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Abstract

Radars are expected to become the main sensors in various civilian applications, ranging from health-care monitoring to

autonomous driving. Their success is mainly due to the availability of both low cost integrated devices, equipped with compact

antenna arrays, and computationally efficient signal processing techniques. An increasingly important role in the field of radar

signal processing is played by machine learning and deep learning techniques. Their use has been first taken into consideration

in human gesture and motion recognition, and in various healthcare applications. More recently, their exploitation in object

detection and localization has been also investigated. The research work accomplished in these areas has raised various technical

problems that need to be carefully addressed before adopting the above mentioned techniques in real world radar systems. In

this manuscript, a comprehensive overview of the machine learning and deep learning techniques currently being considered

for their use in radar systems is provided. Moreover, some relevant open problems and current trends in this research area are

analysed. Finally, various numerical results, based on both synthetically generated and experimental datasets, and referring to

two different applications are illustrated. These allow readers to assess the efficacy of specific methods and to compare them in

terms of accuracy and computational effort.
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Abstract

Radars are expected to become the main sensors in various civilian applications, ranging from health-care
monitoring to autonomous driving. Their success is mainly due to the availability of both low cost integrated
devices, equipped with compact antenna arrays, and computationally efficient signal processing techniques. An
increasingly important role in the field of radar signal processing is played by machine learning and deep learning
techniques. Their use has been first taken into consideration in human gesture and motion recognition, and in
various healthcare applications. More recently, their exploitation in object detection and localization has been
also investigated. The research work accomplished in these areas has raised various technical problems that need
to be carefully addressed before adopting the above mentioned techniques in real world radar systems. In this
manuscript, a comprehensive overview of the machine learning and deep learning techniques currently being
considered for their use in radar systems is provided. Moreover, some relevant open problems and current trends
in this research area are analysed. Finally, various numerical results, based on both synthetically generated and
experimental datasets, and referring to two different applications are illustrated. These allow readers to assess the
efficacy of specific methods and to compare them in terms of accuracy and computational effort.

Index Terms

Radar, multiple-input multiple-output, machine learning, beamforming, micro-Doppler, range-azimuth esti-
mation.

I. INTRODUCTION

RECENT advances in the production of monolithic microwave integrated circuits (MMIC) have paved the
way for the implementation of low cost and compact colocated multiple-input multiple-output (MIMO)

radar devices. These devices, being equipped with transmit and receive antenna arrays, are able to detect multiple
targets, and estimate their spatial coordinates and their velocity. Moreover, unlike cameras and lidars, they can
operate in adverse weather and lighting conditions, guaranteeing the privacy of people that act in the surrounding
propagation environment. For this reason, in recent times, substantial research efforts have been devoted to the
development of new MIMO radar systems and to the assessment of their accuracy in a number of applications.

It is well known that the full exploitation of the potentialities offered by modern colocated MIMO radar devices
requires the use of proper detection and estimation methods. In the last two decades, significant advances have
been made in the development of deterministic methods accomplishing these tasks. These are mainly based on a
maximum likelihood approach [1], [2] or on sub-space methods, like the MUltiple SIgnal Classification (MUSIC)
technique [3]. Moreover, they are model-based, since they require the full knowledge of the employed radar
device and rely on a parametric description of the propagation environment; note that, in such a description,
targets are usually represented as points reflecting electromagnetic energy. An overview of deterministic methods
is provided by refs. [4], [5], whereas some interesting applications of them can be found in refs. [6]–[8]; relevant
examples of these applications include the detection and the estimation of the position of cars or pedestrians in
a street [9], as well as the analysis of human vital signs [10]. In many cases, these methods allow to achieve
good estimation accuracy at the price of an acceptable computational effort. Unluckily, in a number of recent
applications, MIMO radars operate in extremely complex, highly dynamic and time varying scenarios, affected
by multipath propagation, clutter and interference, and in the presence of extended targets. In such conditions,
deterministic algorithms may fail, since they are unable to achieve acceptable estimation accuracy and are prone
to generate ghost targets [11]. When this occurs, machine learning (ML) and deep learning (DL) techniques
represent an appealing alternative or the only viable technical solution. A relevant example of this class of
techniques is represented by neural networks (NNs) [12], [13]. These networks can automatically learn specific
data patterns and extract useful information directly from raw data, even in the presence of strong interference.
In fact, they can be trained to recognise interference and remove it, so making the recovery of useful signal
components possible. Unfortunately, the application of NNs and related methods to MIMO radars is challenging,
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because, on the one hand, the problems tackled in this field are often substantially different from those to which
such methods have been applied for a number of years (e.g., processing of RGB images in computer vision);
on the other hand, the large radar dataset required for the proper training of a NN may be unavailable. Another
critical issue emerging from the exploitation of ML and DL methods in real world applications is represented by
the fact that a trained machine is, by and large, a black box mapping inputs to outputs; for this reason, generally
speaking, it cannot be inferred why a given output has been produced on the basis of its input data. This explains
why, in various radar applications, a model-based approach could be preferred. Despite this relevant limitation, it
is widely accepted that the use of ML and DL methods in colocated MIMO radars will allow to solve a number
of real world problems. For instance, recent work has evidenced that they can be successfully exploited in the
classification of human activities and gestures, in the detection of human falls [14] and in the classification of
dynamic targets in dense and dynamic urban scenarios [15]. This manuscript aims at providing an overview
of the ML and DL methods employed in all the above mentioned applications, analysing their pros and cons,
discussing the main lessons that have been learnt from their use and illustrating some trends in this research
area. As far as we know, in the technical literature, the few manuscripts offering related contributions refer to
specific applications, namely human-motion recognition [14] and assisted living [10]. The scope of this work,
instead, is offering a wider perspective on this research area. Furthermore, our description of learning methods
is interspersed with various numerical examples on synthetically generated dataset and an entire section is
devoted to the analysis of various numerical results generated the measurements acquired through a commercial
colocated MIMO radar.

The remaining part of this manuscript is organized as follows. In Section II, essential information about the
history of colocated MIMO radars, their architecture and some well known deterministic detection/estimation
algorithms that can be employed in these radar systems are provided. The most relevant ML and DL methods
currently being investigated for their use in colocated MIMO radars are described in Sections III and IV,
respectively; a brief comparison among such methods is illustrated in Section V. An overview of the specific
applications of these techniques to colocated MIMO radars is illustrated in Section VI, where we focus on
human-motion and human-gesture classification, healthcare monitoring, and target detection and localization
in automotive scenarios. Some trends emerging in the current research activities about the application of DL
techniques to colocated MIMO radars are illustrated in Section VII. Various ML and DL methods are compared,
in terms of accuracy and computational effort, in Section VIII, where their use in human activity classification,
and in the detection and position estimation of a moving target is illustrated. Finally, some conclusions are
offered in Section IX. Multiple acronyms are employed in our work; their meaning is illustrated in Table I.

II. COLOCATED MIMO RADARS: BASIC PRINCIPLES, HISTORY, ARCHITECTURE AND DETERMINISTIC
ALGORITHMS

This section provides an introduction to the world of colocated MIMO radar systems. After illustrating some
basic information about their characteristics and outlining their evolution in the last two decades, the architecture
of a colocated MIMO radar system is described. Finally, the received signal model is briefly analyses, and
essential information about various detection and estimation algorithms that can be employed in colocated radar
systems is provided.

A. Basic principles and classification

The initial excitement about the use of antenna arrays at both transmit and receive sides (i.e., briefly, about
MIMO) in wireless systems has been sparked by the pioneering work of J. H. Winters [16], G. J. Foschini [17],
Foschini and M. J. Gans [18], and E. Telatar [19]; these researchers predicted huge capacity gains in wireless
communications affected by multipath fading [20]. A few years later, the exploitation of antenna arrays has been
also investigated in the radar field for the potential improvements it could provide in terms of signal-to-noise
ratio (SNR), resolution and detection capability. In fact, in principle, the availability of multiple transmit/receive
antennas allows to (e.g., see [21]–[23])

1) increase the SNR characterizing target echoes and make it more stable;
2) implement spatial filtering (i.e., beamforming) for directional signal transmission/reception and, conse-

quently, achieve a large field of view (FOV);
3) increase the overall number of degrees of freedom and, consequently, the maximum number of targets that

can be detected at a given range;
4) improve the angular resolution with respect to traditional radar systems;
5) exploit spatial diversity, so that uncorrelated aspects of a given target can be perceived.
Generally speaking, MIMO radar systems can be divided in statistical MIMO radars [24], [25] and colocated

MIMO radars [26], [23] on the basis of the distance between their transmit and receive arrays. In fact, the
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ABF Analog Beamforming LNA Low Noise Amplifier

ADC Analog to Digital Converter LPC Linear Predictive Coding

AE Auto-Encoder LRR Long Range Radar

AI Artificial Intelligence LSTM Long Short Term Memory

AWGN Additive White Gaussian Noise MIMO Multiple Input Multiple Output

Bi Bipolar ML Machine Learning

BN Batch Normalization MLP Multi-Layer Perceptron

BPTT Back-Propagation Through Time MMIC Monolithic Microwave Integrated Circuit

CAE Convolutional Auto-Encoder MRR Medium Range Radar

CFAR Constant False Alarm Rate MUSIC Multiple Signal Classification

CMOS Complementary Metal Oxide Semiconductor MUSIC Multiple Signal Classification

CNN Convolutional Neural Network NN Neural Network

CS Compressed Sensing OFDM Orthogonal Frequency Division Multiplexing

CVD Cadence Velocity Diagram PCA Principal Component Analysis

DBF Digital Beamforming PMCW Phase Modulated Continuous Wave

DBSCAN Density Based Spatial Clustering of Applications with Noise R Region

DCNN Deep Convolutional Neural Network RADAR Radio Detection And Ranging

DCT Discrete Cosine Transform RCS Radar Cross Section

DFT Discrete Fourier Transform RF Radio Frequency

DL Deep Learning RMSE Root Mean Square Error

DOA Direction of Arrival RNN Recursive Neural Network

ERM Empirical Risk Minimization ROI Region of Interest

ESPRIT Estimation Signal Parameters Rotational Invariance Technique RX Receive

FC Fully Connected SAMME Stagewise Additive Modeling Multi-class Exponential

FCN Fully Convolutional Network SFCW Stepped Frequency Continuous Wave

FDM Frequency Division Multiplexing SGD Stochastic Gradient Descent

FM Frequency Modulation SiGe Silicon-Germanium

FMCW Frequency Modulated Continuous Wave SNR Signal-to-Noise Ratio

FOV Field of View SRR Short Range Radar

FPGA Field Programmable Gate Array SVM Support Vector Machine

FFT Fast Fourier Transform TDM Time Division Multiplexing

GAN Generative Adversarial Network TOF Time Of Flight

GPU Graphic Processing Unit TX Transmit

HCI Human Computer Interface ULA Uniform Linear Array

HGR Human Gesture Recognition UWB Ultra-wideband

HMM Hidden Markov Model VCO Voltage Controlled Oscillator

IAA Iterative Adaptive Approach XAI eXplainable Artificial Intelligence

IOU Intersection Over Union YOLO You Look Only Once

KNN K - Nearest Neighbour

Table I: Table of acronyms.

transmit and receive antennas of the radar systems belonging to the first class are widely separated; on the
contrary, in radar systems of the second class, transmit antennas are close to the receive ones and, in particular,
are usually placed on the same shield. Colocated MIMO radars can be further classified as: a) mono-static radars,
where transmit and receive arrays share their antenna elements; b) pseudo-bistatic radars, where transmit and
receive arrays are made of distinct antenna elements, placed at different positions. It is important to keep in
mind that, in statistical MIMO radars, spatial diversity originates from the fact that distinct receive antennas,
being well separated, can observe uncorrelated parts of the same target. In colocated MIMO radars, instead,
a large spatial aperture is achieved by radiating orthogonal waveforms. Based on the way these waveforms
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are generated, colocated MIMO radars can be divided in: a) time division multiplexing (TDM) radars [27], b)
frequency division multiplexing (FDM) radars [28] and c) orthogonal frequency division multiplexing (OFDM)
radars [29]. On the one hand, in TDM (FDM) radars, orthogonality is achieved by transmitting through distinct
antennas over disjoint time (frequency) intervals; on the other hand, in OFDM radars, any transmit antenna can
be used to radiate multiple orthogonal waveforms at the same time. A further classification of colocated MIMO
radars, commonly adopted in the automotive field, is based on the maximum measurable range. According to
this classification, these systems are divided in (see Table II, where, for each type of radar, the achievable range,
the transmission frequency and the typical applications are listed):

1) Short range radars (SRRs) - These are able to measure a maximum range of about 30 m and offer the
highest angular resolution.

2) Medium range radars (MRRs) - These are characterized by a maximum range of about 100 m, offer a
quite large azimuthal FOV and achieve a reasonable angular resolution.

3) Long range radars (LRRs) - These are characterized by the largest maximum range (250 m) and the
thinnest FOV.

In the last paragraph of this section, the architecture of a pseudo-bistatic colocated MIMO radar operating in
TDM mode is described in some detail. Our interest in this specific architecture is motivated by its wide use in
various civilian applications, and by its capability of detecting multiple targets and accurately estimating their
position.

Radar type Max range (m) Freq. (GHz) Typical applications

Short range 30 5-77 Park assist, pre-crash

Blind spot detection
Mid range 100 24-77 Rear collision avoidance

Cross traffic alert

Long range 250 40-77 Adaptive cruise control

Table II: Classification of colocated MIMO radars on the basis of their maximum measurable distance.

B. A brief history of the colocated MIMO radar technology

The birth of radio detection and ranging (briefly, radar) systems dates back to 1904, when the German
inventor Christian Hulsmayer built a simple ship detection device for avoiding collisions in fog [30]. However,
the first practical radar system was developed by the British physicist Sir Robert Watson-Watt in 1935, and
was employed by the British army in World War II to detect air and sea aggressors [31]. Another fundamental
step in the evolution of radar technology is represented by the early studies on optimal filtering; the rigorous
formulation of this problem and its solution are due to the American scholar Norbert Wiener and date back to the
40’ [32]. Since then, many advancements have been made in military and civilian radar systems, thanks to the
development of signal processing techniques and to the evolution in electronic technology. The most significant
advances in signal processing methods applicable to radar systems equipped with antenna arrays have involved
both the transmit side and the receive side, and can be summarised as follows.

As far as the transmit side is concerned, substantial research efforts have been devoted to the study of analog
beamforming (ABF) and digital beamforming (DBF) methods for controlling phased arrays; both types of
methods allow to obtain electronic beam steering, i.e. to steer the main lobe of the array radiation pattern
without any movement of the antennas forming it. It is worth stressing that phased arrays have been around for
more than fifty years [33], and that a radar equipped with a phased array is much simpler than a MIMO radar.
In fact, a radar system endowed with a phased array generates a single waveform feeding each transmit antenna
with a different phase (or, equivalently, with a different delay); consequently, the waveforms radiated by distinct
antennas are highly correlated. Moreover, analog beamforming represents the earliest method for electronic
beam steering; in this case, each of the signal feeding a transmit antenna is first amplified and then delayed
through a phase shifter in a radio frequency (RF) stage; an important drawback of this method is represented
by the fact that the shape of the resulting beam is fixed. On the other hand, DBF is based on the idea of
implementing beam steering in the (digital) baseband portion of the radar hardware by multiplying each signal
by a complex gain [34]. This procedure allows to digitally customize the radiated beam, adapting its direction
to channel conditions. This technique, also known as adaptive beamforming [35], plays an important role in the
presence of severe path loss. However, it should be always kept in mind that any radar transmitter exploiting
beamforming requires some time (in practice, multiple dwells) to scan the area of interest. On the contrary, if a
MIMO radar is employed, the entire observed area is illuminated in a single dwell and beamforming is obtained
through the use of different orthogonal waveforms [2].
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Another important research area concerning the transmit side of radar systems equipped with antenna arrays
concerns the design of the radiated waveforms [23]. Despite the fact that significant theoretical results have
been achieved in the field of optimal design of waveforms (e.g., see [36]), few modulation techniques have
been employed in commercial MIMO radars until now. These include the frequency modulated continuous wave
(FMCW) technique [37] (also known as chirp signal modulation) and the stepped frequency continuous wave
(SFCW) technique [38]. In the last years, considerable attention has been also paid to the use of the OFDM
technique [39], [40] and to the phase modulated continuous wave (PMCW) technique [41].

