examples of these applications include the detection and the estimation of the position of cars or pedestrians in
a street [9], as well as the analysis of human vital signs [10]. In many cases, these methods allow to achieve
good estimation accuracy at the price of an acceptable computational effort. Unluckily, in a number of recent
applications, MIMO radars operate in extremely complex, highly dynamic and time varying scenarios, affected
by multipath propagation, clutter and interference, and in the presence of extended targets. In such conditions,
deterministic algorithms may fail, since they are unable to achieve acceptable estimation accuracy and are prone
to generate ghost targets [11]. When this occurs, machine learning (ML) and deep learning (DL) techniques
represent an appealing alternative or the only viable technical solution. A relevant example of this class of
techniques is represented by neural networks (NNs) [12], [13]. These networks can automatically learn specific
data patterns and extract useful information directly from raw data, even in the presence of strong interference.
In fact, they can be trained to recognise interference and remove it, so making the recovery of useful signal
components possible. Unfortunately, the application of NNs and related methods to MIMO radars is challenging,



because, on the one hand, the problems tackled in this field are often substantially different from those to which
such methods have been applied for a number of years (e.g., processing of RGB images in computer vision);
on the other hand, the large radar dataset required for the proper training of a NN may be unavailable. Another
critical issue emerging from the exploitation of ML and DL methods in real world applications is represented by
the fact that a trained machine is, by and large, a black box mapping inputs to outputs; for this reason, generally
speaking, it cannot be inferred why a given output has been produced on the basis of its input data. This explains
why, in various radar applications, a model-based approach could be preferred. Despite this relevant limitation, it
is widely accepted that the use of ML and DL methods in colocated MIMO radars will allow to solve a number
of real world problems. For instance, recent work has evidenced that they can be successfully exploited in the
classification of human activities and gestures, in the detection of human falls [14] and in the classification of
dynamic targets in dense and dynamic urban scenarios [15]. This manuscript aims at providing an overview
of the ML and DL methods employed in all the above mentioned applications, analysing their pros and cons,
discussing the main lessons that have been learnt from their use and illustrating some trends in this research
area. As far as we know, in the technical literature, the few manuscripts offering related contributions refer to
specific applications, namely human-motion recognition [14] and assisted living [10]. The scope of this work,
instead, is offering a wider perspective on this research area. Furthermore, our description of learning methods
is interspersed with various numerical examples on synthetically generated dataset and an entire section is
devoted to the analysis of various numerical results generated the measurements acquired through a commercial
colocated MIMO radar.

The remaining part of this manuscript is organized as follows. In Section II, essential information about the
history of colocated MIMO radars, their architecture and some well known deterministic detection/estimation
algorithms that can be employed in these radar systems are provided. The most relevant ML and DL methods
currently being investigated for their use in colocated MIMO radars are described in Sections III and IV,
respectively; a brief comparison among such methods is illustrated in Section V. An overview of the specific
applications of these techniques to colocated MIMO radars is illustrated in Section VI, where we focus on
human-motion and human-gesture classification, healthcare monitoring, and target detection and localization
in automotive scenarios. Some trends emerging in the current research activities about the application of DL
techniques to colocated MIMO radars are illustrated in Section VII. Various ML and DL methods are compared,
in terms of accuracy and computational effort, in Section VIII, where their use in human activity classification,
and in the detection and position estimation of a moving target is illustrated. Finally, some conclusions are
offered in Section IX. Multiple acronyms are employed in our work; their meaning is illustrated in Table I.

II. COLOCATED MIMO RADARS: BASIC PRINCIPLES, HISTORY, ARCHITECTURE AND DETERMINISTIC
ALGORITHMS

This section provides an introduction to the world of colocated MIMO radar systems. After illustrating some
basic information about their characteristics and outlining their evolution in the last two decades, the architecture
of a colocated MIMO radar system is described. Finally, the received signal model is briefly analyses, and
essential information about various detection and estimation algorithms that can be employed in colocated radar
systems is provided.

A. Basic principles and classification

The initial excitement about the use of antenna arrays at both transmit and receive sides (i.e., briefly, about
MIMO) in wireless systems has been sparked by the pioneering work of J. H. Winters [16], G. J. Foschini [17],
Foschini and M. J. Gans [18], and E. Telatar [19]; these researchers predicted huge capacity gains in wireless
communications affected by multipath fading [20]. A few years later, the exploitation of antenna arrays has been
also investigated in the radar field for the potential improvements it could provide in terms of signal-to-noise
ratio (SNR), resolution and detection capability. In fact, in principle, the availability of multiple transmit/receive
antennas allows to (e.g., see [21]-[23])

1) increase the SNR characterizing target echoes and make it more stable;

2) implement spatial filtering (i.e., beamforming) for directional signal transmission/reception and, conse-
quently, achieve a large field of view (FOV);

3) increase the overall number of degrees of freedom and, consequently, the maximum number of targets that
can be detected at a given range;

4) improve the angular resolution with respect to traditional radar systems;

5) exploit spatial diversity, so that uncorrelated aspects of a given target can be perceived.

Generally speaking, MIMO radar systems can be divided in statistical MIMO radars [24], [25] and colocated
MIMO radars [26], [23] on the basis of the distance between their transmit and receive arrays. In fact, the



ABF Analog Beamforming LNA Low Noise Amplifier

ADC Analog to Digital Converter LPC Linear Predictive Coding

AE Auto-Encoder LRR Long Range Radar

Al Artificial Intelligence LSTM Long Short Term Memory

AWGN Additive White Gaussian Noise MIMO Multiple Input Multiple Output

Bi Bipolar ML Machine Learning

BN Batch Normalization MLP Multi-Layer Perceptron

BPTT Back-Propagation Through Time MMIC Monolithic Microwave Integrated Circuit
CAE Convolutional Auto-Encoder MRR Medium Range Radar

CFAR Constant False Alarm Rate MUSIC Multiple Signal Classification
CMOS Complementary Metal Oxide Semiconductor MUSIC Multiple Signal Classification

CNN Convolutional Neural Network NN Neural Network

CS Compressed Sensing OFDM Orthogonal Frequency Division Multiplexing
CVD Cadence Velocity Diagram PCA Principal Component Analysis

DBF Digital Beamforming PMCW Phase Modulated Continuous Wave
DBSCAN  Density Based Spatial Clustering of Applications with Noise R Region

DCNN Deep Convolutional Neural Network RADAR  Radio Detection And Ranging

DCT Discrete Cosine Transform RCS Radar Cross Section

DFT Discrete Fourier Transform RF Radio Frequency

DL Deep Learning RMSE Root Mean Square Error

DOA Direction of Arrival RNN Recursive Neural Network

ERM Empirical Risk Minimization ROI Region of Interest

ESPRIT Estimation Signal Parameters Rotational Invariance Technique =~ RX Receive

FC Fully Connected SAMME  Stagewise Additive Modeling Multi-class Exponential
FCN Fully Convolutional Network SFCW Stepped Frequency Continuous Wave
FDM Frequency Division Multiplexing SGD Stochastic Gradient Descent

FM Frequency Modulation SiGe Silicon-Germanium

FMCW Frequency Modulated Continuous Wave SNR Signal-to-Noise Ratio

FOV Field of View SRR Short Range Radar

FPGA Field Programmable Gate Array SVM Support Vector Machine

FFT Fast Fourier Transform TDM Time Division Multiplexing

GAN Generative Adversarial Network TOF Time Of Flight

GPU Graphic Processing Unit TX Transmit

HCI Human Computer Interface ULA Uniform Linear Array

HGR Human Gesture Recognition UWB Ultra-wideband

HMM Hidden Markov Model VCO Voltage Controlled Oscillator

T1AA Iterative Adaptive Approach XAI eXplainable Artificial Intelligence
10U Intersection Over Union YOLO You Look Only Once

KNN K - Nearest Neighbour

Table I: Table of acronyms.

transmit and receive antennas of the radar systems belonging to the first class are widely separated; on the
contrary, in radar systems of the second class, transmit antennas are close to the receive ones and, in particular,
are usually placed on the same shield. Colocated MIMO radars can be further classified as: a) mono-static radars,
where transmit and receive arrays share their antenna elements; b) pseudo-bistatic radars, where transmit and
receive arrays are made of distinct antenna elements, placed at different positions. It is important to keep in
mind that, in statistical MIMO radars, spatial diversity originates from the fact that distinct receive antennas,
being well separated, can observe uncorrelated parts of the same target. In colocated MIMO radars, instead,
a large spatial aperture is achieved by radiating orthogonal waveforms. Based on the way these waveforms



are generated, colocated MIMO radars can be divided in: a) time division multiplexing (TDM) radars [27], b)
frequency division multiplexing (FDM) radars [28] and c) orthogonal frequency division multiplexing (OFDM)
radars [29]. On the one hand, in TDM (FDM) radars, orthogonality is achieved by transmitting through distinct
antennas over disjoint time (frequency) intervals; on the other hand, in OFDM radars, any transmit antenna can
be used to radiate multiple orthogonal waveforms at the same time. A further classification of colocated MIMO
radars, commonly adopted in the automotive field, is based on the maximum measurable range. According to
this classification, these systems are divided in (see Table II, where, for each type of radar, the achievable range,
the transmission frequency and the typical applications are listed):
1) Short range radars (SRRs) - These are able to measure a maximum range of about 30 m and offer the
highest angular resolution.