Early research work regarding the receive side of radar systems endowed with antenna arrays has focused
on the development of beamforming methods [42]. One of the most important contributions to this area is
represented by the so called Capon beamformer, which can provide good resolution and interference rejection
capability [43], [44]. Other fundamental contributions about the processing of multiple signals acquired by
a radar systems through its antenna array concern the estimation of the direction of arrival (DOA) of the
electromagnetic waves impinging on the array itself. Here, we limit ourselves to mention the MUSIC [3] and
the estimation of signal parameters via rotational invariance (ESPRIT) techniques [45], [46].

The development of signal processing methods for MIMO radars started after the end of 2003; in fact, in
that period, the concept of MIMO radar, defined as a device able to probe a wireless channel by transmitting
multiple signals and receiving their echoes with similar multiplicity, was proposed for the first time [22]. Since
the beginning, it was clear that MIMO technology could have represented an important tool to improve the SNR
of received signals and to increase radar aperture [2], [21], [23], [47]. Since then, the exploitation of known
DOA estimation strategies, developed in the previous years for antenna arrays (like MUSIC and ESPRIT),
has been widely investigated for this new type of radars (e.g., see [48] and [49]). However, the availability
of MIMO radars able to radiate wideband signals by a large number of antennas and to acquire their echoes
through an even larger number of antennas have raised various problems, whose solution requires substantial
research efforts. In fact, on the one hand, these devices allow to acquire a rich set of information about the
surrounding propagation environment; on the other hand, they require storing and processing large datasets. This
has motivated the investigation of compressed sensing (CS) and statistical sparsity-based techniques, since these
can be exploited to perform signal detection and parameter estimation on the basis of a much smaller dataset
than that available in the case in which the received waveforms undergo Nyquist sampling [50], [51]; various
examples of CS-based estimation algorithms can be found in ref. [52].

As far as the advancement in electronic technology is concerned, in the remaining part of this paragraph we
focus on some important results achieved in the development of compact integrated radar devices employed in
the automotive field, since this is one of the first commercial markets in which MIMO radars have been playing a
fundamental role. The first generation of commercial ultra-wideband (UWB) automotive radar sensors operating
in the 77 GHz band has become available in 1999. These devices were not endowed with antenna arrays and
their implementation was based on discrete electronic components (in particular, gallium-arsenide Gunn diodes
mounted inside a waveguide cavity were employed in the generation of RF waveforms). However, electronic
technology progressed quickly in this field and, after few years, MMICs employing high-performance silicon-
germanium (SiGe) transistors became available for the implementation of fully integrated radars. Pioneering work
in the development and manufacturing of such a technology has been accomplished by the Infineon company,
that has started its production in 2004 [53]. It is also worth mentioning that, in the same year, a description of
the first fully integrated 24-GHz eight-element phased array receiver in SiGe and of the first fully integrated
24-GHz four-element phased array transmitter with integrated power amplifiers in complementary metal-oxide
semiconductor (CMOS) has appeared [54]; these devices were able to accomplish beamforming and could
be used for communication, ranging, positioning, and sensing applications. Other examples of phased arrays
operating in X and Ku-band have been described later in ref. [55]. The first FMCW MIMO radar transceiver
operating at 77 GHz has been implemented in SiGe technology in 2008 [56], whereas the production of the
first MIMO FMCW radar, operating according to a TDM strategy and equipped with an array of colocated
antennas, started in 2009 [57], [58]. As far as we know, the last device represents the first compact MIMO radar
system based on a MMIC in SiGe, operating at 77 GHz and radiating ultra-wideband signals. In this system,
wide-band and high-frequency patch antennas are built on a RF substrate [59], while the base-band MIMO
signal processing is accomplished off-chip by a field programmable gate array (FPGA) board. Moreover, the
analog-to-digital converters (ADCs) at the receive side are implemented in CMOS technology and embedded
in the transceiver chip; this has been made possible by the SiGe Bi-CMOS process, which has allowed to
integrate multiple functions on a single chip and at low cost. In the last decade, radar designers working on
the development of new integrated radar devices have investigated the use of the more scalable CMOS RF
technology [60]. An important trend in the technological evolution of MIMO radar systems is also represented
by the attempt of exploiting the same hardware for both radar and communications [61]. Some milestones
achieved in the evolution of the signal processing methods and of the technology employed in colocated radar
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systems during the last two decades are summarized in Fig. 1.

Technology

Signal processing

1999: single-antenna  

automotive radar

operating at 77GHz

2004: SiGe BiCMOS

RF technology

2008: 4-channel radar  

transceiver operating at 77 GHz

2009: design of the 

first colocated

FMCW MIMO radar

2010: 65-nm CMOS fully

integrated radar transceiver

2016: PMCW

MIMO radar
2015: OFDM

MIMO radar
2013: SFCW

MIMO radar

1992: signal processing  

techniques for  DBF
2003: MIMO

radar concept

2006: micro-Doppler

effect in radar systems

2008: application of  ESPRIT and 

MUSIC to MIMO radars

2016: CS application

to MIMO radar

2019: radar and 

communication coexistence

Figure 1: Milestones in the evolution of colocated radars.

C. Architecture of a colocated TDM MIMO radar

In the remaining part of this manuscript, we always refer to a colocated and bistatic MIMO radar system; its
architecture is illustrated in Fig. 2. Moreover, we first assume that: a) the considered radar system is equipped
with a two-dimensional (2D) array, consisting of NT transmit (TX) and NR receive (RX) antennas; b) it
employs a TDM strategy; c) it exploits all the available transmit diversity (i.e., all the available TX antennas).
Consequently, if a time slot of T0 s is assigned to each TX antenna, transmission from all the TX antennas is
accomplished over an interval lasting TF , NTT0 s; this interval represents the duration of a single transmission
frame.

VCO
Power 

Amplifier

( )RFs t

LNA

Down-

Conversion

& Filtering

Baseband

Waveform

Generator

ADC

TX antennas

RX antennas

Propagation

Environment

S/P

 vr
( ) ( )q

RFr t

TN

RN

Figure 2: MIMO radar transmitter (upper part) and receiver (lower part).

In this manuscript, two different models are considered for the RF signal generated by the voltage controlled
oscillator (VCO) of the radar transmitter and radiated by its transmit array after power amplification. In the first
case, corresponding to a FMCW radar system, the VCO is fed by a periodic ramp generator; this produces a
chirp FM signal, whose instantaneous frequency evolves periodically, as illustrated in Fig. 3. In this figure,
the parameters T , TR and T0 represent the chirp interval, the reset time and the pulse period (or pulse
repetition interval), respectively [9], whereas the parameters f0 and B are the start frequency and the bandwidth,
respectively, of the transmitted signal. For this reason, if we focus on the time interval (0, T ) and assume that,
in that interval, the p-th TX antenna is employed by the considered radar system (with p ∈ {0 , 1, ..., NT −1}),
the radiated signal can be expressed as

sRF (t) = ARF<{s (t)} , (1)

where ARF is its amplitude,
s (t) , exp [jθ (t)] , (2)

θ (t) , 2π
(
f0t+

µ

2
t2
)

(3)

and
µ =

B

T
(4)
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Figure 3: Representation of the instantaneous frequency of the RF signal generated by the VCO in a FMCW
radar system.

is the chirp rate, i.e. the steepness of the generated frequency chirp.
Let r(q)

RF (t) denote the signal available at the output of the q-th receive antenna, with q = 0, 1, ..., NR−1 (see
Fig. 2); this signal feeds a low noise amplifier (LNA), whose output undergoes downconversion, filtering and
analog-to-digital conversion at a frequency fs = 1/Ts, where Ts denotes the sampling period of the employed
ADC. If we assume that the radiated signal sRF (t) (1) is reflected by L static point targets, the useful component
of r(q)

RF (t) consists of the superposition of L echoes, each originating from a distinct target. In this case, if the
propagation environment undergoes slow variations, a simple mathematical model can be developed to represent
the sequence of samples generated by the ADC in a single chirp interval. In deriving this model, the couple
of the involved physical TX and RX antennas (namely, the p-th TX antenna and the q-th RX antenna) of the
considered bistatic radar is often replaced by a single virtual antenna of an equivalent monostatic radar. In
particular, the abscissa xv and the ordinate yv of the v-th virtual antenna element associated with the p-th TX
antenna and the q-th RX antenna are computed as1

xv =
xp + xq

2
(5)

and
yv =

yp + yq
2

, (6)

respectively, with v = 0, 1, ..., NV − 1; here, (xp, yp) ((xq, yq)) are the coordinates2 of the TX (RX antenna)
and NV , NT ·NR represents the overall size of the resulting virtual array. Based on these assumptions, the
n-th received signal sample acquired through the v-th virtual antenna element (with v = 0, 1, ..., NV − 1) can
be expressed (e.g., see [62, Par. 4.6, eq. (4.27)])

rv,n =

L−1∑
l=0

al cos(2πnFv,l + ψv,l) + wv,n, (7)

with n = 0, 1, ..., N − 1; here, N is the overall number of samples acquired over a chirp period, al is the
amplitude of the l-th component of the useful signal (this amplitude depends on both the range Rl and the
reflectivity of the l-th target, but is assumed to be independent of v for simplicity),

Fv,l , fv,lTs (8)

is the normalized version of the frequency
fv,l , µ τv,l , (9)

characterizing the l-target detected on the v-th virtual receive antenna,

τv,l =
2

c
[Rl + xv cos (θl) sin (φl) + yv sin (θl)] (10)

is the delay of the echo generated by the l-th target and observed on the v-th virtual channel, Rl, φl and θl
denote the range of the l-th target, its azimuth and its elevation, respectively,

ψv,l ∼= 2πf0τv,l, (11)

1This is not the only rule adopted in the technical literature to compute the coordinates of the v-th virtual antenna element. For instance,
in ref. [2, Par. 4.3.1, pp. 159-161], the abscissa (ordinate) of this element is evaluated as 2xv (2yv), where xv and yv are expressed by
eqs. (5) and (6), respectively. Keep in mind, however, that, if the last rule is adopted, all the following formulas involving such coordinates
must be changed accordingly.

2A reference system lying on the physical antenna array is assumed.
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and wv,n is the n-th sample of the additive white Gaussian noise (AWGN) sequence affecting the received
signal (the noise variance is denoted σ2

w in the following and is assumed to be independent of v).
The second case we consider for the generation of the radiated waveform corresponds to a SFCW radar

system. Its name is motivated by the fact that the VCO of its transmitter is fed by a staircase generator. For
this reason, the instantaneous frequency of the resulting RF signal takes on N distinct and uniformly spaced
values in an interval lasting T s for each TX antenna; the n-th value of the instantaneous frequency is

fn = f0 + n∆f, (12)

with n = 0, 1, ..., N − 1, where f0 is the minimum radiated frequency, ∆f is the frequency step size and N is
the overall number of transmitted frequencies. It is not difficult to prove that, under the same assumptions made
in the derivation of eq. (7), the measurement acquired through the v-th virtual element at the n-th frequency
can be expressed as

rv,n =

L−1∑
l=0

al exp [−j (2πnFv,l + ψv,l)] + wv,n, (13)

with v = 0, 1, ..., NV − 1; here, the phase ψv,l is still expressed by eq. (11),

Fv,l , ∆f τv,l (14)

is the normalised frequency characterizing the l-th target and observed on the v-th virtual antenna, and the
parameters al, τv,l and the random variable wv,n have exactly the same meaning3 as the one illustrated for the
received signal model (7). It is important to point out that, similarly as the baseband signal model (7) developed
for a FMCW radar, the model (13) allows to interpret the signal observed on the v-th channel as a superposition
of L oscillations. However, the former model is real, whereas the latter one is complex. Moreover, in both cases,
the samples {rv,n; n = 0, 1, ..., N − 1} can be collected in the N -dimensional vector

rv , [rv,0, rv,1, ..., rv,N−1]
T
, (15)

which is processed by the next stages of the radar receiver for target detection and estimation. As it can be
easily inferred from eq. (7) (eq. (13)), in a FMCW (SFCW) radar system, the problem of target detection and
range estimation on the v-th virtual channel is equivalent to the classic problem of estimating the frequencies
of multiple overlapped sinusoids (multiple overlapped complex exponentials) in the presence of AWGN [63]. In
fact, if an estimate f̂v,l of the frequency fv,l (9) and an estimate F̂v,l of the normalised frequency Fv,l (14) are
available for the v-th virtual channel, an estimate of the range Rl can be computed as (see eqs. (9) and (10))

R̂v,l =
1

2

f̂v,l
µ
c (16)

and as (see eqs. (10) and (14))

R̂v,l =
1

2

F̂v,l
∆f

c (17)

respectively, for any v and l. Information about the angular coordinates (namely, the azimuth and the elevation)
of the l-th target, instead, can be acquired through the estimation of the set of NV phases {ψv,l; v = 0, 1, ...,
NV − 1} observed over the available virtual antennas. In fact, since (see eqs. (10) and (11))

ψv,l ∼= 4π
f0

c
[Rl + xv cos (θl) sin (φl) + yv sin (θl)] (18)

where
λ ,

c

f0
(19)

is the wavelength associated with the frequency f0, the sequence {ψv,l; v = 0, 1, ..., NV −1} exhibits a periodic
behavior characterized by the normalised horizontal spatial frequency

FH,l , 2
dH
λ

cos (θl) sin (φl) , (20)

if the considered virtual elements form an horizontal uniform linear array (ULA), whose adjacent elements are
spaced dH m apart. Dually, if a vertical ULA is assumed, the periodic variations observed in the same sequence
of phases are characterized by the normalised vertical spatial frequency

FV,l , 2
dV
λ

sin (θl) , (21)

3Note, however, that wv,n is a complex Gaussian random variable; its variance is also denoted σ2
w in the following.
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where dV denotes the distance between adjacent elements of the vertical virtual array. Consequently, angle
finding can be easily accomplished by DBF, i.e. by performing FFT processing on the estimated phases taken
across multiple elements of the virtual array in a single frame interval [4], [64]. Note, however, that other
angle estimation methods, achieving a better resolution than FFT processing are also available; here, we limit
to mention the so called subspace-based methods (such as MUSIC and ESPRIT), sparse sensing-based methods
[65], [66] and the iterative adaptive approach (IAA) developed in ref. [67]. Subspace-based methods require
computing an accurate estimate of the array covariance matrix; consequently, the measurements acquired over
multiple snapshots must be processed. Moreover, they do not allow to estimate the amplitude of the echo
associated with each detected target and require prior knowledge of the size of the useful signal subspace (i.e.,
of the number of detectable targets). On the contrary, sparse sensing-based methods and IAA can generate angle
estimates on the basis of a single snapshot of the received signal; however, this result is obtained at the price
of a significant computational effort.