2) Medium range radars (MRRs) - These are characterized by a maximum range of about 100 m, offer a
quite large azimuthal FOV and achieve a reasonable angular resolution.

3) Long range radars (LRRs) - These are characterized by the largest maximum range (250 m) and the
thinnest FOV.

In the last paragraph of this section, the architecture of a pseudo-bistatic colocated MIMO radar operating in
TDM mode is described in some detail. Our interest in this specific architecture is motivated by its wide use in
various civilian applications, and by its capability of detecting multiple targets and accurately estimating their
position.

Radar type ~ Max range (m)  Freq. (GHz) Typical applications

Short range 30 5-77 Park assist, pre-crash

Blind spot detection
Mid range 100 24-77 Rear collision avoidance
Cross traffic alert

Long range 250 40-77 Adaptive cruise control

Table II: Classification of colocated MIMO radars on the basis of their maximum measurable distance.

B. A brief history of the colocated MIMO radar technology

The birth of radio detection and ranging (briefly, radar) systems dates back to 1904, when the German
inventor Christian Hulsmayer built a simple ship detection device for avoiding collisions in fog [30]. However,
the first practical radar system was developed by the British physicist Sir Robert Watson-Watt in 1935, and
was employed by the British army in World War II to detect air and sea aggressors [31]. Another fundamental
step in the evolution of radar technology is represented by the early studies on optimal filtering; the rigorous
formulation of this problem and its solution are due to the American scholar Norbert Wiener and date back to the
40° [32]. Since then, many advancements have been made in military and civilian radar systems, thanks to the
development of signal processing techniques and to the evolution in electronic technology. The most significant
advances in signal processing methods applicable to radar systems equipped with antenna arrays have involved
both the transmit side and the receive side, and can be summarised as follows.

As far as the transmit side is concerned, substantial research efforts have been devoted to the study of analog
beamforming (ABF) and digital beamforming (DBF) methods for controlling phased arrays; both types of
methods allow to obtain electronic beam steering, i.e. to steer the main lobe of the array radiation pattern
without any movement of the antennas forming it. It is worth stressing that phased arrays have been around for
more than fifty years [33], and that a radar equipped with a phased array is much simpler than a MIMO radar.
In fact, a radar system endowed with a phased array generates a single waveform feeding each transmit antenna
with a different phase (or, equivalently, with a different delay); consequently, the waveforms radiated by distinct
antennas are highly correlated. Moreover, analog beamforming represents the earliest method for electronic
beam steering; in this case, each of the signal feeding a transmit antenna is first amplified and then delayed
through a phase shifter in a radio frequency (RF) stage; an important drawback of this method is represented
by the fact that the shape of the resulting beam is fixed. On the other hand, DBF is based on the idea of
implementing beam steering in the (digital) baseband portion of the radar hardware by multiplying each signal
by a complex gain [34]. This procedure allows to digitally customize the radiated beam, adapting its direction
to channel conditions. This technique, also known as adaptive beamforming [35], plays an important role in the
presence of severe path loss. However, it should be always kept in mind that any radar transmitter exploiting
beamforming requires some time (in practice, multiple dwells) to scan the area of interest. On the contrary, if a
MIMO radar is employed, the entire observed area is illuminated in a single dwell and beamforming is obtained
through the use of different orthogonal waveforms [2].



Another important research area concerning the transmit side of radar systems equipped with antenna arrays
concerns the design of the radiated waveforms [23]. Despite the fact that significant theoretical results have
been achieved in the field of optimal design of waveforms (e.g., see [36]), few modulation techniques have
been employed in commercial MIMO radars until now. These include the frequency modulated continuous wave
(FMCW) technique [37] (also known as chirp signal modulation) and the stepped frequency continuous wave
(SFCW) technique [38]. In the last years, considerable attention has been also paid to the use of the OFDM
technique [39], [40] and to the phase modulated continuous wave (PMCW) technique [41].

Early research work regarding the receive side of radar systems endowed with antenna arrays has focused
on the development of beamforming methods [42]. One of the most important contributions to this area is
represented by the so called Capon beamformer, which can provide good resolution and interference rejection
capability [43], [44]. Other fundamental contributions about the processing of multiple signals acquired by
a radar systems through its antenna array concern the estimation of the direction of arrival (DOA) of the
electromagnetic waves impinging on the array itself. Here, we limit ourselves to mention the MUSIC [3] and
the estimation of signal parameters via rotational invariance (ESPRIT) techniques [45], [46].

The development of signal processing methods for MIMO radars started after the end of 2003; in fact, in
that period, the concept of MIMO radar, defined as a device able to probe a wireless channel by transmitting
multiple signals and receiving their echoes with similar multiplicity, was proposed for the first time [22]. Since
the beginning, it was clear that MIMO technology could have represented an important tool to improve the SNR
of received signals and to increase radar aperture [2], [21], [23], [47]. Since then, the exploitation of known
DOA estimation strategies, developed in the previous years for antenna arrays (like MUSIC and ESPRIT),
has been widely investigated for this new type of radars (e.g., see [48] and [49]). However, the availability
of MIMO radars able to radiate wideband signals by a large number of antennas and to acquire their echoes
through an even larger number of antennas have raised various problems, whose solution requires substantial
research efforts. In fact, on the one hand, these devices allow to acquire a rich set of information about the
surrounding propagation environment; on the other hand, they require storing and processing large datasets. This
has motivated the investigation of compressed sensing (CS) and statistical sparsity-based techniques, since these
can be exploited to perform signal detection and parameter estimation on the basis of a much smaller dataset
than that available in the case in which the received waveforms undergo Nyquist sampling [50], [51]; various
examples of CS-based estimation algorithms can be found in ref. [52].

As far as the advancement in electronic technology is concerned, in the remaining part of this paragraph we
focus on some important results achieved in the development of compact integrated radar devices employed in
the automotive field, since this is one of the first commercial markets in which MIMO radars have been playing a
fundamental role. The first generation of commercial ultra-wideband (UWB) automotive radar sensors operating
in the 77 GHz band has become available in 1999. These devices were not endowed with antenna arrays and
their implementation was based on discrete electronic components (in particular, gallium-arsenide Gunn diodes
mounted inside a waveguide cavity were employed in the generation of RF waveforms). However, electronic
technology progressed quickly in this field and, after few years, MMICs employing high-performance silicon-
germanium (SiGe) transistors became available for the implementation of fully integrated radars. Pioneering work
in the development and manufacturing of such a technology has been accomplished by the Infineon company,
that has started its production in 2004 [53]. It is also worth mentioning that, in the same year, a description of
the first fully integrated 24-GHz eight-element phased array receiver in SiGe and of the first fully integrated
24-GHz four-element phased array transmitter with integrated power amplifiers in complementary metal-oxide
semiconductor (CMOS) has appeared [54]; these devices were able to accomplish beamforming and could
be used for communication, ranging, positioning, and sensing applications. Other examples of phased arrays
operating in X and Ku-band have been described later in ref. [55]. The first FMCW MIMO radar transceiver
operating at 77 GHz has been implemented in SiGe technology in 2008 [56], whereas the production of the
first MIMO FMCW radar, operating according to a TDM strategy and equipped with an array of colocated
antennas, started in 2009 [57], [58]. As far as we know, the last device represents the first compact MIMO radar
system based on a MMIC in SiGe, operating at 77 GHz and radiating ultra-wideband signals. In this system,
wide-band and high-frequency patch antennas are built on a RF substrate [59], while the base-band MIMO
signal processing is accomplished off-chip by a field programmable gate array (FPGA) board. Moreover, the
analog-to-digital converters (ADCs) at the receive side are implemented in CMOS technology and embedded
in the transceiver chip; this has been made possible by the SiGe Bi-CMOS process, which has allowed to
integrate multiple functions on a single chip and at low cost. In the last decade, radar designers working on
the development of new integrated radar devices have investigated the use of the more scalable CMOS RF
technology [60]. An important trend in the technological evolution of MIMO radar systems is also represented
by the attempt of exploiting the same hardware for both radar and communications [61]. Some milestones
achieved in the evolution of the signal processing methods and of the technology employed in colocated radar



systems during the last two decades are summarized in Fig. 1.
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Figure 1: Milestones in the evolution of colocated radars.

C. Architecture of a colocated TDM MIMO radar

In the remaining part of this manuscript, we always refer to a colocated and bistatic MIMO radar system; its
architecture is illustrated in Fig. 2. Moreover, we first assume that: a) the considered radar system is equipped
with a two-dimensional (2D) array, consisting of Np transmit (TX) and Npr receive (RX) antennas; b) it
employs a TDM strategy; c) it exploits all the available transmit diversity (i.e., all the available TX antennas).
Consequently, if a time slot of Tj s is assigned to each TX antenna, transmission from all the TX antennas is
accomplished over an interval lasting T’ £ Nr7Tj s; this interval represents the duration of a single transmission
frame.
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Figure 2: MIMO radar transmitter (upper part) and receiver (lower part).

In this manuscript, two different models are considered for the RF signal generated by the voltage controlled
oscillator (VCO) of the radar transmitter and radiated by its transmit array after power amplification. In the first
case, corresponding to a FMCW radar system, the VCO is fed by a periodic ramp generator; this produces a
chirp FM signal, whose instantaneous frequency evolves periodically, as illustrated in Fig. 3. In this figure,
the parameters 7', Tr and Tj represent the chirp interval, the reset time and the pulse period (or pulse
repetition interval), respectively [9], whereas the parameters fy and B are the start frequency and the bandwidth,
respectively, of the transmitted signal. For this reason, if we focus on the time interval (0,7") and assume that,
in that interval, the p-th TX antenna is employed by the considered radar system (with p € {0, 1, ..., Ny —1}),
the radiated signal can be expressed as

SRF (t) :ARF%{S (t)}, (1)

where Arp is its amplitude,
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A Ho2
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Figure 3: Representation of the instantaneous frequency of the RF signal generated by the VCO in a FMCW
radar system.

is the chirp rate, i.e. the steepness of the generated frequency chirp.

Let rggl)w(t) denote the signal available at the output of the ¢-th receive antenna, with ¢ =0, 1, ..., Np—1 (see
Fig. 2); this signal feeds a low noise amplifier (LNA), whose output undergoes downconversion, filtering and
analog-to-digital conversion at a frequency fs = 1/Ts, where T denotes the sampling period of the employed
ADC. If we assume that the radiated signal s (t) (1) is reflected by L static point targets, the useful component
of rg}(t) consists of the superposition of L echoes, each originating from a distinct target. In this case, if the
propagation environment undergoes slow variations, a simple mathematical model can be developed to represent
the sequence of samples generated by the ADC in a single chirp interval. In deriving this model, the couple
of the involved physical TX and RX antennas (namely, the p-th TX antenna and the ¢g-th RX antenna) of the
considered bistatic radar is often replaced by a single virtual antenna of an equivalent monostatic radar. In
particular, the abscissa x,, and the ordinate y, of the v-th virtual antenna element associated with the p-th TX
antenna and the ¢-th RX antenna are computed as'

Tp +Iq
= 24 5
x 5 @)
and
+
g, = L (©)

respectively, with v = 0, 1, ..., Ny — 1; here, (z,,9,) ((z4,y,)) are the coordinates® of the TX (RX antenna)
and Ny £ N7 - Ny represents the overall size of the resulting virtual array. Based on these assumptions, the

n-th received signal sample acquired through the v-th virtual antenna element (with v =0, 1, ..., Nyy — 1) can
be expressed (e.g., see [62, Par. 4.6, eq. (4.27)])
L—1
Fom = 3 a1cos(2mn Fyy +1hy1) + Wy n, (7
1=0
with n = 0, 1, ..., N — 1; here, NV is the overall number of samples acquired over a chirp period, a; is the

amplitude of the [-th component of the useful signal (this amplitude depends on both the range R; and the
reflectivity of the [-th target, but is assumed to be independent of v for simplicity),

F’u,l £ fv,lTs (8)
is the normalized version of the frequency
for = ptop ©)
characterizing the [-target detected on the v-th virtual receive antenna,
2 . .
Tol =~ [Ri + 2, cos (01) sin (¢1) + 1, sin (07)] (10

is the delay of the echo generated by the [-th target and observed on the v-th virtual channel, R;, ¢; and 6;
denote the range of the [-th target, its azimuth and its elevation, respectively,

Yo =227 foTo 1, (11)

I'This is not the only rule adopted in the technical literature to compute the coordinates of the v-th virtual antenna element. For instance,
in ref. [2, Par. 4.3.1, pp. 159-161], the abscissa (ordinate) of this element is evaluated as 2z, (2y,), where x, and vy, are expressed by
egs. (5) and (6), respectively. Keep in mind, however, that, if the last rule is adopted, all the following formulas involving such coordinates
must be changed accordingly.

2A reference system lying on the physical antenna array is assumed.



and w, , is the n-th sample of the additive white Gaussian noise (AWGN) sequence affecting the received
signal (the noise variance is denoted o2 in the following and is assumed to be independent of v).

The second case we consider for the generation of the radiated waveform corresponds to a SFCW radar
system. Its name is motivated by the fact that the VCO of its transmitter is fed by a staircase generator. For
this reason, the instantaneous frequency of the resulting RF signal takes on N distinct and uniformly spaced

values in an interval lasting 7" s for each TX antenna; the n-th value of the instantaneous frequency is

fo=fo+nAf, (12)

withn =0, 1, ..., N — 1, where f; is the minimum radiated frequency, Af is the frequency step size and N is
the overall number of transmitted frequencies. It is not difficult to prove that, under the same assumptions made
in the derivation of eq. (7), the measurement acquired through the v-th virtual element at the n-th frequency
can be expressed as

L—-1
Tvn = Z ] €Xp [_j (27Tan,l + ¢v,l>] + Wy, n, (13)
=0

with v =0, 1, ..., Ny — 1; here, the phase v, is still expressed by eq. (11),
Fv,l £ A.f Tu,l (14)

is the normalised frequency characterizing the [-th target and observed on the v-th virtual antenna, and the
parameters a;, 7,,; and the random variable w,, ,, have exactly the same rneaning3 as the one illustrated for the
received signal model (7). It is important to point out that, similarly as the baseband signal model (7) developed
for a FMCW radar, the model (13) allows to interpret the signal observed on the v-th channel as a superposition
of L oscillations. However, the former model is real, whereas the latter one is complex. Moreover, in both cases,
the samples {r, ,; n =0, 1, ..., N — 1} can be collected in the N-dimensional vector

A T
ry, = [T’U,O7T’U717 "'7TU,N—1] ) (15)

which is processed by the next stages of the radar receiver for target detection and estimation. As it can be
easily inferred from eq. (7) (eq. (13)), in a FMCW (SFCW) radar system, the problem of target detection and
range estimation on the v-th virtual channel is equivalent to the classic problem of estimating the frequencies
of multiple overlapped sinusoids (multiple overlapped complex exponentials) in the presence of AWGN [63]. In
fact, if an estimate fv,l of the frequency f,; (9) and an estimate FM of the normalised frequency F;,; (14) are
available for the v-th virtual channel, an estimate of the range R; can be computed as (see eqs. (9) and (10))

. 1
Ry = 20 (16)
2 p
and as (see eqgs. (10) and (14)) X
- 1Fy,
R, = 5 Afc a7

respectively, for any v and [. Information about the angular coordinates (namely, the azimuth and the elevation)
of the {-th target, instead, can be acquired through the estimation of the set of Ny phases {¢, ;5 v =10, 1, ...,
Ny — 1} observed over the available virtual antennas. In fact, since (see eqs. (10) and (11))

Yy, = 47Tf—co [R; + x, cos (0;) sin (¢;) + yy sin (6;)] (18)
where
P (19)
fo

is the wavelength associated with the frequency fy, the sequence {1/%,1; v =0, 1, ..., Ny — 1} exhibits a periodic
behavior characterized by the normalised horizontal spatial frequency

Fg, & 2dTH cos (6;) sin (¢y) , (20)

if the considered virtual elements form an horizontal uniform linear array (ULA), whose adjacent elements are
spaced dy m apart. Dually, if a vertical ULA is assumed, the periodic variations observed in the same sequence
of phases are characterized by the normalised vertical spatial frequency