Both the received signal models (7) and (13) hold if all the observed targets are static. Let us focus now on a
FMCW radar system operating in the presence of L moving point targets and having the following characteristics:
a) it is equipped with a single TX antenna and a single RX antenna (i.e., NT = NR = 1); b) its reset time TR
is equal to 0, so that T0 = T (see Fig. 3); c) its transmission frame consists of Nc chirps, so that the duration
TF of the transmission frame is equal to NcT0 = NcT s; d) N distinct ADC samples are acquired in each
chirp interval at the receive side. Then, it is not difficult to prove that, if the ranges of all the targets are much
larger than their displacements observed during the considered transmission frame, the n-th sample of the signal
acquired in the k-th chirp interval (with k = 0, 1, ..., Nc − 1) can be expressed in a similar way as eq. (7),
namely as (e.g., see [9, eq.(5)])

r(k)
n
∼=
L−1∑
l=0

al cos(2πn (Fl + FD,l) + ψ
(k)
l ) + w(k)

n , (22)

where Fl = µ τl Ts (see eqs. (8) and (9)), τl = 2Rl/c is the delay of the echo generated by the l-th target and
observed in the first chirp interval (in this interval, the target range is assumed to be equal to Rl),

FD,l =
2 vl
λ
Ts (23)

is the normalised Doppler frequency, vl is the radial velocity4 of the l-th target,

ψ
(k)
l
∼=

4π

λ
R

(k)
l , (24)

R
(k)
l = Rl + vl kT (25)

is the target range observed in the k-th chirp interval and w
(k)
n is the n-th sample of the AWGN sequence

affecting the received signal in the same chirp interval.
Let us focus next on a SFCW radar system operating in the same scenario as the one just described for a

FMCW radar system and having the following characteristics: a) it is equipped with a single TX antenna and a
single RX antenna; b) its reset time TR is equal to 0, so that T0 = T ; c) its transmission frame consists of Nc
frequency sweeps; d) in each sweep (lasting T s), N distinct and uniformly spaced frequencies are generated
according to eq. (15). Then, it can be shown that, if f0 >> N∆f , the measurement acquired at the n-th
frequency in the k-th frequency sweep (with k = 0, 1, ..., Nc − 1) can be expressed in a similar way as eq.
(13) and, in particular, as

r(k)
n
∼=
L−1∑
l=0

al exp
[
−j
(

2π
(
nFl + F̄D,l

)
+ψ

(k)
l

)]
+ wk,n , (26)

where Fl , ∆f τl (see eq. (14)), τl is the delay of the echo generated by the l-th target and observed in the
first frequency sweep (when the target range is equal to Rl),

F̄D,l =
2 vl
λ
τl (27)

is the normalised Doppler frequency, and the parameters λ and ψ(k)
l are still expressed by eqs. (19) and (24),

respectively.

4This speed is positive (negative) if the target is approaching (is moving away) from the radar.
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In both the considered radar systems, the rate of change observed in the sequence of phases {ψ(k)
l ; k = 0, 1,

..., Nc − 1} is proportional to vl, since (see eqs. (24) and (25))

ψ
(k+1)
l − ψ(k)

l
∼=

4π

λ

(
R

(k+1)
l −R(k)

l

)
= 4π

T

λ
vl (28)

with k = 0, 1, ..., Nc − 1. Therefore, target velocity can be easily assessed by means of FFT processing after
computing an estimate of the above mentioned phases.

In the technical literature, range and speed information of the moving targets detected in a given propagation
environment are usually condensed in a 2D plot, called range-Doppler map [5], [9]. In a FMCW radar system
equipped with a single TX antenna and a single RX antenna, this map is generated as follows. Let r(k) denote the
N -dimensional (column) vector consisting of the real measurements acquired in the k-th chirp of a transmission
frame, with k = 0, 1, ..., Nc − 1 , where Nc is the overall number of chirps forming the frame itself. The Nc
vectors {r(k); k = 0, 1, ..., Nc − 1} are collected in the matrix

R = [r(0) r(1) · · · r(Nc−1)] , (29)

having size N ×Nc. This matrix undergoes zero-padding, that turns it into a matrix RZP of size N0×N
′

0. The
last matrix feeds a N0 ×N

′

0-th order FFT, that generates the range-Doppler (complex) matrix

D = [dp,q] , FFTN0×N
′
0

[R] , (30)

where FFTX×Y [·] denotes 2D FFT operator of size X × Y ; note that the index p (q) labelling the elements of
the matrix D refers to the range (Doppler) domain. Representing, on a Cartesian plane, the absolute value of
the elements of the matrix D yields the above mentioned range-Doppler map.

In the last fifteen years, substantial attention has been also paid to the problem of estimating the micro-
movements of detected targets; such movements usually originate from mechanical vibrations or rotations
(overlapping to a bulk translation) and may generate a frequency modulation in the received signal; the last
phenomenon is known as micro-Doppler. The recent interest in micro-Doppler is motivated by the fact that it
can be exploited to establish the dynamic properties of targets [68] and, consequently, can be used to classify
them or identify specific properties related to their motion. In a FMCW radar system equipped with a single TX
antenna and a single RX antenna, the micro-Doppler phenomenon can be analysed as follows. Let us assume
that Nf consecutive frames (each consisting of Nc chirps) are transmitted by the considered radar system and
that the range-Doppler matrix D (30) is evaluated for each frame (the matrix referring to the m-th frame is
denoted Dm = [d

(m)
p,q ], with m = 0, 1, ..., Nf − 1). Relevant information about the micro-Doppler fluctuations,

also known as the micro-Doppler signatures, characterizing a certain range interval can be acquired through the
real matrix E = [Em,q], having size Nf ×N

′

0 and whose element on its m-th row and q-th column is evaluated
as

Em,q ,
pmax∑
p=pmin

|d(m)
p,q |2 (31)

with m = 0, 1, ..., Nf−1 and q = 0, 1, ..., N
′

0−1; here, pmin (pmax) denotes the value of the index p associated
with the minimum (maximum) range of interest. Representing the elements of the matrix E on a Cartesian plane
produces the so called spectrogram [68], that shows the time evolution of the Doppler phenomenon.

Additional information about the dynamical properties of a moving target can be acquired through another
diagram, known as cadence velocity diagram (CVD). This diagram allows us to identify the most relevant
frequency components associated with a given motion (e.g., if a walking pedestrian is considered, the speed of
his arms can be extracted from the associated CVD). Moreover, its generation is based on the complex matrix
G = [Gl,q], having size N

′

f ×N
′

0 and computed as the N
′

f ×N
′

0-th order FFT of the matrix EZP = [E
(ZP )
m,q ],

that results from zero padding of the matrix E defined above; therefore, we have that

Gl,q ,
1

Nf

N
′
f−1∑
m=0

E(ZP )
m,q exp

(
−j2π m

N
′
f

f̄l TF

)
(32)

with l = 0, 1, ..., N
′

f − 1 and q = 0, 1, ..., N
′

0 − 1; here, TF is the duration of a single transmission frame,
E

(ZP )
m,q = Em,q for m = 0, 1, ..., Nf − 1 and E(ZP )

m,q = 0 for m > Nf − 1 , and

f̄l ,
l

TF
(33)

is the l-th cadence frequency. The CVD results from representing, on a Cartesian plane, the absolute value of
the elements of the matrix G.
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III. MACHINE LEARNING TECHNIQUES FOR COLOCATED MIMO RADAR SYSTEMS

In this section, after illustrating the main differences between a deterministic approach and a ML-based
approach to target detection and estimation, the most important ML techniques applied in the field of colocated
MIMO radar systems are described. Our introduction to these techniques is based on a specific case study,
involving a FMCW radar system (see Paragraph II-C).

A. A case study

The most relevant conceptual differences between a deterministic approach and a ML approach to detection
and estimation problems in MIMO radar systems can be understood by analysing the detection of a single
point target, and the estimation of its range R and its azimuth φ in a 2D propagation scenario. In this case, we
assume that an FMCW radar system equipped with an ULA, consisting of three antenna elements, is employed
(see Fig. 4-a). This array is made of a central TX antenna and a couple of antipodal RX antennas (these are

Target TX antenna

RX antenna

R



 sind 

x

x

Physical array

Virtual array

a)                                                                                                       b)

Target TX antenna

RX antenna

R



sin( )d 

x

x

2dd

d

d

d

Figure 4: Physical geometry and virtual array of a colocated FMCW MIMO radar equipped with an ULA
composed by a single TX antenna and: a) two RX elements; b) four RX elements.

identified by a red box and two blue boxes, respectively, in the considered figure), so that NT = 1 and NR = 2;
consequently, a virtual array, consisting of NV = 2 · 1 = 2 virtual elements, is available. The abscissa xv of the
v-th virtual antenna element associated with the TX antenna and the v-th RX antenna is computed as (see eq.
(5))

xv =
xt + xr,v

2
(34)

with v = 0 and 1; here, xt = 0 and xr,0 = −d (xr,1 = d) are the abscissas of the TX and of the first (second)
RX antenna, respectively (note that the origin of our reference system coincides with the center of the array).
If the target is in far field5, the wavefront of the electromagnetic echo originating from it is a straight line
and is orthogonal to the line connecting the target with the center of the array. In these conditions, the n-th
time-domain sample acquired on the v-th virtual antenna in a single snapshot can be expressed as (see eq. (7))

rv,n = av cos (2πnfvTs + ψv) + wv,n, (35)
= Av exp (j 2πnFv) +A∗v exp (−j 2πnFv) + wv,n,

(36)

for n = 0, 1, ..., N − 1, where (see eqs. (8), (9) and (10))

Fv , fvTs, (37)

fv =
2µ

c
[R+ xv sin (φ)] , (38)

xv = (−1)(v+1) d

2
, (39)

d is inter-antenna spacing of the considered ULA,

Av ,
1

2
av exp (jψv) (40)

is a complex parameter depending on the target reflectivity av and (see eqs. (10) and (11))

ψv , ∠Av ∼=
4π

λ
[R+ xv sin (φ)] (41)

5A rigorous definition of this condition can be found in ref. [69, Par. 2.2.4, pp. 34-36]
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is the phase observed on the considered antenna (the wavelength λ is defined by eq. (19)). It is important to
point out that:
a) Relevant information about the target azimuth are provided by the frequency difference

∆f0,1 , f1 − f0 (42)

or by the phase variation
∆ψ0,1 , ∠A1A

∗
0, (43)

where the quantity ∠X represents the phase of the complex number X (it belongs to interval [−π, π)). In
fact, on the one hand, from eqs. (38)-(39) it is easily inferred that (see the definition (42))

∆f0,1 = 2
µd

c
sin(φ); (44)

on the other hand, based on eqs. (39)-(41), it is easy to show that (see the definition (43))

∆ψ0,1 = ψ1 − ψ0 = 4π
d

λ
sin (φ) , (45)

provided that the inequality

4π
d

λ
|sin (φ)| ≤ π (46)

holds for any φ. The last condition is met for any φ ∈ [−π2 ,
π
2 ) if

d ≤ λ/4. (47)

b) If the received signal is noiseless, the frequency fv is known and N is large, the complex amplitude Av can
be easily estimated as6

Âv ∼=
1

N
X̄v(fv), (48)

where

X̄v (f) ,
N−1∑
n=0

rv,n exp(−j2πnfTs) (49)

represents the Fourier transform of the sequence {rv,n; n = 0, 1, ..., N − 1}.
c) Information about the target range is provided by the average frequency (see eq. (38))

fm ,
f0 + f1

2
=

2µ

c
R (50)

Therefore, the estimation of the frequency of the sinusoid contained in the noisy data sequence acquired through
each virtual antenna represents a fundamental problem in target detection and estimation. It is well known that
the so called periodogram method can be employed to solve it in an approximate way [7], [70]. This method
is based on the computation of the amplitude spectrum of the zero-padded measurement sequence and on the
identification of its peak.

Based on the mathematical results and the considerations illustrated above, a simple deterministic algorithm,
consisting of the three steps listed below, can be easily derived for the detection of the target and the estimation
of its spatial coordinates (R, φ).

1. DFT processing - In this step, the N -dimensional vector

rv , [rv,0, rv,1, ..., rv,N−1]
T
, (51)

with v = 0 and 1, undergoes zero padding (ZP); this results in the N0-dimensional vector

r(ZP )
v ,

[
rTv 0TP

]T
(52)

where N0 , MrN , 0P denotes the P -dimensional (column) null vector and Mr represents the selected
oversampling factor adopted in time-domain processing. Then, the vector r

(ZP )
v (52) feeds a N0-th order discrete

Fourier transform (DFT); this produces the N0-dimensional vector

Xv , [Xv,0, Xv,1, ..., Xv,N0−1]
T
, (53)

where
Xv,l =

1

N0
X̄v(f̄l) (54)

6This result can be easily proved by substituting eq. (36) in the right-hand side (RHS) of the definition (49).
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X̄v(f) is defined by eq. (49) and

f̄l ,
l

N0Ts
, (55)

with l = 0, 1, ..., N0 − 1. Finally, the N0-dimensional vector

P , [P0, P1, ..., PN0−1]
T
, (56)

where
Pl ,

M2
r

2

[
|X0,l|2 + |X1,l|2

]
, (57)

with l = 0, 1, ..., N0−1, is computed; note that the quantity Pl (57) represents a sort of average power spectrum
evaluated at the frequency f̄l (55).

2. Target detection - The problem
l̂ = arg max

l̃∈{0,1,...,N0/2}
Pl (58)

is solved and a target is detected if the condition

Pl̂ > Pth (59)

is satisfied, where Pth is a proper threshold. When this occurs, the next step is executed; otherwise, the algorithm
stops.

3. Estimation of target coordinates - The estimate

f̂m =
l̂

N0Ts
(60)

of the frequency fm (50) and the estimate
Âv = MrXv,l̂ (61)

of the complex amplitude Av (40) (with v = 0 and 1) are computed. Then, the estimate (see eq. (50))

R̂ = f̂m
c

2µ
(62)

of the target range R and the estimate (see eq. (45))

φ̂ = arcsin

(
λ

4πd
∆ψ̂0,1

)
(63)

of the target azimuth θ are evaluated; here,

∆ψ̂0,1 = ∠X1,l̂

(
X0,l̂

)∗
. (64)

represents an estimate of ∆ψ0,1 (45) and its expression is based on eqs. (48), (54) and (61).
This concludes the description of the proposed detection and estimation algorithm. It is important to point out
that:

a) The accuracy achievable in range estimation is influenced by the DFT order N0 and, consequently, for a
given N , by the oversampling factor Mr. Increasing the value of the parameter Mr leads to a more refined
analysis of the spectrum X̄v (f) (49) and, consequently, allows to locate the spectral peak originating from the
target with better accuracy; however, this result is achieved at the price of an higher computational cost.

b) The estimate φ̂ (63) is unambiguous if the condition (47) is satisfied or if, for a given d > λ/4, the azimuth
φ belongs to the interval [−φm, φm), where (see eq. (46))

φm , arcsin

(
λ

4 d

)
(65)

c) Eq. (44) has not been exploited to compute an estimate of the target azimuth. This is due to the fact that the
quality of this estimate is limited by the accuracy of frequency estimation on each antenna; such an accuracy,
in turn, is intrinsically limited by the DFT order N0.

d) If the target reflectivity observed on the two antennas is approximately the same (i.e., if a0
∼= a1), an

estimate of it can be computed as (see eqs. (40) and (61))

â ,Mr

[∣∣∣X0,l̂

∣∣∣+
∣∣∣X1,l̂

∣∣∣] . (66)

e) The estimation of the azimuth characterizing the echo from a specific target requires at least two RX
antennas, since it is based on computation of the phase variation observed at a specific frequency on at least
two receive antennas (see eqs. (63) and (64)).
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f) The maximum number of detectable targets depends on the number of virtual elements of the whole array.
It is worth noting that, unlike a phased array system, where a single waveform is transmitted, a MIMO radar
system endowed with NT different TX antennas can radiate NT independent signals. This leads to the conclusion
that the maximum number of targets that be can uniquely identified by a MIMO radar is NT times larger than
that of its counterpart employing a phased array [23], if the first system employs an ULA whose virtual elements
do not overlap (like the ULAs shown in Fig. 4).

The estimation accuracy achieved by the considered radar system can be improved by increasing the size of
its ULA, i.e. the overall number of its antennas, so that a larger number of virtual channels becomes available.
For instance, if the ULA shown in Fig. 4-a) is replaced by the one represented in Fig. 4-b) (and characterized
by NT = 1 and NR = 4), NV = 4 virtual channels become available, i.e. the overall number of virtual antennas
is doubled with respect to the previous case. Note that this results not only in an increase of the maximum
number of detectable targets, but also in an improvement of the angular resolution ∆φ, defined as the minimum
angular separation below which the DOAs of two distinct targets cannot be separated. More specifically, if an
ULA is used and the bore-sight direction is considered, we have that (e.g., see [6, Par. 4, eq. (51)])

∆φ =
λ

2 d (NV − 1) cos(φ)
. (67)

It is also worth mentioning that the algorithm illustrated above for a couple of virtual channels can be easily
extended to the case of an ULA providing NV virtual channels. The only relevant modification concerns step
3., since the NV -dimensional vector

Â =
[
Â0, Â1, ..., ÂNV −1

]T
, (68)

where Âv is still expressed by eq. (61) for any v, becomes available and, consequently, (NV −1) phase variations,
referring to the (NV − 1) distinct couples of adjacent virtual antennas can be evaluated. If we assume that the
variations of the target reflectivity over the whole virtual array are negligible and that the SNR on each virtual
antenna is high, such variations are approximately constant, being all expressed by the RHS of eq. (45). This
means that a phase modulation, characterized by the normalised spatial frequency

F = 2
d

λ
sin (φ) , (69)

is observed in the sequence {Âv; v = 0, 1, ..., NV − 1}. An estimate of the parameter F can be computed by
exploiting, once again, the periodogram method. In practice, this requires executing the following three steps:

1. DFT processing - The vector Â is zero padded by appending to it a null vector of size (MA − 1)NV ,
where MA represents the oversampling factor adopted in spatial processing; this produces the N̄0-dimensional
vector ÂZP , where N̄0 , MANV . The vector ÂZP feeds a N̄0-th order DFT, generating the N̄0-dimensional
vector

s ,
[
s0, s1, ..., sN̄0/2, s−N̄0/2+1, s−N̄0/2+2, ..., s−2, s−1

]T
. (70)

2. Azimuth estimation - After solving the problem

p̂ = arg max
p̃∈{−N̄0/2+1,−N̄0/2+2,...,N̄0/2}

|sp̃| , (71)

the estimate (see eq. (63))

φ̂ = arcsin

(
2
p̂

N̄0

)
(72)

of the target azimuth φ is evaluated. Note that the angular resolution provided by the DFT computed in step 1.
improves as N̄0 increases.

The deterministic algorithm and its extension illustrated above have the following relevant properties: a) their
derivation is based on a well defined mathematical model originating from our knowledge of the propagation
of electromagnetic waves and of the radar system (and, in particular, of the geometry of its array and of the
processing it accomplishes); b) if they fail detecting a given target, or generate inaccurate estimates of its
range and/or azimuth, the causes of such events can be identified; c) being based on the DFT and other simple
formulas, they are computational efficient.

An alternative to the approach to algorithm design illustrated above is offered by ML methods [12]. In fact, if
such methods are employed, the inner structure of the considered radar system and the physical laws on which
its operation is based can be ignored, since the required information are automatically extracted by an algorithm
able to learn the regularities characterizing the set of observed data. Let us reconsider now the detection and
estimation problem described above from this new perspective and show how a solution based on ML methods
can be devised. To this aim, we take into consideration again a FMCW radar system equipped with the antenna
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array shown in Fig. 2-a) and assume that it is employed to perform a measurement campaign. In this campaign,
Nt independent trials are accomplished in the presence of a single point target or in the absence of it; in each
trial, the couple [r0, r1] of noisy vectors (see eq. (51)) is acquired and stored in a database together with the
target range and azimuth (when the target is present). In the following, [rq,0, rq,1] and

tq , [dq, Rq, φq]
T (73)

denote the value of the couple [r0, r1] and the associated label acquired in the q-th trial (with q = 0, 1, ...
, Nt − 1); here, dq = −1 (1) if the target is absent (present), and Rq and φq represent the target range and
azimuth, respectively, in the same trial if dq = 1 (if dq = −1, the values of both Rq and φq are irrelevant). In
this case, the ML approach consists in processing the dataset

Di , {[rq,0, rq,1] , tq; q = 0, 1, ..., Nt − 1} (74)

to learn how to detect the presence of a target on the basis of a new couple [r0, r1] and, if a target is detected,
how to estimate its position. The accuracy of the algorithm resulting from the learning phase (i.e., from training)
depends not only on the adopted ML method, but also on the size of Di (i.e., on Nt). Generally speaking, the
use of ML methods requires the availability of a large set of measurements, i.e. a large Nt (say, at least, a
few thousands). Unluckily, any ML method extracting the required knowledge directly from Di (74) has to
process high dimensional vectors if the size N of the vectors r0 and r1 is large. Actually, the dimensionality
of the given problem can be easily reduced by exploiting our prior knowledge. In fact, in developing our
deterministic algorithm, we have learnt that essential information for target detection and estimation is provided
by the complex couple [X0,l̂, X1,l̂] (see eqs. (59)-(64)), where l̂ is expressed by eq. (58). These considerations
suggest to:
a) Pre-process the couple (rq,0, rq,1) in order to generate the vector

Xq ,
[
X

(q)
0 , X

(q)
1

]T
, (75)

where X(q)
0 and X(q)

1 are the values taken on by the quantities X0,l̂ and X1,l̂, respectively, in the q-th trial

(with q = 0, 1, ..., Nt − 1); X(q)
0 and X

(q)
1 can be considered as highly informative data extracted from

the received signal, i.e., briefly, as the features available in the considered problem.
b) Replace the set Di (74) with the new set

D , {Xq , tq; q = 0, 1, ..., Nt − 1}, (76)

that consists of low dimensional vectors only, and use it to train the considered ML method; when this
occurs, the last set is called training set.

Once training is over, the ML algorithm resulting from it is able to infer the unknown value of tq (73) for any
new vector Xq (75) of noisy data (with q > Nt−1); in other words, it is able to predict: a) dq; b) Rq and φq if a
target is detected. It is important to point out that any ML algorithm predicting dq solves a binary classification
problem, since it assigns a new observation to one of two categories of noisy data, one associated with the
presence of a target, the other one with its absence; in other words, the algorithm is exploited to recognise a
specific pattern in the noisy observations. If the considered ML algorithm is also able to predict the value of
the couple (Rq, φq) (i.e., of two continuous variables), it solves a regression problem too. In the considered
radar system, different ML algorithms can be employed to learn classification and regression rules from the
training set D (76). Moreover, all such algorithms can be considered as specific instances of the so called
supervised learning, as shown in the following paragraph. Generally speaking, supervised learning techniques
can be employed when:

1) A training set
D , {(rq, tq) ; q = 0, 1, ..., Nt − 1}, (77)

collecting Nt, Dr-dimensional real observations (also called covariates, or domain points, or explanatory
variables) {rq; q = 0, 1, ..., Nt − 1}, with

rq , [rq,0, rq,1, ..., rq,Dr−1]
T
, (78)

and the associated Dt-dimensional real labels (also called dependent variables or responses) {tq; q = 0,
1, ..., Nt − 1}, with

tq , [tq,0, tq,1, ..., tq,Dt−1]
T
, (79)

is available.
2) There exists some mechanism relating the variable rq to the variable tq for any q.
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The last point is a fundamental one, since it does not make any sense to develop rules applicable to unseen
examples in the absence of some assumptions about the mechanism underlying data generation; the set of these
assumptions is known as the inductive bias.

B. Supervised learning

Supervised learning is a branch of ML frequently employed in the field of colocated MIMO radars for solving
classification and regression problems. In this paragraph, we discuss some basic methods for supervised learning
and analyse the approaches adopted in their derivation. Specific attention is paid to some classification algorithms
that can be easily employed for target detection in radar systems.

1) Formulation of the supervised learning problem: Generally speaking, supervised learning concerns the
identification of the conditional probability density function (pdf) f(t|r) (also called predictive distribution)
minimizing the average generalization loss

Lp(̃t) , Ef(t,r)

{
`
(
t, t̃ (r)

)}
; (80)

here, Ef(x) {·} denotes the expectation evaluated with respect to the joint f(x), t̃(r) is a prediction of the label
t computed on the basis of the observation r and ` (·, ·) is a given cost function. If the label of each observation
is one-dimensional (1D) and is real, the cost functions

`2
(
t, t̂
)

= (t− t̂)2 (81)

and
`0
(
t, t̂
)

=

{
1 if t = t̂
0 elsewhere

(82)

are often employed for regression and binary classification, respectively. It is well known that, if the posterior
pdf f(t|r) is known, the minimum value of the loss Lp(̃t) (80) is achieved by selecting the optimal prediction
(e.g., see [12, Par. III.C, eq. (4)])

t̂ (r) = arg min
t̃

Ef(t|r)

[
`
(
t, t̃
)
|r
]
, (83)

whatever cost function is selected.
Supervised learning methods are employed when the conditioned pdf f(t|r) (or the joint pdf f(t, r)) is

unknown, but a training set D, collecting Nt distinct data generated on the basis of it and structured according
to eq. (76), is available. The objective of these methods is to generate a predictor, denoted t̂D(r), exclusively
based on the set D and whose performance, in terms of generalization loss, is as close as possible to that of the
optimal predictor t̂(r) (83); this means that the loss evaluated for the prediction of the label associated with a
new observation should be as small as possible. The derivation of the predictor t̂D(r) can be formulated as an
optimization problem, whose form depends on the specific assumptions we make about the model that is being
learnt. In fact, a frequentist approach or a Bayesian approach can be adopted, as illustrated in the following
two paragraphs.

2) The frequentist approach to supervised learning: The frequentist approach relies on the assumption that
all the points of the set D (77) are generated independently on the basis of the same unknown joint pdf f(r, t)
, that is

(rq, tq) ∼ f (r, t) = f (t|r) f (r) , (84)

with q = 0, 1, ..., Nt − 1. Under this assumption, two possible approaches can be adopted to derive the
above mentioned predictor t̂D(r), namely: a) separate learning and inference; b) direct inference via empirical
risk minimization (ERM). The first approach consists in learning an approximation, denoted fD(t|r), of the
conditional pdf f(t|r), and in using the former pdf in place of the latter one to derive the expression of the
predictor t̂D(r) on the basis of eq. (83). The second approach, instead, aims at directly learning t̂D(r) by solving
the problem

t̂D (r) = arg min
t̃
LD
(
t̃ (r)

)
, (85)

where

LD
(
t̃ (r)

)
,

1

Nt

Nt−1∑
q=0

`
(
tq, t̃ (rq)

)
(86)

is the so called empirical loss. In both cases, the optimization of a set of parameters characterizing the model
selected for the conditional pdf fD(t|r) or that chosen for the predictor t̂D(r) is required. However, the first
approach is more flexible than the second one since, in principle, the approximate pdf fD(t|r) it generates can
be exploited to derive the predictor t̂D(r) for any cost function; on the contrary, the solution of the problem
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(85) holds for a specific cost function only. Moreover, it should be kept in mind that, if the first approach is
adopted, two options are available. The first option consists in learning a discriminative probabilistic model,
i.e. in learning directly an approximation of the posterior f(t|r). On the contrary, the second option consists in
learning a generative probabilistic model, i.e. in learning the joint pdf f(t, r) and, then, in deriving an estimate
of the posterior f(t|r) from it.

Let us see now how the general principles illustrated above can be employed to solve a specific regression
problem concerning the first FMCW radar system described in the previous paragraph and equipped with the
array shown in Fig. 2-a). In this case, we assume: a) the presence of a single point target placed at a fixed and
known range R; b) the availability of the synthetically generated dataset7 (see eq. (77))

D , {rq , tq; q = 0, 1, ..., Nt − 1}, (87)

where8

tq , φq, (88)

rq = ∆ψ̂q (89)

is an estimate of the phase difference
∆ψq , ψq,1 − ψq,0 (90)

and ψq,0 (ψq,1) is the phase of the sinusoidal oscillation associated with the considered target and observed on
the first (second) RX antenna for any q (see eqs. (35)-(41) and (45)). Moreover, in generating our dataset, the
following choices have been made:

a) the distance d between adjacent virtual channels is equal to λ/4;
b) the target range R is equal to 3.0 m, whereas the target azimuth φq is uniformly distributed over the

interval [φm, φM ] = [−60◦ 60◦], respectively, for any q (this interval is comparable to the horizontal FOV of
a real radar system);

c) the amplitude a(q)
v characterizing the sinusoid observed on the v-th virtual antenna is randomly selected in

the interval [0.4, 1.2] V for any q (see eq. (7));
d) the random variable a(q)

v is independent of a(p)
u for any u 6= v and/or p 6= q;

e) the observation rq (89) is generated on the basis of eqs. (64) and (75), i.e. as ∆ψ̂q = ∠X(q)
0 (X

(q)
1 )∗ for

any q.
Moreover, the following choices have been made for the parameters of the radar system:
a) the generated frequency modulated waveform is characterized by µ = 7.8125 · 1012 Hz s−1, T = 256µs

and TR = 64µs;
b) the sampling period employed at the receive side is Ts = 0.25 µs and N = 512 time-domain samples are

acquired from each of the two RX antennas;
c) the standard deviation of the noise affecting these samples is σw =

√
2 V (see eq. (7));

d) the oversampling factor Mr = 4 and the threshold Pth = 0.5 V2Hz−1 are employed by the detection
algorithm based on eqs. (58)-(59).

In this case, our objective is to derive a predictor of the the azimuth φq associated with the new observation
∆ψ̂q for any q > Nt − 1. To solve this problem, we adopt the discriminative probabilistic model

f (t|rq,w) = N
(
t;µ (rq,w) , β−1

)
, (91)

where

µ (rq,w) ,
M∑
j=0

wj ϕj (rq) = wT ϕ (rq) , (92)

M is the order of the model,
w , [w0, w1, ..., wM ]

T (93)

is a vector collecting M + 1 distinct real parameters (called weights),

ϕ (rq) , [ϕ0(rq), ϕ1(rq), ..., ϕM (rq)]
T (94)

is the so called feature vector, {ϕj(x); j = 0, 1, ..., M} are M +1 non linear functions and β−1 is the variance
of the noise affecting the labels. In the following, we assume that

ϕj(x) = xj (95)

7This dataset and all the other synthetic datasets processed in our work have been generated by resorting to various functions available
in the MATLAB and/or Python environment.

8Note that, in this case, dq = 1 and Rq = R in eq. (73), so that the label tq turns into a scalar.



18

for j = 0, 1, ..., M ; consequently, eq. (92) becomes

µ(rq,w) , w0 +

M∑
j=1

wj r
j
q. (96)

It is worth noting that:
a) Adopting the probabilistic model (91) with the mean µ(rq,w) (96) is tantamount to postulating a polynomial

dependence of the label φq on the corresponding observation ∆ψ̂q .
b) The selected model depends on its order M and on the (M + 2)-dimensional parameter vector θ ,[

wT , β
]T

.
c) The parameter M defines the number of degrees of freedom available in the model and, consequently,

determines its bias.
As far as the last point is concerned, it is important to mention that, if M is too small, the resulting predictor

may underfit the observations, since it is unable to accurately represent this dependence on their labels. On the
contrary, if M is too large, the model is able to account for the observations of the training set, but it may
generate inaccurate predictions; in other words, it memorizes the training set, but it is unable to generalise what
has learnt to new examples. The last problem is known as overfitting. For instance, in the considered problem,
good results are obtained if M = 3 is selected.