Fy, = QdTV sin (6;) , 21

3Note, however, that Wy,n 1S a complex Gaussian random variable; its variance is also denoted 0121, in the following.



where dy denotes the distance between adjacent elements of the vertical virtual array. Consequently, angle
finding can be easily accomplished by DBF, i.e. by performing FFT processing on the estimated phases taken
across multiple elements of the virtual array in a single frame interval [4], [64]. Note, however, that other
angle estimation methods, achieving a better resolution than FFT processing are also available; here, we limit
to mention the so called subspace-based methods (such as MUSIC and ESPRIT), sparse sensing-based methods
[65], [66] and the iterative adaptive approach (IAA) developed in ref. [67]. Subspace-based methods require
computing an accurate estimate of the array covariance matrix; consequently, the measurements acquired over
multiple snapshots must be processed. Moreover, they do not allow to estimate the amplitude of the echo
associated with each detected target and require prior knowledge of the size of the useful signal subspace (i.e.,
of the number of detectable targets). On the contrary, sparse sensing-based methods and IAA can generate angle
estimates on the basis of a single snapshot of the received signal; however, this result is obtained at the price
of a significant computational effort.

Both the received signal models (7) and (13) hold if all the observed targets are static. Let us focus now on a
FMCW radar system operating in the presence of L moving point targets and having the following characteristics:
a) it is equipped with a single TX antenna and a single RX antenna (i.e., N7 = Nr = 1); b) its reset time T
is equal to 0, so that Ty = T (see Fig. 3); c) its transmission frame consists of N, chirps, so that the duration
Tr of the transmission frame is equal to N. T, = N.T s; d) N distinct ADC samples are acquired in each
chirp interval at the receive side. Then, it is not difficult to prove that, if the ranges of all the targets are much
larger than their displacements observed during the considered transmission frame, the n-th sample of the signal
acquired in the k-th chirp interval (with £ = 0, 1, ..., N, — 1) can be expressed in a similar way as eq. (7),
namely as (e.g., see [9, eq.(5)])

L-1
(k) o Z ajcos(2mn (F} + Fpy) + wl(k)) +w®, (22)
1=0

where F; = p7; Ts (see eqgs. (8) and (9)), 1 = 2R;/c is the delay of the echo generated by the [-th target and
observed in the first chirp interval (in this interval, the target range is assumed to be equal to R;),

2
Fpy= =T, (23)
A
is the normalised Doppler frequency, v; is the radial velocity* of the I-th target,
4
=R, 4
R™ = Ry + v kT (25)

is the target range observed in the k-th chirp interval and w,(Lk) is the n-th sample of the AWGN sequence

affecting the received signal in the same chirp interval.

Let us focus next on a SFCW radar system operating in the same scenario as the one just described for a
FMCW radar system and having the following characteristics: a) it is equipped with a single TX antenna and a
single RX antenna; b) its reset time T’y is equal to 0, so that Ty = T; ¢) its transmission frame consists of N,
frequency sweeps; d) in each sweep (lasting 7" s), NV distinct and uniformly spaced frequencies are generated
according to eq. (15). Then, it can be shown that, if fy >> NASf, the measurement acquired at the n-th
frequency in the k-th frequency sweep (with £ =0, 1, ..., N, — 1) can be expressed in a similar way as eq.
(13) and, in particular, as

L-1
r® =S arexp | =i (2n (B + Foa) +9(7)] + wen 26)
=0

where F; & Af 7 (see eq. (14)), 7; is the delay of the echo generated by the [-th target and observed in the
first frequency sweep (when the target range is equal to R;),

FD,Z = TTI (27)

is the normalised Doppler frequency, and the parameters A and wl(k) are still expressed by eqgs. (19) and (24),
respectively.

4This speed is positive (negative) if the target is approaching (is moving away) from the radar.



In both the considered radar systems, the rate of change observed in the sequence of phases {wl(k); k=0,1,
..., N. — 1} is proportional to v;, since (see egs. (24) and (25))

4 T
YD =y = (R — RV) = dr sy (28)
with £ =0, 1, ..., N. — 1. Therefore, target velocity can be easily assessed by means of FFT processing after

computing an estimate of the above mentioned phases.

In the technical literature, range and speed information of the moving targets detected in a given propagation
environment are usually condensed in a 2D plot, called range-Doppler map [5], [9]. In a FMCW radar system
equipped with a single TX antenna and a single RX antenna, this map is generated as follows. Let r(¥) denote the
N-dimensional (column) vector consisting of the real measurements acquired in the k-th chirp of a transmission
frame, with £ =0, 1, ..., N, — 1, where N, is the overall number of chirps forming the frame itself. The NV,
vectors {r(’“); k=0,1, .., N.— 1} are collected in the matrix

R = [I‘(O) r r(Nc—l)] , (29)

having size N X N.. This matrix undergoes zero-padding, that turns it into a matrix Rzp of size Ny x N(;. The
last matrix feeds a Vg x N,-th order FFT, that generates the range-Doppler (complex) matrix

D = [dyq| £ FFTy, , n/ [R], (30)

where FFT x xy [-] denotes 2D FFT operator of size X x Y; note that the index p (¢) labelling the elements of
the matrix D refers to the range (Doppler) domain. Representing, on a Cartesian plane, the absolute value of
the elements of the matrix D yields the above mentioned range-Doppler map.

In the last fifteen years, substantial attention has been also paid to the problem of estimating the micro-
movements of detected targets; such movements usually originate from mechanical vibrations or rotations
(overlapping to a bulk translation) and may generate a frequency modulation in the received signal; the last
phenomenon is known as micro-Doppler. The recent interest in micro-Doppler is motivated by the fact that it
can be exploited to establish the dynamic properties of targets [68] and, consequently, can be used to classify
them or identify specific properties related to their motion. In a FMCW radar system equipped with a single TX
antenna and a single RX antenna, the micro-Doppler phenomenon can be analysed as follows. Let us assume
that Ny consecutive frames (each consisting of N, chirps) are transmitted by the considered radar system and
that the range- Do%)pler matrix D (30) is evaluated for each frame (the matrix referring to the m-th frame is
denoted D,,, = with m =0, 1, ..., Ny — 1). Relevant information about the micro-Doppler fluctuations,
also known as the micro-Doppler szgnatures, characterizing a certain range interval can be acquired through the
real matrix E = [E,, ], having size Ny N(; and whose element on its m-th row and g-th column is evaluated
as

Pmax

Epg 2 Y 1) 31)

P=Pmin

withm =0,1,..., Ny—1land ¢ =0, 1, .., N(; —1; here, prmin (Pmax) denotes the value of the index p associated
with the minimum (maximum) range of interest. Representing the elements of the matrix E on a Cartesian plane
produces the so called spectrogram [68], that shows the time evolution of the Doppler phenomenon.

Additional information about the dynamical properties of a moving target can be acquired through another
diagram, known as cadence velocity diagram (CVD). This diagram allows us to identify the most relevant
frequency components associated with a given motion (e.g., if a walking pedestrian is considered, the speed of
his arms can be extracted from the associated CVD). Moreover, its generation is based on the complex matrix
G = [G},4], having size N} x N, and computed as the N} X Np-th order FFT of the matrix Ezp = [Efff)],
that results from zero padding of the matrix E defined above; therefore, we have that

m -
EZP exp [ —j /flTF> (32)
(P (o

with { =0, 1, ..., N} —1land ¢ =0,1, .., Ny —1; here, Tr is the duration of a single transmission frame,
EZE) = By form=0,1, ., Nf—landE(ZP) —0form>N;—1,and

. l
A
Ji T (33)
is the [-th cadence frequency. The CVD results from representing, on a Cartesian plane, the absolute value of
the elements of the matrix G.
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III. MACHINE LEARNING TECHNIQUES FOR COLOCATED MIMO RADAR SYSTEMS

In this section, after illustrating the main differences between a deterministic approach and a ML-based
approach to target detection and estimation, the most important ML techniques applied in the field of colocated
MIMO radar systems are described. Our introduction to these techniques is based on a specific case study,
involving a FMCW radar system (see Paragraph II-C).