If the ERM approach is adopted to adjust the parameters of the probabilistic model (91) (and, in particular,
the weight vector w (93)) in an optimal fashion, the obtained result depends on the selected cost function and
cannot be always put in a closed form. However, if the cost function `2(t, t̂) (81) is chosen and noise is neglected
(i.e., β−1 is assumed to be very small), a closed form expression can be derived for ŵ for any M . In fact,
under these assumptions, it can be proved that:

1) The optimal predictor t̂D(r) (85) becomes (e.g., see [71, Sect. 3.1.1, eq. (3.20)])

t̂D(rq) = µ (rq, ŵ) , (97)

where
ŵ = arg min

w̃
LD (w̃) , (98)

w̃ denotes a trial value of w and

LD (w̃) ,
1

Nt

Nt−1∑
q=0

(tq − µ (rq, ŵ))
2 (99)

is the empirical loss (see eq. (86)).
2) The solution of the minimization problem appearing in the RHS of eq. (98) is

ŵ = (ΦT
DΦD)−1 ΦT

D tD, (100)

where
ΦD , [ϕ(r0),ϕ(r1), ...,ϕ(rNt−1)] (101)

is a Nt × (M + 1) matrix and
tD , [t0, t1, ..., tNt−1]

T
. (102)

Given the weight vector ŵ (100), the estimate

β̂−1 ,
1

Nt

Nt−1∑
q=0

(
tq − ŵTϕ (rq)

)2
, (103)

of the noise variance β−1 can be easily evaluated.
Training the algorithm illustrated above consists in computing the weight vector ŵ (100) on the basis of the

available training set D (87). Once training has been carried out, the generalization capability of the resulting
algorithm can be assessed by evaluating the empirical loss (86) on the basis of a different dataset, called test set
Dts and collecting N̄t observations generated in the same way as the ones of D, but in an independent fashion.

In our computer simulations, the training set D (87) and the test set Dts consist of Nt = 200 and N̄t = 25
observations, respectively; the points of these sets are represented in Figs. 5 and 6, respectively. First, the weight
vector ŵ (100) and the estimate β̂−1 (103) of the noise variance have been computed on the basis of D. Then,
the accuracy of the resulting regression algorithm has been assessed on Dts. The predictions associated with
the points of Dts are represented in Fig. 6; in this figure, two (red) straight lines, generated on the basis of the
linear equations

t = µ(r, ŵ)± β̂−1/2, (104)
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are also shown to highlight the meaning of the noise standard deviation 2β̂−1/2. These results lead to the
conclusion that, in the considered scenario, the developed regression method is able to predict the azimuth of a
target with good accuracy. This is confirmed by the fact that the empirical loss computed over the set Dts (i.e.,
the generalization loss) is close to the empirical loss LD (ŵ) evaluated over the set D (see eq. (86)); in fact,
the root mean square error9 (RMSE) evaluated over D is equal to10 1.7◦, whereas that computed over Dts is
equal to 1.3◦.
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Figure 5: Representation of the points of the synthetically generated training set D (87); Nt = 200 is assumed.
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Figure 6: Representation of the points of the synthetically generated test set Dts (blue circles) and of the
corresponding predictions (green triangles) evaluated on the basis of eq. (97); N̄t = 25 is assumed. Two straight
lines, expressed by eq. (104), are also shown.

In general, if the discriminative probabilistic model adopted to solve a specific regression problem is repre-
sented by the parametric pdf f(t|r,θ), a closed form expression for the optimal value

θ̂ = arg min
θ̃
LD

(
θ̃
)
, (105)

9This parameter represents the square root of the empirical loss.
10The RMSE computed over D is given by β̂−1/2.
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of the Dθ-dimensional parameter vector θ is unavailable in most cases. When this occurs, iterative optimization
techniques, like the stochastic gradient descent (SGD) method, can be employed to estimate θ̂ . The application
of the SGD to the considered problem leads easily to the recursive equation

θ̂
(i+1)

= θ̂
(i)

+ γ(i+1)N−1
S

∑
q∈S
∇θ̃ `

(
tq, t̂

(
rq, θ̃

)) ∣∣
θ̃=θ̂

(i) , (106)

with i = 0, 1, ..., NE − 1; here, θ̂
(i)

denotes estimate of θ̂ computed in the i-th recursion, S is a set of NS
integers randomly selected in the set {0, 1, ..., Nt − 1} (with NS < Nt), γ(i) is the learning rate adopted in
the i-th iteration and ∇xf(x) denotes the gradient of the function f(x). It can be proved that, if the learning
rate schedule (i.e., the sequence {γ(i)}) satisfies the so called Robbins-Monro conditions, the SGD converges
to the optimal solution, provided that the function LD(θ̃) is strictly convex. The initial value θ̂

(0)
can be either

randomly selected or it can be inherited from the training procedure accomplished another model; the last solution
represents a specific application of the so called transfer learning technique (see Paragraph VII-A). Iterations
are stopped when negligible variations are observed in the estimates generated by consecutive recursions or an
upper limit set on the overall number of recursions is reached. Once the final estimate of θ̂ has been computed
on the basis of the available training set, the generalization capability of the resulting algorithm can be assessed
by evaluating the empirical loss (86) on a given test set Dts.

Finally, it is worth mentioning that the selection of the parameter Dθ (i.e., of the model complexity) plays a
fundamental role in the considered problem. In fact, if its value is too small (too large), the resulting regression
method can suffer from underfitting (overfitting). The overfitting phenomenon is usually prevented by including
a regularization term in the training of the adopted model. For instance, if the optimization problem (105) is
considered, this result can be achieved by adopting the cost function

LD

(
θ̃
)

+
λ

Nt

∥∥∥θ̃∥∥∥2

, (107)

where λ is a real positive weight influencing the predictive capability of the resulting solution and ||x|| is the
Euclidean norm of the vector x.

3) The Bayesian approach to supervised learning: The frequentist approach illustrated in the previous
paragraph leads to the identification of a specific probabilistic model through the estimation of its parameter
vector θ. The Bayesian approach, instead, consists in formulating our uncertainty about the parameters of the
adopted probabilistic model in statistical terms, i.e. in treating its parameter vector θ as a random vector. In this
paragraph, we show how the specific regression problem analysed in the previous paragraph can be tackled from
this perspective; for this reason, we assume that each observation and its label are 1D (i.e., Dt = Dr = 1), so that
all the labels of the training set D (77) and the associated observations can be collected in the Nt-dimensional
vectors tD (102) and

rD , [r0, r1, ..., rNt−1]
T
, (108)

respectively. If the discriminative probabilistic model (91) introduced in the previous paragraph is exploited, a
Bayesian method based on it can be developed as follows. To begin, the joint pdf

f (t, tD,w|rq, rD, ) = f (tD,w|rD, α, β) f (t|rq,w) (109)

is considered in place of the pdf f(t|rq,w) (91); here, β−1 is the variance of the noise affecting the labels,

f (tD,w|rD, α, β) = f (tD|rD,w, β) f (w|α) (110)

is the joint probability of the (M+1)-dimensional weight vector w (93) and the label vector tD (102) conditioned
on rD (108), on the hyperparameter α and on the parameter β, and f(w|α) is the prior pdf of w. The Gaussian
model

f(w|α) = N
(
w; 0, α−1IM+1

)
(111)

=
( α

2π

)(M+1)/2

exp
{
−α

2
wTw

}
is employed for the second pdf appearing in the RHS of eq. (110) (e.g., see [71, Sect. 1.2.4, p. 30, eq. (1.65)]
); here, IN is the N ×N unit matrix and α represents the precision of the last pdf. The first pdf appearing in
the RHS of eq. (110), instead, represents a likelihood function expressing how likely the response tD are, given
rD, w and β; this function can be factored as

f (tD|rD,w, β) =

Nt−1∏
k=0

f (tk|rk,w, β) , (112)
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and, consequently, can be expressed in terms of the probabilistic model (91).
Given the joint pdf f(t, tD,w, |rq, rD) (109), the predictive distribution f(t|rq, rD, tD) can be evaluated as

f (t|rq, rD, tD) =
1

f (tD|rD, α, β)

∫
f (t, tD,w|rq, rD) dw, (113)

where

f(tD|rD, α, β) =

∫
f (tD,w|rD, α, β) dw

=

∫
f (tD|rD,w, β) f (w|α) dw

(114)

is a marginal likelihood. The expression (113) can be also reformulated as follows. Substituting the RHS of eq.
(110) in that of eq. (109) and the resulting factorization in the RHS of eq. (113) yields

f (t|rq, rD, tD) =

∫
f (tD|rD,w, β) f (w|α)

f (tD|rD, α, β)

·f (t|rq,w) dw. (115)

Then, since
f (tD|rD,w, β) f (w|α)

f (tD|rD, α, β)
= f (w|rD, tD, α, β) , (116)

eq. (115) can be rewritten as

f (t|rq, rD, tD) =

∫
f (w|rD, tD, α, β) f (t|rq,w) dw. (117)

The last equation shows how the predictive distribution is influenced by our uncertainty about the weight vector;
such an uncertainty is expressed by the pdf f(w|rD, tD, α, β).

Let us apply now the mathematical results derived above to the considered regression problem. If the pdf
f(w|rD, tD, α, β) is assumed to be Gaussian and, in particular,

f (w|rD, tD, α, β) = N (w|µD, σ2
D), (118)

where (e.g., see [71, Sec. 3.3, p. 153, eqs. (3.53)-(3.54)])

µD = β σ2
DΦT

DtD, (119)

σ2
D =

(
αIM+1 + βΦT

DΦD
)−1

(120)

and the Nt × (M + 1) matrix ΦD is given by eq. (101), the expression

f (t|rq, rD, tD) = N (t;µ(rq), σ
2(rq)) (121)

can be derived from eq. (117) (e.g., see [71, Sec. 1.2.4, p. 31, eq. (1.69)] for a proof of this result); here,

µ (rq) = βϕ (rq)
T

S

Nt−1∑
k=0

ϕ (rk) tk, (122)

σ2 (rq) = β−1 +ϕ (rq)
T

Sϕ (rq) , (123)

ϕ(rq) is the (M + 1)-dimensional vector (94) and

S−1 , α IM+1 + β

Nt−1∑
k=0

ϕ (rk) ϕ (rk)
T (124)

is an (M + 1) × (M + 1) matrix. It is important to point out that the variance σ2(rq) (123) of the predictive
distribution f (t|rq, rD, tD) (121) (and, consequently, the accuracy of the prediction), unlike that of the Gaussian
model f(t|rq,w) (91), is given by the sum of two terms; the first term originates from the noise affecting the
labels, whereas the second one from our uncertainty about the parameter vector w. Moreover, the second term
is influenced by the considered observation (i.e., it depends on rq); in practice, smaller values of the standard
deviation σ(rq) are usually obtained when rq is close to the observations of the training set.

The accuracy of the new regression algorithm described above has been assessed on the test set shown in
Fig. 6 after training it on the set illustrated in Fig. 5; moreover, α = 0.05 has been selected in this case. The
prediction µ(rq) evaluated on the basis of eq. (122) for each observation of the test set and the corresponding
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standard deviation σ (rq) (i.e., the square roof of the RHS of eq. (123)) are represented in Fig. 7. The RMSE
evaluated over the test set is equal to 1.4◦ and is approximately equal to the one computed over the training set.
Note that this value is comparable to the ones computed for the predictor described in the previous paragraph
(and based on a frequentist approach). For this reason, in this case, the Bayesian approach does not offer any
advantage with respect to the frequentist one.
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Figure 7: Representation of the regression technique based on the probabilistic model (121). The blue circles
represent the true domain points, whereas the green triangles the corresponding predictions; the red curves are
generated by interpolating the points generated on the basis of the two equations tq = µ(rq) ± σ(rq), with
rq ∈ Dts.

4) Specific methods for binary classification: In the remaining part of this section we focus on a specific su-
pervised problem, namely binary classification, and develop two classification methods, based on discriminative
deterministic models, to solve it. Moreover, we show how different classification methods can be combined to
improve the overall accuracy. Note that, in general, classification methods based on discriminative deterministic
models are able to represent the deterministic mapping between domain points and labels through specific
functions, called discriminant functions. In the field of radar systems, these methods can be exploited for target
detection.

The first method we take into consideration in this paragraph is the support vector machine (SVM) technique;
in the following, we limit our analysis to its linear form, for simplicity, and assume that the label of each
observation can take on only the values ±1 (consequently, Dt = 1). The SVM technique processes the training
set D (77) to find the maximum-margin hyperplane; this divides the subset of observations for which tq = 1
from that for which tq = −1 in a way that the distance between itself and the nearest point from either group is
maximized. In the considered case, the above mentioned hyperplane can be defined as the set of points satisfying
the equation

y(rq,w) = 0 (125)

for any q, where
y(rq,w) , wT rq + b , (126)

rq is the q-th observation of D (see the definition (78)), w represents a Dr-dimensional weight vector (expressed
by eq. (93), with M = Dr − 1) and b is a real parameter called bias. The adoption of a classification strategy
based on the approach illustrated above relies on the implicit assumption that, if the parameters w and b
appearing in eq. (126) are properly selected, the dataset D (77) is linearly separable in the feature space. In
fact, when this occurs, two parallel hyperplanes separating the above mentioned two subsets of observations and
having their mutual distances as large as possible can be found. If the observations of the set D are normalised,
the hyperplanes delimiting the subsets of observations associated with tq = 1 and tq = −1 can be represented
by the equations

y(rq,w) = 1 (127)

and
y(rq,w) = −1, (128)
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respectively, i.e. briefly as
tq y(rq,w) = 1. (129)

The last formula expresses the canonical representation of the decision hyperplanes. Based on the last result,
the constraint according to which each point of the set D (77) must lie on the correct side of each of the two
hyperplanes (i.e., that it must fall in the correct decision region) can be formulated as

tq y(rq,w) ≥ 1 (130)

for any q.
A method for the optimization of the parameters b and w appearing in eq. (126) can be developed as follows.

The perpendicular distance of the point rq from the decision hyperplane can expressed as

tq y(rq)

||w||
=
tq
(
wT rq + b

)
||w||

(131)

for any q; its minimum value over the set D is known as margin. The optimal choice (ŵ, b̂) of the parameters
(w, b) is the one maximizing the margin and, consequently, can be evaluated as(

ŵ, b̂
)

= arg max
w̃,b̃

{
1

‖w̃‖
min
q

[
tq(w̃

T rq + b̃)
]}

, (132)

where (w̃, b̃) denotes a trial value of the couple (w, b); the data points closest to the max-margin hyperplane
are called support vectors. Unluckily, the optimization problem appearing in the RHS of eq. (132) does not
admit a simple solution. However, since there is always at least one support vector satisfying eq. (129), this
problem can be reformulated in a simpler form, i.e. as the maximization of ||w̃||−1 or, equivalently, as

ŵ = arg min
w̃

||w̃||2

2
(133)

under the constraint expressed by eq. (130); note that the parameter b̃ is no more visible in the last formulation,
but its value is implicitly determined by the above mentioned constraint. To solve the constrained optimization
problem (133), the Lagrangian function

L
(
w̃, b̃, ã

)
,
||w̃||2

2
−
Nt−1∑
q=0

ãq{tq(w̃T rq + b̃)− 1}. (134)

is defined; this function depends not only on the parameters w̃ and b̃, but also on the non negative parameters
{ãq}, called Lagrange multipliers and collected in the vector ã , [ã0, ã1, ..., ãNt−1]T (the q-th element of
this vector is associated with the q-th constraint expressed by eq. (130)). Taking the partial derivatives of the
function L(w̃, b̃, ã) (134) with respect to w̃ and b̃ and setting them to zero results in

Nt−1∑
q=0

ãq tq = 0 (135)

and

w̃ =

Nt−1∑
q=0

ãq tq rq, (136)

respectively. Then, substituting eqs. (135)-(136) in the RHS of eq. (134) produces the so called dual represen-
tation of the margin maximization problem. Solving the last problem requires maximizing the function

L (ã) ,
Nt−1∑
q=0

ãq −
1

2

Nt−1∑
q=0

Nt−1∑
k=0

ãq ãk tq tk(rTq rk) (137)

with respect to the vector ã, under the set of constraints {ãq ≥ 0 for any q} and the constraint expressed by
eq. (135) and produces the optimal value â of the vector ã. Given â, the optimal values ŵ and b̂ of w̃ and b̃,
respectively, are computed as (see eq. (136))

ŵ =

Nt−1∑
q=0

âq tq rq, (138)

and

b̂ = N−1
SM

∑
q∈SM

(
tq −

∑
k∈SM

âk tk rTq rk

)
, (139)
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respectively, where SM and NSM denote the set of support vectors and its cardinality, respectively. Given (ŵ,
â, b̂), the classification of a new data point (rq, tq) (with q > Nt − 1) is accomplished on the basis of the sign
of the quantity (see eq. (126))

y(rq, ŵ) , ŵT rq + b̂, (140)

that can be also expressed as (see eq. (138))

y(rq) =

Nt−1∑
k=0

âk tk rTq rk + b̂. (141)

As already mentioned above, this classification method is derived under the assumption that the set of feature
vectors {rq} is linearly separable. When this does not occur, a specific kernel function, denoted φ(·), can be
used to map the vector rq (78) into the new feature vector φ(rq) for any q (e.g., see [71, Chap. 6]). The objective
is transforming the available classification space into a one characterized by linear boundaries; in principle, the
dimensionality of φ(·) may be different from Dr. Well known examples of the kernels employed with the SVM
method are the polynomial, the Gaussian and the Laplace kernels. It is important to note that kernel selection
is very critical, since its choice can significantly influence classification accuracy.

The second method we take into consideration is the so called K nearest-neighbour (K-NN) technique [62],
that represents an example of non-parametric approach to the classification problem. In the case of binary
classification, this method can be summarised as follows. The points of the training set D (77) are partitioned
into two classes, denoted C0 and C1, where

Ck , {(rqk , tqk); qk = 0, 1, ..., Nk − 1}, (142)

with k = 0 and 1, and Nk denotes the number of points belonging to the k-th class, so that
1∑
k=0

Nk = Nt. (143)

Let us assume now that a new Dr-dimensional observation, denoted rq (with q > Nt − 1) and called query
instance, becomes available. The K-NN strategy classifies rq , i.e. assigns it to one of the two classes defined
above, on the basis of the votes of its K nearest neighbours (i.e., of the K points of D closest to rq); here,
K is an integer parameter, whose value is usually small and odd. The identification of the nearest neighbours
unavoidably requires the computation of the distance of rq from all the points of the set D; if the Euclidean
distance is employed, the distance of rq from rt ∈ D is given by

dq , ||rt − rq||, (144)

with t = 0, 1, ..., Nt − 1. Given the set {dq}, consisting of Nt distances, the nearest neighbours {rnn,j ;
j = 0, 1, ..,K − 1} are identified by searching for the K points of D that satisfy the inequality

dq < Vq (145)

where Vq is a fixed threshold, such that all the required K points are found. Then, if Kk denotes the number
of nearest neighbours belonging to Ck (i.e., the number of representatives of Ck), rq is assigned to the class
having the largest number of representatives, i.e. to C0 (C1) if K0 > K1 (K1 > K0).

It is worth pointing out that the parameter K controls the degree of smoothing, i.e. the size of the regions
assigned to each class. In fact, a small value of K usually results in many small regions assigned to each
class, whereas a large one leads to fewer larger regions [71, Par. 2.5.2]. Moreover, if K = 1 is selected, a
nearest-neighbour classifier is obtained; in this case, if the dataset is quite large, it can be shown that the error
rate of a K-NN classifier is never larger than twice the minimum achievable error rate of an optimal classifier11,
i.e. of a classifier having full knowledge of the pdf of the observations [72].

Multiple classification methods can be combined to improve the overall accuracy; this idea leads to the
development of the so called ensemble classifiers [71, Ch. 14.2]. Specific examples of these classifiers are
represented by the so called bootstrap aggregating (also known as bagging [73]) and boosting methods [71].
The first method can be employed when M predictions, denoted {y(m)(rq); m = 0, 1, ...,M−1} and generated
by M different classifiers (called base classifiers), are available; the output is computed as

YM ,
1

M

M−1∑
m=0

y(m) (rq) , (146)

11The optimal classification strategy can be easily formulated on the basis of eq. (83) (see Paragraph III-B1).
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i.e. as an average of all the above mentioned predictions and the predicted class is identified by the sign of this
quantity; this reduces the impact of the error due to each single classifier M times. This method is really effective
when the errors originating from distinct classifiers are uncorrelated; unluckily, in some cases, such errors may
be significantly correlated. When this occurs, classification accuracy can be improved through boosting and, in
particular, through the adaptive boosting method, also known as AdaBoost [74]. In fact, the AdaBoost technique
can achieve good accuracy even if its M base classifiers do not perform well (say, their behaviour is only
slightly better than random), i.e. they are weak learners. If a binary classification problem is considered, the
training phase of this method evolves through M classification stages, each involving a distinct base classifier;
moreover, this method is initialised assigning the same weight to all the observations, i.e. setting w̃(0)

q = 1/Nt
for any q, where w̃(0)

q denotes the initial weight assigned to the q-th observation. The m-th stage (with m = 0,
1, ..., M − 1) evolves through the following steps:

1) The m-th base classifier is trained to minimise the weighted error function

J (m) ,
Nt−1∑
q=0

w̃(m)
q I(y(m)(rq)), (147)

where
I
(
y(m) (rq)

)
,

{
1 if y(m) (rq) 6= tq
0 otherwise

(148)

and {w̃(m)
q } is a set of non negative weights such that

Nt−1∑
q=0

w̃(m)
q = 1. (149)

2) The weighted measure of the error rate

ε(m) ,

∑Nt−1
q=0 w̃

(m)
q I

(
y(m) (rq)

)∑Nt−1
q=0 w̃

(m)
q

(150)

and the weighting coefficient (e.g., see [71, Par. 14.3, eq. (14.16)])

α(m) , ln

(
1− ε(m)

ε(m)

)
(151)

are computed.
3) The weight assigned to the q-th data point is updated on the basis of the recursive formula (e.g., see [71,

Par. 14.3, eq. (14.18)])
w̃(m+1)
q = w̃(m)

q exp
(
α(m)I

(
y(m) (rq)

))
(152)

for any q.
These steps force the classifier employed in each stage to put more emphasis on those points that have been

misclassified by previous classifiers. In fact, an higher error rate entails a larger increase of the weight assigned
to the q-th observation (see eqs. (151) and (152)), provided that it has not been correctly classified (i.e., that
I(y(m)(rq)) = 1). The final prediction generated by the AdaBoost technique is

YBM
(rq) = sign

(
M−1∑
m=0

α(m) y(m)(rq)

)
. (153)

In assessing the accuracy of any classification method, N -fold cross validation can be used when the size of
the available dataset is not so large. This consists in:

a) randomly partitioning the whole available dataset in N blocks;
b) assessing the classification accuracy on the n-th block (taken as test set) after that the considered method

has been trained on the basis of the remaining (N − 1) blocks (with n = 0, 1, ...., N − 1).
At the end of this procedure, N distinct accuracies are available; the final score is expressed by their average.

Let us focus now on a specific application of the SVM and K-NN techniques to an FCMW radar system
equipped with the antenna array shown in Fig. 4-b) (and characterized by d = λ/4) and operating in the presence
of at most a single point target. In the q-th trial, the set {r0,q, r1,q, r2,q, r3,q}, consisting of four N -dimensional
noisy vectors, each associated with one of the NV = 4 virtual receive channels, is available for any q (see eq.
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(51)). The dimensionality reduction technique illustrated in Paragraph III-A is applied to this set in order to
extract the 4-dimensional (4D) feature vector

Rq =
[
R

(q)
0 , R

(q)
1 , R

(q)
2 , R

(q)
3

]T
,

[∣∣∣X(q)
0

∣∣∣ , ∣∣∣X(q)
1

∣∣∣ , ∣∣∣X(q)
2

∣∣∣ , ∣∣∣X(q)
3

∣∣∣]T ; (154)

here,
X(q)
v = Mr X

(q)

v,l̂
(155)

and X(q)

v,l̂
is computed on the basis of eqs. (54), (58) and (61), i.e. by sampling the spectrum X̄

(q)
v (f) (49) of the

zero-padded sample sequence acquired on the v-th virtual antenna at the target frequency f̂m (60) (with v = 0,
1, 2 and 3). The target detection strategy we adopt in our radar system is different from the one illustrated in
Paragraph III-A and based on the computation of the average power

Pq , N−1
V

NV −1∑
v=0

|X(q)
v |2, (156)

and on its comparison with a threshold (see eqs. (57) and (59)). This choice is motivated by the fact that, the
amplitude a(q)

v of the sinusoid observed on the v-th virtual channel and associated with the detected point target
is assumed to depend on the antenna index12 v; the last assumption allows us to account for: a) the dependence
of the target reflectivity on the direction of observation; b) the differences in the amplifications introduced by
distinct receive chains of the employed MIMO radar. In fact, in the considered radar system, a target is detected
if the inequality

max
v∈{0,1,2,3}

∣∣∣X(q)
v

∣∣∣2 > Pda, (157)

holds, i.e. if |X(q)
v |2 > Pda for at least a single value of v. This strategy outperforms the one based on the

average power Pq (156) in terms of missed detection probability; however, the price to be potentially paid for
this is an increase of the false alarm probability, i.e. of the probability of erroneously detecting the presence of
target.

In our experiment, the training set

D , {(Rq , tq); q = 0, 1, ..., Nt − 1}, (158)

referring Nt = 100 independent trials, has been synthetically generated. Half of its data are associated with the
detection of a real target, the remaining half with the detection of a false target; for this reason, the vector Rq

(154) is labelled by tq = 1 (−1) in the presence of a real (false) target. Moreover, the following assumptions
have been made in generating the q-th observation of the training set D and the test set Dts:

a) The amplitude a(q)
v of the sinusoid observed on the v-th antenna in the presence of a real target is uniformly

distributed over the interval [0, 1] V;
b) The random variable a(q)

v is independent of a(p)
u for any u 6= v and/or p 6= q.

c) The range Rq and the azimuth φq of the target (if present) are uniformly distributed over the intervals
[Rm , RM ] = [1.0 m, 5.0 m] and [φm , φM ] = [−60◦, 60◦], respectively, for any q.

The values selected for most of the parameters of the considered radar system are equal to those listed in the
examples of Paragraphs III-B2 and III-B3, the only differences being represented by the fact that:

a) the standard deviation of the noise affecting the received signal samples is σw = 1.0 V (see eq. (7));
b) the threshold Pda = 0.3 V2Hz−1 is employed by the detection algorithm based on eq. (157).
The dataset D (158) has been employed to train the linear SVM, K-NN and Adaboost techniques; K = 4

and M = 100 has been selected for the second classifier and the third one, respectively. Moreover, the weak
learner employed in the m-th step of the Adaboost technique consists in comparing one of the components
of the vector Rq (154) with a threshold13. More specifically, the classification criterion adopted by each weak
learner can be expressed as

R(q)
v

tq=1
>
<

tq=−1

Pv (159)

12For this reason, the assumption we made in writing eq. (7) does not hold any more.
13This simple classifier can be interpreted as a form of a decision tree known as decision stump and characterized by a single node (e.g.,

see [71, Ch. 14.3-14.4]



27

where the index v is randomly selected in the set {0, 1, 2, 3} and Pv ∼ U(min
q

(R
(q)
v ),max

q
(R

(q)
v )) is the decision

threshold associated with the v-th feature R(q)
v acquired in the q-th trial. Note that the classification criterion

(159) leads to partitioning the observation space into two regions, separated by an hyperplane (perpendicular to
one of the reference axes).

In this case, the aim of the three classifiers is discriminating between the presence of a real target and that
of a false target any time a target is detected; for this reason, they are exploited to reduce the false alarm
probability. Some numerical results are shown in Figs. 8, 9 and 10, that refer to the SVM, to the K-NN and to
the Adaboost techniques, respectively; in all these figures, the set of points14 {(R(q)

0 , R
(q)
1 )} extracted from the

dataset D (158) are represented on a Cartesian plane and are identified by a green (blue) circle if associated
with a false (real) target. These results deserve the following comments:

1) SVM training leads to generating the linear decision boundary shown in Fig. 8; in this figure, a new
observation is classified as a false target, since it falls in the lower decision region.

2) The K-NN method classifies the new observation shown in Fig. 9 as a false target, since class C1 is the
one having the largest number of representatives contained in the black circumference (having radius equal to
Vq = 0.07 V and centered at the new observation).

3) Adaboost training leads to generating the decision boundary shown in Fig. 10. In the same figure, the
critical points of the base classifiers (i.e., their misclassified points) are also shown; as it can be easily inferred
from eq. (152), their weights of these points tend to increase with iterations. In the same figure, a new observation
is classified as a false target, since it falls in the lower decision region.

In the considered scenario, our computer simulations have evidenced that the accuracy achieved by the
considered classification techniques is around 90%, assuming N -fold cross validation with N = 5; in particular,
the accuracies of SVM, K-NN and Adaboost are 91%, 89% and 93%, respectively.
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Figure 8: Representation of the decision mechanism employed by a linear SVM classifier. The points of the
training set corresponding to false (real) targets are identified by the green (blue) circles. The decision boundary
of the SVM is represented by a dashed line, whereas the red crosses identify support vectors. A new observation,
identified by a black cross, is classified as a false target, since it falls in the lower half plane delimited by the
decision boundary.

The binary classification methods illustrated above can be also exploited to develop solutions to multi-class
problems; in fact, in general, any problem of this type can be represented as a sequence of binary classification
problems [75]. This approach is exemplified in Paragraph VI-A and, in more detail, in Paragraph VIII-A, where
its application to the classification of three human activities is illustrated. In particular, in Paragraph VIII-A,
it is shown how a specific solution to this problem can be devised by exploiting pairwise classification (also
known as round-robin class binarization). If K denotes the overall number of classes, this classification method
is based on a) combining L = K(K − 1)/2 binary classifiers (called base learners) and b) using the so called
one-versus-one coding scheme. In this case, each binary classifier is trained assuming one class as positive,
another class as negative (the labels associated with the q-th observation are tq = 1 and tq = −1 for the first

14Note that the observations of the dataset belong to a 4D space in this case; for this reason, all their components cannot be represented
in the same figure.
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Figure 9: Representation of the decision mechanism employed by a K-NN classifier (with K = 4). The points of
the training set corresponding to false (real) targets are identified by the green (blue) circles. A new observation,
identified by a black cross, is classified as a false target, since class C1 is the one having the largest number of
representatives contained in the black circle.
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Figure 10: Representation of the decision mechanism employed by the Adaboost classifier. The points of the
training set corresponding to false (real) targets are identified by the green (blue) circles. The decision boundary of
the Adaboost is represented by a dashed line, whereas the red crosses identify critical targets. A new observation,
identified by a black cross, is classified as a false target, since it falls in the lower region delimited by the decision
boundary.

class and the second one, respectively), and ignoring all the other classes (the label associated with this case is
tq = 0). When a new observation is available, it is processed by each binary classifier, so that all its possible
assignments to every class pair are taken into consideration. This procedure leads to generating a codeword of
size L for each class; the l-th element of this codeword can take on the values ±1 or 0 on the basis of the class
membership established by the l-th binary learner (with l = 0, 1, ..., L − 1). The K codewords produced by
the L learners in response to the q-th observation represent the rows of the K × L design matrix Tq = [t

(q)
k,l ];

note that the presence of a ‘0’ on the k-th row of the l-th column for any q means that all the observations
associated with the k-th class are ignored by the l-th classifier. The class predicted for the q-th observation is
the one minimizing the average of the binary losses over the L different binary learners [76]; in practice, the
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value of the class index for the q-th observation is computed as

k̂q = arg min
k∈{0,1,...,K−1}

∑L−1
l=0 |t

(q)
k,l | g

(
t
(q)
k,l , yq,l

)
∑L−1
l=0 |t

(q)
k,l |

, (160)

where yq,l is the score15 assigned by the l-th binary learner to the considered observation and

g
(
t
(q)
k,l , yq,l

)
,

1

2
exp (−t(q)k,lyq,l) (161)

is the binary loss function.