A. A case study

The most relevant conceptual differences between a deterministic approach and a ML approach to detection
and estimation problems in MIMO radar systems can be understood by analysing the detection of a single
point target, and the estimation of its range R and its azimuth ¢ in a 2D propagation scenario. In this case, we
assume that an FMCW radar system equipped with an ULA, consisting of three antenna elements, is employed
(see Fig. 4-a). This array is made of a central TX antenna and a couple of antipodal RX antennas (these are

Target M TX antenna Target N M TX antenna
A I RX antenna ; B RX antenna
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Figure 4: Physical geometry and virtual array of a colocated FMCW MIMO radar equipped with an ULA
composed by a single TX antenna and: a) two RX elements; b) four RX elements.

identified by a red box and two blue boxes, respectively, in the considered figure), so that Ny = 1 and N = 2;
consequently, a virfual array, consisting of Ny = 2-1 = 2 virtual elements, is available. The abscissa x,, of the
v-th virtual antenna element associated with the TX antenna and the v-th RX antenna is computed as (see eq.

&)

Ty = Ty + Lry

2
with v = 0 and 1; here, z; = 0 and z, 9 = —d (z,,1 = d) are the abscissas of the TX and of the first (second)
RX antenna, respectively (note that the origin of our reference system coincides with the center of the array).
If the target is in far field’, the wavefront of the electromagnetic echo originating from it is a straight line
and is orthogonal to the line connecting the target with the center of the array. In these conditions, the n-th
time-domain sample acquired on the v-th virtual antenna in a single snapshot can be expressed as (see eq. (7))

(34)

Ton = Gyc08(2mnfuTs + 1) + Wy n, (35)
= Ayexp(j2mnF,)+ Ay exp (—j2mnE,) + wy n,
(36)
forn =0, 1, ..., N — 1, where (see egs. (8), (9) and (10))
F, & f,Ts, (37
fo= (R + s (6), 38)
vo= () L, (39)
d is inter-antenna spacing of the considered ULA,
Ay 2 Sayexp (i) (40)
is a complex parameter depending on the target reflectivity a, and (see eqgs. (10) and (11))
Wy & LA, = 4% [R+ z, sin (¢)] 1)

S A rigorous definition of this condition can be found in ref. [69, Par. 2.2.4, pp. 34-36]



is the phase observed on the considered antenna (the wavelength A is defined by eq. (19)). It is important to
point out that:

a) Relevant information about the target azimuth are provided by the frequency difference

Afo1 = fi—fo (42)

or by the phase variation
Ao & LA A, (43)

where the quantity ZX represents the phase of the complex number X (it belongs to interval [—, 7)). In
fact, on the one hand, from eqs. (38)-(39) it is easily inferred that (see the definition (42))

d .
Afoq = 2’% sin(g); (44)
on the other hand, based on eqs. (39)-(41), it is easy to show that (see the definition (43))
d .
Ao =11 —tho = 47TX sin (¢), (45)
provided that the inequality J
47TX |sin (¢)| <7 (46)

holds for any ¢. The last condition is met for any ¢ € [-F, 7) if
d<\/4. (47)

b) If the received signal is noiseless, the frequency f, is known and N is large, the complex amplitude A, can
be easily estimated as®

~ 1 =
Av = NX'U(.]CU)7 (48)
where
B N—1
Xy (f) 2 ronexp(—j2mnfTy) (49)
n=0
represents the Fourier transform of the sequence {r, ,; n =0, 1, ..., N — 1}.
¢) Information about the target range is provided by the average frequency (see eq. (38))
2
c

Therefore, the estimation of the frequency of the sinusoid contained in the noisy data sequence acquired through
each virtual antenna represents a fundamental problem in target detection and estimation. It is well known that
the so called periodogram method can be employed to solve it in an approximate way [7], [70]. This method
is based on the computation of the amplitude spectrum of the zero-padded measurement sequence and on the
identification of its peak.

Based on the mathematical results and the considerations illustrated above, a simple deterministic algorithm,
consisting of the three steps listed below, can be easily derived for the detection of the target and the estimation
of its spatial coordinates (R, ¢).

1. DFT processing - In this step, the N-dimensional vector

T
Iy £ [Tv’(),’l"v’h...,’l"v’]\[,l] ) (51)
with v = 0 and 1, undergoes zero padding (ZP); this results in the Ny-dimensional vector

r(ZP 2 [T oF)" (52)

where Ny £ M, N, 0p denotes the P-dimensional (column) null vector and M, represents the selected
oversampling factor adopted in time-domain processing. Then, the vector rE;ZP) (52) feeds a Ny-th order discrete

Fourier transform (DFT); this produces the Ny-dimensional vector

Xv £ [Xv,OuXv,lu ~-~aXv,N071]T7 (53)

where ]
X1 = —X,(fi 54
1N (f1) (54)

SThis result can be easily proved by substituting eq. (36) in the right-hand side (RHS) of the definition (49).



X, (f) is defined by eq. (49) and l

fi &, (55)
NoTs
with [ = 0,1, ..., Ny — 1. Finally, the Ny-dimensional vector
Pé [P01P17"'7PN071]T3 (56)
where A2
= 2T |X0,z|2+ \X1,1|2 , (57)

with { =0, 1, ..., Ng—1, is computed; note that the quantity P; (57) represents a sort of average power spectrum
evaluated at the frequency f; (55).
2. Target detection - The problem
[ = arg  max P (58)
Ie{0,1,...,No/2}

is solved and a target is detected if the condition
P> Py (59)

is satisfied, where Py, is a proper threshold. When this occurs, the next step is executed; otherwise, the algorithm
stops.
3. Estimation of target coordinates - The estimate

Jm = (60)

of the frequency f,, (50) and the estimate

Ay=M, X, ; (61)
of the complex amplitude A, (40) (with v = 0 and 1) are computed. Then, the estimate (see eq. (50))
R=frr- (62)
2p

of the target range R and the estimate (see eq. (45))

. A -

¢ = arcsin <47Td ¢0,1> (63)
of the target azimuth 6 are evaluated; here,

Ados = 2X, 5 (Xy7) (64)

represents an estimate of A, (45) and its expression is based on egs. (48), (54) and (61).
This concludes the description of the proposed detection and estimation algorithm. It is important to point out
that:

a) The accuracy achievable in range estimation is influenced by the DFT order Ny and, consequently, for a
given N, by the oversampling factor M,.. Increasing the value of the parameter M, leads to a more refined
analysis of the spectrum X, (f) (49) and, consequently, allows to locate the spectral peak originating from the
target with better accuracy; however, this result is achieved at the price of an higher computational cost.

b) The estimate é (63) is unambiguous if the condition (47) is satisfied or if, for a given d > \/4, the azimuth
¢ belongs to the interval [—¢y,, ¢, ), Where (see eq. (46))

Om £ arcsin (4)\d> (65)

c¢) Eq. (44) has not been exploited to compute an estimate of the target azimuth. This is due to the fact that the
quality of this estimate is limited by the accuracy of frequency estimation on each antenna; such an accuracy,
in turn, is intrinsically limited by the DFT order Nj.

d) If the target reflectivity observed on the two antennas is approximately the same (i.e., if ap = a1), an
estimate of it can be computed as (see eqs. (40) and (61))

a2 My [|Xo] + |, 1]] (66)

e) The estimation of the azimuth characterizing the echo from a specific target requires at least two RX
antennas, since it is based on computation of the phase variation observed at a specific frequency on at least
two receive antennas (see eqs. (63) and (64)).



f) The maximum number of detectable targets depends on the number of virtual elements of the whole array.
It is worth noting that, unlike a phased array system, where a single waveform is transmitted, a MIMO radar
system endowed with N different TX antennas can radiate N independent signals. This leads to the conclusion
that the maximum number of targets that be can uniquely identified by a MIMO radar is Nr times larger than
that of its counterpart employing a phased array [23], if the first system employs an ULA whose virtual elements
do not overlap (like the ULAs shown in Fig. 4).