C. Unsupervised learning

Unsupervised learning is less well defined than its supervised counterpart, since it deals with learning some
specific properties of the mechanism on which the generation of the considered set of observations is based.
Unlike supervised methods, unsupervised learning operates over unlabelled datasets. In the following, we assume
that:

1) Learning is based on the dataset

D , {rq; q = 0, 1, ..., Nt − 1}, (162)

that consists of Nt i.i.d. unlabelled Dr-dimensional observations;
2) All the available observations are realizations of the same random variable r, characterized by its unknown

pdf f(r).
The goal of unsupervised methods is to learn some useful properties of the pdf f(r). It is important to keep

in mind that the Dr elements which the random vector r is made of can be highly correlated. These mutual
dependencies are often modelled by introducing a new vector, denoted z and collecting the so called latent or
hidden variables. This approach allows to model the dependencies between the elements of the observations
indirectly, i.e. through the direct dependencies between such elements and the hidden vector. The relationship
between the vectors z and r can be modelled in different ways. This results in various different models that can
be adopted in unsupervised learning; further details about this issue can be found in ref. [77].

In the remaining part of this paragraph, we first list the typical unsupervised problems tackled in the field of
MIMO radar systems. Then, we describe two specific unsupervised methods and illustrate their application to
specific problems in that field.

1) Unsupervised problems: Unsupervised learning methods can be exploited to solve the following four
relevant technical problems:

a) Clustering - Data clustering consists in partitioning the dataset D (162) in a number of groups such that
data points in the same group are dissimilar from the data points belonging to all the other groups. In clustering
problems, an hidden random variable, called class variable, is usually added to all the elements of the dataset;
this variable describes the cluster membership for every observation of the dataset. In the last years, significant
attention has been paid to the use of clustering methods in automotive radar systems, since distinct clusters
can be related to different types of targets, like pedestrians, cars or obstacles. A description of two clustering
methods employed in the above mentioned field is provided in Paragraph VI-D.

b) Dimensionality reduction - This aims at generating a reduced dimensionality representation of the obser-
vations. Such a representation eases the visualization and interpretation of the dataset, and the identification of
specific patterns in it. A well known technique for dimensionality reduction is the principal component analysis
(PCA); its description is provided in Paragraph VI-C, whereas its application to a dataset referring to a specific
MIMO radar system is illustrated in Paragraph III-C2.

c) Feature extraction - This consists in deriving a vector-valued function, denoted g(·) and such that g(r)
represents a useful and lower-dimensional representation of the feature vector r; the vector g(r) can be used as
an input to a supervised learning method. A well known method for synthetizing the function g(·) is represented
by the autoencoder, as illustrated in Paragraph IV-D3. A simple method for feature extraction in a MIMO radar
system has been described in Paragraph III-A; other techniques are illustrated in Paragraphs VI-A and VI-D,
where their use of radar in human motion characterization and in autonomous driving, respectively, is considered.

d) Generation of new samples - This aims at producing new samples of a random vector r in a way that
these are approximately distributed according to its true pdf f(r). Methods for generating new samples can be
exploited to de-noise data and for interference mitigation in autonomous driving applications, as illustrated in
Paragraph VI-D.

15This quantity can be computed on the basis of eq. (141) (eq. (153)) if the SVM (Adaboost) method is used.
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2) Specific unsupervised methods: In this paragraph we focus on two specific unsupervised methods, namely
the PCA technique for dimensionality reduction [78] and the K-means algorithm for data clustering [79].

The PCA method is employed to project the dataset D (162) onto a new space, called principal subspace
and having dimensionality D′r < Dr; in doing so, the variance of the projected data is maximised, in order
to retain the most relevant variations characterizing the original dataset. This method can be easily understood
by illustrating its application to the case in which Dr = 4, D′r = 1 and rq = Rq , where the 4D vector Rq is
expressed by eq. (154). In this case, the 4D observation Rq is projected onto the scalar

R
′

q , uT0 Rq , (163)

where u0 is a 4D unit vector [71]. If we define the data covariance matrix

∆ ,
1

Nt

Nt−1∑
q=0

(
Rq − R̄

) (
Rq − R̄

)T
, (164)

where

R̄ ,
1

Nt

Nt−1∑
q=0

Rq , (165)

is the data mean, the variance
σ2
R = uT0 ∆ u0 (166)

of the projected dataset is maximized if
uT0 ∆ u0 = λ0, (167)

where λ0 is the largest eigenvalue of the matrix ∆ (164) and u0 (that represents the first principal component)
is the associated eigenvector.

In general, if a D′r-dimensional projection space is considered, the principal components are represented by
D′r eigenvectors {ul; l = 0, 1, ..., D′r − 1} of the data covariance matrix ∆; these eigenvectors are associated
with its D′r largest eigenvalues {λl; l = 0, 1, ..., D′r − 1} and are chosen to be orthonormal. The quality of
the resulting transformation can be assessed by evaluating the distortion measure (e.g., see [71, Par. 12.1.2, eq.
(12.18)])

J ,
Dr−1∑
l=D′r

λl, (168)

i.e., the sum of the eigenvalues associated with the eigenvectors that are orthogonal to the principal subspace;
the smaller is the value taken on by this parameter, the better is the original dataset approximation.

In our experiment, the PCA method has been applied to extract a 2D dataset from the 4D dataset which
Figs. 8-10 refer to (see Paragraph III-B4). The 2D points of the new dataset, denoted D′, are represented in
the principal component biplot16 shown in Fig. 11. In this figure, the axes of the Cartesian plane are associated
with the principal components, whereas the vector wi, represented by an oriented segment, allows to quantify,
through its amplitude and orientation, the weight of the contribution provided by the i-th component of the
original feature vectors (i.e., of the set {Rq}; see eq. (154)) to the principal components (with i = 0, 1, 2 and
3). From Fig. 11 it is easily inferred that:

1) The weights of the contributions due to R(q)
2 and R(q)

3 are similar and are about half of those provided by
R

(q)
0 and R(q)

1 .
2) The new 2D observations referring to real (false) targets are spread over the right (left) half plane of the

Cartesian plane.
The K-means method allows to partition the available dataset D into K clusters, each collecting the samples

whose mutual distances are small with respect to the distances from the points outside the cluster itself. In
practice, if the center of the k-th cluster is denoted µk (with k = 0, 1, ..., K− 1), the K-means method assigns
the q-th data point rq to the cluster whose center is closest to rq . This strategy can be formalised as the one
minimizing the so-called distortion measure

V ,
Nt−1∑
q=0

K−1∑
k=0

pq,k||rq − µk||2, (169)

with respect to the variables {pq,k} and the vectors {µk}; here, pq,k is a binary indicator variable implementing
the 1-of-K coding scheme, i.e. such that pq,k = 1 (pq,k = 0) if rq is (is not) assigned to the k-th cluster. The

16A detailed description of how a bi-plot is generated can be found in ref. [78, Sect. 5.3]
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Figure 11: Biplot of the dataset D′ generated by the PCA technique. The points of the reduced dataset
corresponding to false (real) targets are identified by the green (blue) circles. The four oriented segments allow
to quantify the contribution provided by each of the four components of the original feature vector to the two
principal components.

problem of minimizing the function V (169) is solved by means of an iterative procedure, whose iterations
consist of two steps. In the first step, known as expectation, the metric V is minimized with respect to each of
the variables {pq,k}, keeping the centers {µk} fixed; on the contrary, in the second step, called maximization, the
same metric is minimized with respect to the vectors {µk}, keeping the variables {pq,k} fixed. More specifically,
in the first step, the values of the variables {pq,k} employed are computed as

pq,k ,

{
1 if k = arg min

j
||rq − µj ||2

0 otherwise
(170)

for any q (in other words, the q-th data point is assigned to the cluster whose center is closest to it). Then, in
the second step, the center of the k-th cluster is evaluated as

µk =

∑Nt−1
q=0 pq,krq∑Nt−1
q=0 pq,k

, (171)

with k = 0, 1, ..., K − 1. It is important to point out that:
1) In principle, the initial values of the cluster centers can be arbitrarily chosen. In this case, however, the

algorithm may require several iterations to reach convergence. A better initialization procedure consists in
choosing the initial centers in a random fashion.

2) The sum appearing in the denominator of the RHS of the eq. (171) gives the overall number of points
assigned to the k-th cluster; consequently, the cluster center evaluated on the basis of the same equation
represents the mean of all the data points rq assigned to the k-th cluster.

3) Iterations are stopped when is no further change in the assignments of the data points to the K clusters or
their overall number has reached a fixed threshold.

Let us analyse now an application of the K-means technique to the dataset D (162), where Nt = 100,

rq ,
[
R̂q , φ̂q

]T
, (172)

and R̂q and φ̂q represent the estimates of the range and of the azimuth, respectively, of the single point target
observed in the q-th trial; these estimates are generated by the algorithm illustrated in Paragraph III-A and
employed in a FCMW radar system equipped with the antenna array illustrated in Fig. 4-b) (d = λ/4 is
assumed). Moreover, in generating the q-th observation of the dataset D (162), the following assumptions have
been made:

a) The amplitude a(q)
v of the sinusoid observed on the v-th virtual antenna is uniformly distributed over the

interval [0.3, 1.0] V.
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b) The random variable a(q)
v is independent of a(p)

u for any u 6= v and/or p 6= q.
c) The overall number of time-domain samples (N ) acquired from each of the four RX antennas is equal to

512 and the standard deviation σw of the noise affecting them is equal to 1.0 V (see eq. (7)).
d) The oversampling factor Mr = 4 and the threshold Pth = 0.5 V2Hz−1 are employed by the detection

algorithm based on eqs. (58)-(59).
e) The range Rq of the target detected in the q-th trial is uniformly distributed over the interval [Rm , RM ] =

[1.0 m, 9.0 m], whereas its azimuth is randomly selected in the set of relative integers ranging from φm to φM ,
with φM = −φm = 45◦.

f) The parameters of the employed radar system take on the same values as those selected for the example
illustrated for the SVM and K-NN methods in Paragraph III-B4.

In this case, the K-means algorithm is employed to group the detected targets in three different clusters
(consequently, K = 3 is selected) on the basis of their azimuth only; the points of the first (third) cluster are
characterized by φq < −15◦ (φq > 15◦), whereas those of the second one by |φq| ≤ 15◦.

The observations collected in the synthetically generated dataset and their partitioning into the clusters
generated by the K-means technique are shown in Fig. 12, where circles of different colours are used to
identify targets assigned to distinct classes. From these results it is easily inferred that:

1. all the points are correctly classified on the basis of their azimuth, even if an unlabelled dataset is used;
2. each of the centroids is located in the middle of the corresponding cluster and its position is influenced by

the distribution of the detected targets along the range dimension.
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Figure 12: Representation of three clusters generated by the K-means algorithm. The green (red) circles refer
to the targets detected on the left (right) of the considered radar system, whereas the blue circles to the targets
detected in front of it. The black crosses identify the centroids of the clusters.

IV. DEEP LEARNING TECHNIQUES FOR COLOCATED MIMO RADAR SYSTEMS

In this section, we first analyse some relevant differences between ML and DL techniques. Then, we introduce
readers to deep neural networks by illustrating their architecture, their training and a specific application to an
FMCW radar system. Finally, we briefly illustrate a few fundamental DL methods employed in the field of
MIMO radar systems.

A. Relevant differences between ML and DL techniques

Machine learning techniques allow to achieve satisfying accuracy in various applications at the price of a
reasonable computational complexity. Nevertheless, in pattern recognition problems, their capability is often
limited by the features selected to learn common patterns and to detect them; in fact, in these cases, devising a
transformation able to extract a suitable internal representation from the observed raw data requires good expertise
and engineering skills [80]. A revolutionary data-driven approach to feature extraction is offered by DL methods.
Despite the significant computational complexity of these methods, in recent times their implementation has
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become possible thanks to the availability of low-cost powerful graphic processing units (GPUs), which make
the exploitation of their inner parallelism possible.

Deep learning solves the problem of feature extraction by adopting a multilayer representation of raw data.
This fundamental principle is exemplified by a feedforward deep network, also known as multilayer perceptron
(MLP); such a network is able to represent a complicated mathematical function by composing multiple simpler
functions, i.e. multiple layers. Generally speaking, a MLP consists of three different types of layers: an input
layer, multiple hidden layers with learnable weights and an output layer. Its architecture can be represented
through a directed acyclic graph (DAG), whose structure is exemplified in Fig. 13, that refers to the specific
case of a fully connected MLP containing a single inner layer. The basic building block of each layer is the so
called neuron. In general, the output z(k)

j generated by the j-th neuron of the k-th layer can be expressed as

z
(k)
j = h

(
a

(k)
j

)
, (173)

with j = 1, 2, ..., Mk and k = 1, 2, ..., K; here, Mk denotes the overall number of neurons in the k-th layer,
K denotes the overall number of layers, h(·) is a differentiable non-linear function (i.e., a sigmoid function, an
hyperbolic tangent or rectifier linear unit) and the quantity

a
(k)
j ,

Mk−1∑
i=1

w
(k)
j,i z

(k−1)
i + w

(k)
j,0 , (174)

known as activation function, is a linear combination of the neuron inputs {z(k−1)
i ; i = 1, 2, ..., Mk−1} (whose

learnable weights are the Mk parameters {w(k)
j,i ; i = 1, 2, ..., Mk−1}) and the bias w(k)

j,0 . The outputs of the
neurons of the k-th layer are collected in the vector

z(k) ,
[
z

(k)
1 , z

(k)
2 , ..., z

(k)
Mk

]
, (175)

that feeds the successive hidden layer. The input layer is fed by the Dx-dimensional input vector

x , [x1, x2, ..., xDx
] , (176)

whereas the output layer generates the Dy-dimensional output vector

y ,
[
y1, y2, ..., yDy

]
, (177)

on the basis of eqs. (173) and (174).
It is important to mention that: a) the learnable weights of the hidden layers can be interpreted as an encoded

representation of the inputs; b) unlike ML methods, where a number of manually extracted features are chosen
a priori, the considered neural network automatically extracts features through the use of non linear functions.
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Figure 13: Directed acyclic graph describing the architecture of a fully-connected neural network. Variables are
represented by circles (i.e., by nodes), whereas weights by the links between nodes. A single inner layer (i.e.,
K = 1) is assumed for simplicity.
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B. Training of a deep neural network

Training a deep neural network is an art [77]. Its objective is the same as that already illustrated for ML
methods, i.e. the minimization of a loss or an error function (see Paragraph III-B). However, in a feedforward
neural network, this result is achieved by using a local message passing scheme, according to which the internal
representations of each neuron are sent, alternately, forward and backward along the graph representing the
network itself (e.g., see [71, Par. 5.3]). This scheme, known as back-propagation [81], operates as follows
(batch processing is assumed here). For each pattern of the training set, the activations of the hidden and
output layers of the considered network are computed through successive applications of eqs. (174) and (173),
respectively; this process is known as forward propagation, since it proceeds from the input to the output of the
network. The back-propagation algorithm, instead, allows to compute the gradient of the selected error function,
denoted E and corresponding to the loss function defined for ML methods (see eq. (80)), with respect to the
weights appearing in each layer. The derivative of the error function E with respect to the weight w(k)

j,i , referring
to the i-th input of the j-th neuron in the k-th layer of the network, can be expressed as

∂E

∂w
(k)
j,i

=
∑
q

∂Eq

∂w
(k)
j,i

, (178)

with j = 1, 2, ..., Mk, i = 1, 2, ..., Mk−1 and k = 1, 2, ..., K; here, Eq represents the error associated with
the q-th observation. Based on the chain rule, the partial derivative appearing in the RHS of eq. (178) can be
evaluated as

∂Eq

∂w
(k)
j,i

= σ
(k)
j z

(k)
i , (179)

where σ(k)
j , ∂Eq/∂a

(k)
j , z(k)

i , ∂a
(k)
j /∂w

(k)
j,i and a(k)

j is defined by eq. (174). Consequently, eq. (178) can be
put in the form

∂E

∂w
(k)
j,i

=
∑
q

σ
(k)
j z

(k)
i . (180)

The quantity σ(k)
j appearing in the last formula can be evaluated as follows. First, the quantity

σ
(K)
l , yl − tl (181)

is computed for the l-th unit of the output layer, where tl denotes its target. Then, the backpropagation formula

σ
(k)
j = h′

(
a

(k)
j

)∑
l

w
(k+1)
l,j σ

(k+1)
l . (182)

is applied for k = K−1, K−2, ..., 1 and, given k, for j = 1, 2, ..., Mk; here, h′(·) denotes the first derivative
of the function h(·) appearing in eq. (173). This allows us to recursively compute all the quantities {σ(k)

l } on
the basis of the similar quantities {σ(k+1)

l } made available by all the units appearing in the (k+ 1)-th layer of
the network.