The estimation accuracy achieved by the considered radar system can be improved by increasing the size of
its ULA, i.e. the overall number of its antennas, so that a larger number of virtual channels becomes available.
For instance, if the ULA shown in Fig. 4-a) is replaced by the one represented in Fig. 4-b) (and characterized
by Ny =1 and Ny = 4), Ny = 4 virtual channels become available, i.e. the overall number of virtual antennas
is doubled with respect to the previous case. Note that this results not only in an increase of the maximum
number of detectable targets, but also in an improvement of the angular resolution A¢, defined as the minimum
angular separation below which the DOAs of two distinct targets cannot be separated. More specifically, if an
ULA is used and the bore-sight direction is considered, we have that (e.g., see [6, Par. 4, eq. (51)])

A
2d (Ny —1)cos(¢)
It is also worth mentioning that the algorithm illustrated above for a couple of virtual channels can be easily

extended to the case of an ULA providing Ny virtual channels. The only relevant modification concerns step
3., since the Ny -dimensional vector

(67)

Ag =

“ N “ “ T
A= [AO,Al,...,ANV_l : (68)

where A, is still expressed by eq. (61) for any v, becomes available and, consequently, (Ny —1) phase variations,
referring to the (Ny — 1) distinct couples of adjacent virtual antennas can be evaluated. If we assume that the
variations of the target reflectivity over the whole virtual array are negligible and that the SNR on each virtual
antenna is high, such variations are approximately constant, being all expressed by the RHS of eq. (45). This
means that a phase modulation, characterized by the normalised spatial frequency

F= 2% sin (¢) , (69)

is observed in the sequence {flv; v=0, 1, ..., Ny —1}. An estimate of the parameter F' can be computed by
exploiting, once again, the periodogram method. In practice, this requires executing the following three steps:

1. DFT processing - The vector A is zero padded by appending to it a null vector of size (M 4 — 1)Ny,
where M 4 represents the oversamplmg factor adopted in spatial processing; this produces the No-dimensional
vector A 2p, where Ny £ M4 Ny . The vector A zp feeds a Ny-th order DFT, generating the Ny-dimensional
vector

§ £ [50, 81,0 SNy /20 S Ny /2415 S— No /242 -+ 525 s,l]T (70)
2. Azimuth estimation - After solving the problem
p = arg max lsp] (71)
pe{—No/24+1,—No/2+2,...,No /2}
the estimate (see eq. (63)) R
$ = arcsin (2]@ )

of the target azimuth ¢ is evaluated. Note that the angular resolution provided by the DFT computed in step 1.
improves as N, increases.

The deterministic algorithm and its extension illustrated above have the following relevant properties: a) their
derivation is based on a well defined mathematical model originating from our knowledge of the propagation
of electromagnetic waves and of the radar system (and, in particular, of the geometry of its array and of the
processing it accomplishes); b) if they fail detecting a given target, or generate inaccurate estimates of its
range and/or azimuth, the causes of such events can be identified; c) being based on the DFT and other simple
formulas, they are computational efficient.

An alternative to the approach to algorithm design illustrated above is offered by ML methods [12]. In fact, if
such methods are employed, the inner structure of the considered radar system and the physical laws on which
its operation is based can be ignored, since the required information are automatically extracted by an algorithm
able to learn the regularities characterizing the set of observed data. Let us reconsider now the detection and
estimation problem described above from this new perspective and show how a solution based on ML methods
can be devised. To this aim, we take into consideration again a FMCW radar system equipped with the antenna



array shown in Fig. 2-a) and assume that it is employed to perform a measurement campaign. In this campaign,
Ny independent trials are accomplished in the presence of a single point target or in the absence of it; in each
trial, the couple [rg, r1] of noisy vectors (see eq. (51)) is acquired and stored in a database together with the
target range and azimuth (when the target is present). In the following, [r,0,14,1] and

ty 2 [dg, Ry, bg]" (73)

denote the value of the couple [rp, rq] and the associated label acquired in the ¢-th trial (with ¢ = 0, 1, ...
, Ny —1); here, dg = —1 (1) if the target is absent (present), and R, and ¢, represent the target range and
azimuth, respectively, in the same trial if d, = 1 (if d; = —1, the values of both R, and ¢, are irrelevant). In
this case, the ML approach consists in processing the dataset

D; = {[rg0, rga)s t3¢=0,1,..., N, — 1} (74)

to learn how to detect the presence of a target on the basis of a new couple [rg, r1] and, if a target is detected,
how to estimate its position. The accuracy of the algorithm resulting from the learning phase (i.e., from training)
depends not only on the adopted ML method, but also on the size of D; (i.e., on N;). Generally speaking, the
use of ML methods requires the availability of a large set of measurements, i.e. a large IV; (say, at least, a
few thousands). Unluckily, any ML method extracting the required knowledge directly from D; (74) has to
process high dimensional vectors if the size N of the vectors ry and r;y is large. Actually, the dimensionality
of the given problem can be easily reduced by exploiting our prior knowledge. In fact, in developing our
deterministic algorithm, we have learnt that essential information for target detection and estimation is provided
by the complex couple [Xo,z”’ Xl,i] (see eqs. (59)-(64)), where [is expressed by eq. (58). These considerations
suggest to:

a) Pre-process the couple (r, o, ry1) in order to generate the vector
T
X, 2 [x.x{"] (75)

where XéQ) and X fq) are the values taken on by the quantities X, ; and X ;, respectively, in the g-th trial

(with g =0, 1, ..., Ny — 1); X(()q) and X YI) can be considered as highly informative data extracted from
the received signal, i.e., briefly, as the features available in the considered problem.
b) Replace the set D; (74) with the new set

D2 {X, ty;¢=0,1,..., N, — 1}, (76)

that consists of low dimensional vectors only, and use it to train the considered ML method; when this
occurs, the last set is called training set.

Once training is over, the ML algorithm resulting from it is able to infer the unknown value of t, (73) for any
new vector X, (75) of noisy data (with ¢ > Ny —1); in other words, it is able to predict: a) dq; b) R, and ¢, if a
target is detected. It is important to point out that any ML algorithm predicting d,, solves a binary classification
problem, since it assigns a new observation to one of two categories of noisy data, one associated with the
presence of a target, the other one with its absence; in other words, the algorithm is exploited to recognise a
specific pattern in the noisy observations. If the considered ML algorithm is also able to predict the value of
the couple (R, ¢,) (i.e., of two continuous variables), it solves a regression problem too. In the considered
radar system, different ML algorithms can be employed to learn classification and regression rules from the
training set D (76). Moreover, all such algorithms can be considered as specific instances of the so called
supervised learning, as shown in the following paragraph. Generally speaking, supervised learning techniques
can be employed when:

1) A training set

D= {(ry,ty):¢=0,1,...., Ny — 1}, (77)

collecting N;, D,-dimensional real observations (also called covariates, or domain points, or explanatory
variables) {rs;q =0, 1, ..., Ny — 1}, with
T
rq = [74.0:Tq,1, -+ Tq, D 1] (78)

and the associated D;-dimensional real labels (also called dependent variables or responses) {t4; ¢ = 0,
1, ..., Ny — 1}, with
A T
ty = [tq.0.tq.1, - tqDi=1] , (79)

is available.
2) There exists some mechanism relating the variable r, to the variable t, for any gq.



The last point is a fundamental one, since it does not make any sense to develop rules applicable to unseen
examples in the absence of some assumptions about the mechanism underlying data generation; the set of these
assumptions is known as the inductive bias.

B. Supervised learning

Supervised learning is a branch of ML frequently employed in the field of colocated MIMO radars for solving
classification and regression problems. In this paragraph, we discuss some basic methods for supervised learning
and analyse the approaches adopted in their derivation. Specific attention is paid to some classification algorithms
that can be easily employed for target detection in radar systems.

1) Formulation of the supervised learning problem: Generally speaking, supervised learning concerns the
identification of the conditional probability density function (pdf) f(t|r) (also called predictive distribution)
minimizing the average generalization loss

Ly(®) 2 Epomy {£(6,E(x))}; (80)

here, E(x) {-} denotes the expectation evaluated with respect to the joint f(x), t(r) is a prediction of the label
t computed on the basis of the observation r and £ (-, -) is a given cost function. If the label of each observation
is one-dimensional (1D) and is real, the cost functions

b (1) = (t —1)? (81)
and Lie R
~ ift=t

b <t’t> o { 0 elsewhere (82)

are often employed for regression and binary classification, respectively. It is well known that, if the posterior
pdf f(t|r) is known, the minimum value of the loss L, (t) (80) is achieved by selecting the optimal prediction
(e.g., see [12, Par. III.C, eq. (4)])

t(r) = arg rrltanf(t|r) [E (t,f) |r} , (83)

whatever cost function is selected.

Supervised learning methods are employed when the conditioned pdf f(t|r) (or the joint pdf f(t,r)) is
unknown, but a training set D, collecting N; distinct data generated on the basis of it and structured according
to eq. (76), is available. The objective of these methods is to generate a predictor, denoted p(r), exclusively
based on the set D and whose performance, in terms of generalization loss, is as close as possible to that of the
optimal predictor #(r) (83); this means that the loss evaluated for the prediction of the label associated with a
new observation should be as small as possible. The derivation of the predictor ¢p(r) can be formulated as an
optimization problem, whose form depends on the specific assumptions we make about the model that is being
learnt. In fact, a frequentist approach or a Bayesian approach can be adopted, as illustrated in the following
two paragraphs.

2) The frequentist approach to supervised learning: The frequentist approach relies on the assumption that
all the points of the set D (77) are generated independently on the basis of the same unknown joint pdf f(r,t)
, that is

(rqﬂtq) ~ f (I‘,t) =f (t|I‘) f (I‘), (84)

with ¢ = 0,1,..., N; — 1. Under this assumption, two possible approaches can be adopted to derive the
above mentioned predictor ¢p(r), namely: a) separate learning and inference; b) direct inference via empirical
risk minimization (ERM). The first approach consists in learning an approximation, denoted fp(t|r), of the
conditional pdf f(t|r), and in using the former pdf in place of the latter one to derive the expression of the
predictor £p(r) on the basis of eq. (83). The second approach, instead, aims at directly learning #5(r) by solving
the problem

ip (r) = argmin Lp (£ (r)) , (85)
t
where
N B e .
Lp (t(r) £ A D (g, E(ry)) (86)
q=0

is the so called empirical loss. In both cases, the optimization of a set of parameters characterizing the model
selected for the conditional pdf fp(t|r) or that chosen for the predictor ¢p(r) is required. However, the first
approach is more flexible than the second one since, in principle, the approximate pdf fp(t|r) it generates can
be exploited to derive the predictor #p(r) for any cost function; on the contrary, the solution of the problem



(85) holds for a specific cost function only. Moreover, it should be kept in mind that, if the first approach is
adopted, two options are available. The first option consists in learning a discriminative probabilistic model,
i.e. in learning directly an approximation of the posterior f(t|r). On the contrary, the second option consists in
learning a generative probabilistic model, i.e. in learning the joint pdf f(t,r) and, then, in deriving an estimate
of the posterior f(t|r) from it.

Let us see now how the general principles illustrated above can be employed to solve a specific regression
problem concerning the first FMCW radar system described in the previous paragraph and equipped with the
array shown in Fig. 2-a). In this case, we assume: a) the presence of a single point target placed at a fixed and
known range R; b) the availability of the synthetically generated dataset’ (see eq. (77))

D2 {r, ty;q=0,1,....,N, — 1}, (87)
where®
ty = g, (88)
r = Ay (89)
is an estimate of the phase difference
A% £ 1/1(;,1 - 7/}(1,0 (90)

and 14,0 (1g,1) is the phase of the sinusoidal oscillation associated with the considered target and observed on
the first (second) RX antenna for any ¢ (see eqs. (35)-(41) and (45)). Moreover, in generating our dataset, the
following choices have been made:

a) the distance d between adjacent virtual channels is equal to \/4;

b) the target range R is equal to 3.0 m, whereas the target azimuth ¢, is uniformly distributed over the
interval [¢,,, ¢np] = [—60° 60°], respectively, for any ¢ (this interval is comparable to the horizontal FOV of
a real radar system);

c¢) the amplitude a(UQ) characterizing the sinusoid observed on the v-th virtual antenna is randomly selected in
the interval [0.4, 1.2] V for any ¢ (see eq. (7));

d) the random variable aq(fn is independent of a&p ) for any u #* v and/or p # q;

e) the observation 7, (89) is generated on the basis of egs. (64) and (75), i.e. as Ai[),] = éXéq) (X fq))* for
any q.

Moreover, the following choices have been made for the parameters of the radar system:

a) the generated frequency modulated waveform is characterized by p = 7.8125 - 10'2 Hz s—!, T = 256 us
and T'r = 64 us;

b) the sampling period employed at the receive side is 75 = 0.25 pus and N = 512 time-domain samples are
acquired from each of the two RX antennas;

c) the standard deviation of the noise affecting these samples is o, = V2 V (see eq. (7));

d) the oversampling factor M, = 4 and the threshold P, = 0.5 V2Hz ! are employed by the detection
algorithm based on eqs. (58)-(59).

In this case, our objective is to derive a predictor of the the azimuth ¢, associated with the new observation
Az[}q for any ¢ > N; — 1. To solve this problem, we adopt the discriminative probabilistic model

f(t|7‘q,W) :N(tﬂ(rqaw)vﬁil)a 91)
where
M
pirgw) 2> wie;(ry) =w @ (ry), 92)
§j=0
M is the order of the model, .
w £ [wg, w1, ..., war) (93)

is a vector collecting M + 1 distinct real parameters (called weights),

T
‘P(rq) £ [S"O(rq)7<Pl(Tq)v~-~7WM(Tq)] %94)
is the so called feature vector, {¢;(x); j =0, 1, ..., M} are M + 1 non linear functions and 3! is the variance
of the noise affecting the labels. In the following, we assume that
pj(x) =2’ (95)

"This dataset and all the other synthetic datasets processed in our work have been generated by resorting to various functions available
in the MATLAB and/or Python environment.
8Note that, in this case, dq =1 and Ry = R in eq. (73), so that the label t4 turns into a scalar.



for j =0, 1, ..., M; consequently, eq. (92) becomes
M
p(rg, w) £ wo + > w;r). (96)
j=1

It is worth noting that:

a) Adopting the probabilistic model (91) with the mean p(r,, w) (96) is tantamount to postulating a polynomial
dependence of the label ¢, on the corresponding observation A1/3q.

b) The selected model depends on its order M and on the (M + 2)-dimensional parameter vector 6 =
w?,8]".

¢) The parameter M defines the number of degrees of freedom available in the model and, consequently,
determines its bias.

As far as the last point is concerned, it is important to mention that, if M is too small, the resulting predictor
may underfit the observations, since it is unable to accurately represent this dependence on their labels. On the
contrary, if M is too large, the model is able to account for the observations of the training set, but it may
generate inaccurate predictions; in other words, it memorizes the training set, but it is unable to generalise what
has learnt to new examples. The last problem is known as overfitting. For instance, in the considered problem,
good results are obtained if M = 3 is selected.

If the ERM approach is adopted to adjust the parameters of the probabilistic model (91) (and, in particular,
the weight vector w (93)) in an optimal fashion, the obtained result depends on the selected cost function and
cannot be always put in a closed form. However, if the cost function ¢5(¢, %) (81) is chosen and noise is neglected
(i.e., B~ is assumed to be very small), a closed form expression can be derived for w for any M. In fact,
under these assumptions, it can be proved that:

1) The optimal predictor tp (r) (85) becomes (e.g., see [71, Sect. 3.1.1, eq. (3.20)])

tp(re) = p(re, W), ©7)
where
W =argmin Lp (W), (98)
w denotes a trial value of w and
1 Ny—1
- L\ 2
Lo (W) & & ;) (tg — 1 (rq, W)) (99)

is the empirical loss (see eq. (86)).
2) The solution of the minimization problem appearing in the RHS of eq. (98) is

W= (®5®p) " ®] tp, (100)
where
®p = [@(r0), (1), - (TN, 1)) (1on)
is a Ny x (M + 1) matrix and
tp £ [to, t1, -~~,tN,,—1]T- (102)

Given the weight vector w (100), the estimate
Ne—1

NS .
ey X (ty = WP (rq))?, (103)

q=0

of the noise variance 37! can be easily evaluated.

Training the algorithm illustrated above consists in computing the weight vector w (100) on the basis of the
available training set D (87). Once training has been carried out, the generalization capability of the resulting
algorithm can be assessed by evaluating the empirical loss (86) on the basis of a different dataset, called fest set
D, and collecting N; observations generated in the same way as the ones of D, but in an independent fashion.

In our computer simulations, the training set D (87) and the test set D;s consist of N; = 200 and N, =25
observations, respectively; the points of these sets are represented in Figs. 5 and 6, respectively. First, the weight
vector w (100) and the estimate B‘l (103) of the noise variance have been computed on the basis of D. Then,
the accuracy of the resulting regression algorithm has been assessed on D;,. The predictions associated with
the points of D, are represented in Fig. 6; in this figure, two (red) straight lines, generated on the basis of the
linear equations

t=p(r, W)+ 5712 (104)



are also shown to highlight the meaning of the noise standard deviation 2/3"1/ 2. These results lead to the

conclusion that, in the considered scenario, the developed regression method is able to predict the azimuth of a
target with good accuracy. This is confirmed by the fact that the empirical loss computed over the set D, (i.e.,
the generalization loss) is close to the empirical loss Lp (W) evaluated over the set D (see eq. (86)); in fact,
the root mean square error’ (RMSE) evaluated over D is equal to'® 1.7°, whereas that computed over D, is
equal to 1.3°.

(rad)

-2 -1 0 1 2
r, (rad)

Figure 5: Representation of the points of the synthetically generated training set D (87); Ny = 200 is assumed.
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Figure 6: Representation of the points of the synthetically generated test set Dys (blue circles) and of the
corresponding predictions (green triangles) evaluated on the basis of eq. (97); Ny = 25 is assumed. Two straight
lines, expressed by eq. (104), are also shown.

In general, if the discriminative probabilistic model adopted to solve a specific regression problem is repre-
sented by the parametric pdf f(t|r,0), a closed form expression for the optimal value

0= arg méin Lp (é) , (105)

9This parameter represents the square root of the empirical loss.
10The RMSE computed over D is given by B=1/2,
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of the Dy-dimensional parameter vector @ is unavailable in most cases. When this occurs, iterative optimization
techniques, like the stochastic gradient descent (SGD) method, can be employed to estimate 8 . The application
of the SGD to the considered problem leads easily to the recursive equation

Y _ g 4 N IRAY. (tq,f (rq, é)) |55 (106)
qeS
with ¢ = 0, 1, ..., Ng — 1; here, é(i) denotes estimate of @ computed in the i-th recursion, S is a set of Ng

integers randomly selected in the set {0, 1, ..., Ny — 1} (with Ng < Ny), 7(1‘) is the learning rate adopted in
the i-th iteration and Vx f(x) denotes the gradient of the function f(x). It can be proved that, if the learning
rate schedule (i.e., the sequence {7(?}) satisfies the so called Robbins-Monro conditions, the SGD converges

to the optimal solution, provided that the function Lp(é) is strictly convex. The initial value 9(0) can be either
randomly selected or it can be inherited from the training procedure accomplished another model; the last solution
represents a specific application of the so called fransfer learning technique (see Paragraph VII-A). Iterations
are stopped when negligible variations are observed in the estimates generated by consecutive recursions or an
upper limit set on the overall number of recursions is reached. Once the final estimate of 6 has been computed
on the basis of the available training set, the generalization capability of the resulting algorithm can be assessed
by evaluating the empirical loss (86) on a given test set Dy,.

Finally, it is worth mentioning that the selection of the parameter Dy (i.e., of the model complexity) plays a
fundamental role in the considered problem. In fact, if its value is too small (too large), the resulting regression
method can suffer from underfitting (overfitting). The overfitting phenomenon is usually prevented by including
a regularization term in the training of the adopted model. For instance, if the optimization problem (105) is
considered, this result can be achieved by adopting the cost function

Lp (é) n Ni : (107)

t

d

where A is a real positive weight influencing the predictive capability of the resulting solution and ||x|| is the
Euclidean norm of the vector x.

3) The Bayesian approach to supervised learning: The frequentist approach illustrated in the previous
paragraph leads to the identification of a specific probabilistic model through the estimation of its parameter
vector 0. The Bayesian approach, instead, consists in formulating our uncertainty about the parameters of the
adopted probabilistic model in statistical terms, i.e. in treating its parameter vector 8 as a random vector. In this
paragraph, we show how the specific regression problem analysed in the previous paragraph can be tackled from
this perspective; for this reason, we assume that each observation and its label are 1D (i.e., Dy = D, = 1), so that
all the labels of the training set D (77) and the associated observations can be collected in the N;-dimensional
vectors tp (102) and

rp 2 [ro, P11y ey TN 1) (108)

respectively. If the discriminative probabilistic model (91) introduced in the previous paragraph is exploited, a
Bayesian method based on it can be developed as follows. To begin, the joint pdf

f (t7 tD7 W|7"q, Irp, ) = f (tDa W|I"D, a, 5) f (t|’f’q, W) (109)
is considered in place of the pdf f(t|ry, w) (91); here, 37! is the variance of the noise affecting the labels,
f(tp,wlrp, a, B) = f (tplrp, w, B) f (wla) (110)

is the joint probability of the (M +1)-dimensional weight vector w (93) and the label vector tp (102) conditioned
on rp (108), on the hyperparameter o and on the parameter (3, and f(w|«) is the prior pdf of w. The Gaussian
model

fwla) = N (w;0,a 'Ty41) (111)
(M+1)/2
= (5) el

is employed for the second pdf appearing in the RHS of eq. (110) (e.g., see [71, Sect. 1.2.4, p. 30, eq. (1.65)]
); here, Iy is the N x N unit matrix and « represents the precision of the last pdf. The first pdf appearing in
the RHS of eq. (110), instead, represents a likelihood function expressing how likely the response tp are, given
rp, w and f3; this function can be factored as

N¢—1

f(tplrp,w,8) = [ £ (trlre,w, 8), (112)
k=0
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and, consequently, can be expressed in terms of the probabilistic model (91).
Given the joint pdf f(t,tp,w,|rq,rp) (109), the predictive distribution f(t|rq,rp,tp) can be evaluated as

5 /f (t,tp, w|rg, rp) dw, (113)

tlrg,rp,tp) =
fthrg e, tp) = S

where
ftplrp,a, B) = /f(tD,W|rD70475) dw
— [ £(tolep,w.5) f (wla) dw

(114)

is a marginal likelihood. The expression (113) can be also reformulated as follows. Substituting the RHS of eq.
(110) in that of eq. (109) and the resulting factorization in the RHS of eq. (113) yields

F (trg,p, ) / Hrlen e 77 el

tD|I'D>04 B)
[ (t|rq, w) dw. (115)
fhem. sinee £ (tplrp, w,8) f (wla)
tplrp, w, wla)
f(tD|rD;Oé,5) - erpat'Daa76>7 (116)
eq. (115) can be rewritten as
£ (trgoro.t0) = [ (Wlep, b, )  (try w) dw. 117

The last equation shows how the predictive distribution is influenced by our uncertainty about the weight vector;
such an uncertainty is expressed by the pdf f(w|rp,tp,a, ().

Let us apply now the mathematical results derived above to the considered regression problem. If the pdf
f(w|rp,tp,a, B) is assumed to be Gaussian and, in particular,

f(wlrp, tp,a, B) = N(wlup, o), (118)
where (e.g., see [71, Sec. 3.3, p. 153, eqgs. (3.53)-(3.54)])
pp = Bop Pptop, (119)
-1
0 = (alyy1 + B2LPD) (120)
and the N; x (M + 1) matrix ®p is given by eq. (101), the expression
f(t[rg,rp,tp) = N(t; M(Tq)702(rq)) (121)
can be derived from eq. (117) (e.g., see [71, Sec. 1.2.4, p. 31, eq. (1.69)] for a proof of this result); here,
Ny—1
pirg) =Be(ry)"S Z ) th, (122)
o’ (7q) =g +99(Tq) S (rq), (123)
¢(ry) is the (M + 1)-dimensional vector (94) and
Ny—1
S'Ealya+B Y en) @)’ (124)
k=0

is an (M + 1) x (M + 1) matrix. It is important to point out that the variance o2(r;) (123) of the predictive
distribution f (t|rq, rp,tp) (121) (and, consequently, the accuracy of the prediction), unlike that of the Gaussian
model f(t|ry, w) (91), is given by the sum of two terms; the first term originates from the noise affecting the
labels, whereas the second one from our uncertainty about the parameter vector w. Moreover, the second term
is influenced by the considered observation (i.e., it depends on 7,); in practice, smaller values of the standard
deviation o(r,) are usually obtained when 7, is close to the observations of the training set.

The accuracy of the new regression algorithm described above has been assessed on the test set shown in
Fig. 6 after training it on the set illustrated in Fig. 5; moreover, o = 0.05 has been selected in this case. The
prediction yi(rq) evaluated on the basis of eq. (122) for each observation of the test set and the corresponding
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standard deviation o (1) (i.e., the square roof of the RHS of eq. (123)) are represented in Fig. 7. The RMSE
evaluated over the test set is equal to 1.4° and is approximately equal to the one computed over the training set.
Note that this value is comparable to the ones computed for the predictor described in the previous paragraph
(and based on a frequentist approach). For this reason, in this case, the Bayesian approach does not offer any
advantage with respect to the frequentist one.
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Figure 7: Representation of the regression technique based on the probabilistic model (121). The blue circles
represent the true domain points, whereas the green triangles the corresponding predictions; the red curves are
generated by interpolating the points generated on the basis of the two equations t, = u(ry) £ o(r,), with
Tq € Dis.

4) Specific methods for binary classification: In the remaining part of this section we focus on a specific su-
pervised problem, namely binary classification, and develop two classification methods, based on discriminative
deterministic models, to solve it. Moreover, we 