It is worth noting that: a) the computational complexity of the network depends on the number of neurons
in each hidden layer, since this determines the number of parameters to be tuned in the network; b) overfitting
may be observed in the presence of a larger number of neurons. The last problem can be mitigated by including
a regularization term in the considered error function (a similar strategy has been also proposed for ML
methods; see eq. (107) in Paragraph III-B2). An alternative to this approach is represented by the so called
early stopping procedure, that consists in stopping network training when the error over a given validation
dataset17 is minimised.

C. A specific application

Let us focus now on a neural network having the architecture illustrated in Fig. 13 and analyse its possible
use in an FMCW radar system equipped with the antenna array shown in Fig. 4-b) (d = λ/4 is assumed). In
our experiment, the overall synthetically generated dataset includes N̂t = 2500 observations, all acquired in
the presence of a single point target, whose range Rq and the azimuth φq are uniformly distributed over the
intervals [Rm, RM ] = [1 m, 7 m] and [φm, φM ] = [−60◦, 60◦], respectively, for any q. Moreover, the values
selected for the parameters of the employed radar system are equal to those listed in the example of Paragraphs

17The validation dataset is a set of data on which the performance of the considered network is evaluated during its training.
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III-B2 and III-B3; the only difference is represented by the standard deviation of the noise affecting the received
signal samples, that is σw =

√
2/2 V. The q-th observation and the associated label are18

rq , [rq,0, rq,1, rq,2, rq,3, rq,4]
T

=
[
ψ̂0,q, ψ̂1,q, ψ̂2,q, ψ̂3,q, f̂q

]T
(183)

and
tq , [tq,0, tq,1]

T
= [Rq, φq]

T , (184)

respectively; here, ψ̂v,q = ∠Âv,q (with v = 0, 1, 2 and 3) and Âv,q is the complex amplitude measured on the
v-th virtual element at the frequency f̂q (60) (see eqs. (61) and (68)).

The aim of the neural network is predicting the position of the target (i.e., its azimuth and range) on the basis
of a new observation. In this case, the network has 5 inputs two outputs, since xj = rq,j (with j = 0, 1, ..., 4)
and yk = tq,k (with k = 0, 1). Moreover, a single hidden layer consisting of M1 = 10 neurons is used; each of
these neurons is connected to all the available inputs and employs the hyperbolic tangent transfer function

h(x) ,
exp(2x)− 1

exp(2x) + 1
(185)

in the evaluation of its output on the basis of eqs. (173)-(174). The predictions of the target range and azimuth
are computed by the output layer, that contains two neurons.

The scaled conjugate gradient method [82] has been employed to train the network described above. The size
of the training set D is Nt = 2225, since 85% of the overall dataset has been exploited for network training; the
remaining part Dts of the dataset, whose size is N̄t = 375, has been used as a test set. Our simulation results
have evidenced that the adopted network is able to accurately predict the position of a new target; in fact, the
RMSEs evaluated for the range and the azimuth on the set Dts are approximately equal to 4 cm and to 0.2◦,
respectively. Finally, it is worth noting that:

a) The use of the network described above does not require a specific expertise.
b) Unlike the regression methods illustrated in Paragraph III-B, the employed network is able to predict both

the azimuth and the range of a single point target; however, a by far larger dataset is used for its training.
In general, the main drawback of DL methods is represented by the size of the dataset, which is usually much

larger than that needed by ML techniques; this results in a significant increase in the computational effort of
the required training.

D. Specific methods

In this paragraph, we focus on specific deep learning methods, namely autoencoders, convolutional neural
networks, convolutional autoencoders, recurrent neural networks and generative adversarial networks. Each
method is briefly described and some considerations on its use in the field of MIMO radars are made.

1) Autoencoders: An autoencoder (AE) is a neural network that, similarly as the PCA technique, is able
to perform dimensionality reduction by learning an efficient representation of its input data in an unsupervised
fashion. Since the goal of an AE is to approximate the identity function without learning it exactly, its Dy-
dimensional output vector (177) can be expressed as

y = hw (x) ≈ x, (186)

where hw(·) represents the transformation performed by the network on its Dx-dimensional input vector x.
The architecture of an under-complete AE based on a symmetric encoding-decoding structure is illustrated in

Fig. 14 [83]. If we consider the encoder side, the number of units contained in each hidden layer19 decreases
as we move from the network input to the output of that side; this is due to the fact that the network tries to
learn a compressed version of the input data. On the other hand, the decoder has the goal to reconstruct, as
faithfully as possible, the data vector x available at the AE input, starting from its compressed representation.
For this reason, the dimensionality of input layer of the decoder side is lower than that of its output layer. If
this network is trained to minimise a reconstruction error, it is able to learn the most important attributes of the
input data and how to best reconstruct the original input from an encoded state; ideally, this encoding learns
and describes the latent attributes of the input data.

Other well known AE architectures are the denoising AE and the sparse AE. The former AE is largely
used for the denoising of images, i.e. to reconstruct a clean image from a corrupted version of it. This task is

18Unwrapped phases are employed in this case, since they ease network training
19Note that, in Fig. 14 and in the following figures, each layer is represented by a prism having a rectangular base and whose height is

proportional to the overall number of its units.
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accomplished by storing only the relevant and recurrent features of an image inside the hidden layers, so that
the noise affecting it can be filtered out. The latter one, instead, makes an over-complete representation of its
input available at its output.

In the following, we will take into consideration under-complete AEs only, since they are employed in various
radar applications, as shown in Paragraphs VI-A-VI-D. It is also worth mentioning that, in such applications,
autoencoding is often employed as pre-processing method preceding supervised classification; this allows to
learn repetitive structures of input data when the training dataset is not so large. The last application of AEs
will be analysed in Paragraph IV-D3 in more detail.

Encoder layers Decoder layers

Compressed 

Data (   )

x y

z

Figure 14: Architecture of an under-complete autoencoder characterized by a symmetric encoding-decoding
structure.

Let us focus now on a possible application of auto-encoding to an FMCW radar system equipped with the
antenna array shown in Fig. 4-b) (d = λ/4 is assumed) and operating in the presence of at most a single point
target. In this case, the set {r0,q, r1,q, r2,q, r3,q} (see eq.(7)), consisting of four N -dimensional noisy vectors
becomes available in the q-th trial, with q = 0, 1, ..., Nt−1. Each of these vectors undergoes the DFT processing
described in Paragraph III-A; this allows to compute the 4N̂0-dimensional feature vector

Rq = [Rq,0, Rq,1, ..., Rq,4N̂0−1]T

,

[(
Y

(q)
0

)T
,
(
Y

(q)
1

)T
,
(
Y

(q)
2

)T
,
(
Y

(q)
3

)T]T
(187)

for any q; here, for any v,

Y(q)
v = [Y

(q)
v,0 , Y

(q)
v,1 , ..., Y

(q)

v,N̂0−1
]T

, Mr[|Xv,bm | , |Xv,bm+1| , ..., |Xv,bM |]T (188)

is an N̂0-dimensional vector, Xv,k is the k-th element of the N0-dimensional vector X
(q)
v computed on the basis

of eq. (53) (with k = bm, bm + 1, ..., bM ), Mr is the oversampling factor employed in DFT processing,

N̂0 , bM − bm + 1, (189)

and bm and bM are integer parameters delimiting the portion of the received signal spectrum over which an
amplitude peak, due to the presence of a possible target, is expected. Note that the couple (bm, bM ) represents
a form of a priori information and that, in general, the inequality 0 ≤ bm < bM ≤ N0 − 1 holds. Let assume
now that the overall data set

Do = {(Rq , tq); q = 0, 1, ..., N̂t − 1}, (190)

acquired in N̂t = 2400 independent trials, is available; here, the label tq = 1 (−1) refers to the presence of
a real (false) target detected on the basis of the deterministic strategy expressed by eq. (157). Moreover, the
following assumptions are made in synthetically generating the set Do (190):
a) Half of its data are associated with the detection of a real target, the remaining half with the detection of a

false target.
b) The parameters of the employed radar system take on the same values as those selected for the example

illustrated for the SVM and K–NN methods in Paragraph III-B.
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c) The stochastic models adopted for amplitude a(q)
v of the sinusoid observed on the v-th antenna in the presence

of a real target, and for the range Rq and the azimuth φq of the target (if present) are the same as those
defined in the example illustrated for the SVM and K–NN methods in Paragraph III-B.

d) The size N̂0 of the vector X
(q)
v is equal to 121, since (see eq. (189))

bm =

⌊
2Rm µ

c
N0Ts

⌋
= 13 (191)

and
bM =

⌊
2RM µ

c
N0Ts

⌋
= 133, (192)

where Rm = 0.5 m (RM = 5.0 m) represent the minimum (maximum) range expected for the target.
An AE is employed in the considered radar system to reduce the dimensionality of the feature vector Rq

(187) (whose size is 4N̂0 = 484); note that, unlike the deterministic approach described in Paragraph III-A and
based on a maximum search, an unsupervised data-driven method is exploited in this case. The AE architecture
we adopt is similar to the one illustrated in Fig. 14, but includes only a single layer in its encoder and a single
layer in its decoder, for simplicity. The compressed representation available at the output of the encoder layer
is represented by the M -dimensional vector

zq , he (WeRq + be) (193)

collecting the hidden variables; here, We is a weight matrix of size M × 4 N̂0, be is an M -dimensional bias
vector and he (x) is an M -dimensional vector resulting from the element-by-element application of the positive
saturating linear transfer function

h(x) =


0 if x ≤ 0

x if 0 < x < 1

1 if x ≥ 1

(194)

to the 4N̂0-dimensional input vector Rq (187). The decoder maps the encoded representation zq (193) back to
the 4N̂0-dimensional vector

yq = [yq,0, yq,1, ..., yq,4N̂0−1]T

, Wd zq + bd, (195)

that represents an estimate of the original input vector; here, Wd is a 4N̂0×M weight matrix and bd is an 4N̂0-
dimensional bias vector. In our simulations, M = 60 has been selected; consequently, a 60-dimensional hidden
vector is extracted from a 484-dimensional observation (i.e., roughly an eightfold dimensionality reduction is
achieved). Moreover, the scaled conjugate gradient method [82] has been employed to train the AE. Training
is based on the dataset D, that contains 90% of the dataset Do (190) and, consequently, involves Nt = 2160
observations; the remaining part of the dataset, whose size is N̄t = 240, forms the test set Dts. The effectiveness
of the employed AE is exemplified by Fig. 15, where the output vector yq generated by the autoencoder in
response to a specific feature vector Rq of the test set is shown; this is also confirmed by the small RMSE
evaluated over Dts: RMSE = 0.1 V is found in this case. This leads to the conclusion that the compressed
representation computed by the AE and expressed by the vector zq (193) is really able to capture all the relevant
information conveyed by the input vector Rq (187).

Finally, it worth mentioning that the compressed representation zq (193) can be exploited to train the linear
SVM and K-NN methods described in Paragraph III-B4 and employed to discriminate between real and false
targets. In our experiment, these two supervised methods have trained on a dataset consisting of Nt = 240
observations (K = 4 has been selected for the K-NN method); half of them are associated with the detection of
a real target, half with the detection of a false target. Our computer simulations have evidenced that, despite the
dimensionality reduction, a slightly better accuracy is achieved by the considered classification techniques; in
fact, the obtained accuracies are equal to 93% and 97% for the K-NN and the linear SVM, respectively (N -fold
cross validation, with N = 5, has been used).

2) Convolutional neural networks: Convolutional neural networks (CNNs) play an important role in DL
applications, since they allow to exploit the spatio-temporal information available in a sequence of images
[80], [83]; for this reason, they are trained using a labelled dataset. The processing performed by a CNN aims
at capturing the local features of input images and is based on spatially localized convolutional filtering. Its
typical architecture includes convolutional, pooling, fully connected layers, and is motivated by the fact that,
in images, local groups of values may exhibit high correlation and local statistics are invariant to position. In
fact, convolutional layers aim at detecting local features on the basis of the data originating from the previous
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Figure 15: Example of a feature vector Rq (187) (red line) and of the corresponding output vector yq (195)
(blue line) predicted by the AE employed in the example of Paragraph IV-D1. The contributions of the four
vectors {Y(q)

v ; v = 0, 1, 2, 3} which Rq is made of are delimited by green dashed lines.

layer, pooling layers at merging semantically similar features and fully connected layers at generating the final
feature vector.

The processing accomplished by the convolution and pooling operations on a greyscale image is outlined in
Fig. 16. The output of the convolution depends on both its input, represented by a small portion of the image,
and the adopted convolution kernel, denoted {K[m,n]}; moreover, this operation is repeated on multiple disjoint
portions until the whole input image is scanned. From a mathematical viewpoint, the convolution input is a
matrix, consisting of IS× IS pixels and denoted I = [I[i, j]], whereas the resulting output is a SY ×SY matrix,
called activation or feature map and denoted Y = [Y [i, j]]. The (i, j)-th element (i.e., unit) of the activation
map is evaluated as

Y [i, j] , σ

 F/2−1∑
m=−F/2

F/2−1∑
n=−F/2

K[m,n] I[i−m, j − n]

 , (196)

where F and K[m,n] are the size of the convolutional filter (also known as kernel size) and its (m,n)-th weight,
respectively, and σ(·) is a non linear activation function. Another relevant parameter of a convolutional layer
is its stride S, that represents the number of pixels shifts over the input matrix when the kernel moves from a
portion of the image to the next one; for instance, when the stride is one, the filter moves one pixel at a time.
The area of the input image processed by the kernel can be also extended by adding a set of pixel (usually set
at zero) to the border of image itself, as shown in Fig. 16; in that figure, the parameter P (dubbed padding)
represents the number of zero columns and rows added to the input image. The stride, the padding and the
kernel size of a convolutional layer influence the size SY of the output matrix; in fact, it can be shown that

SY =
IS − F + 2P

S
+ 1. (197)

For this reason, the above mentioned parameters have to be jointly selected in a way that the RHS of last
equation takes on an integer value.

Generally speaking, the convolution operation expressed by eq. (196) can be performed Nd times over the
same image; in accomplishing this procedure, the parameters P and S do not change. This produces the output
volume (i.e., matrix) W shown in Fig. 16 and having size SY × SY ×Nd (the parameter Nd is called depth);
this matrix results from stacking Nd distinct activation maps, each representing a specific slice.

The convolutional layer represented in Fig. 16 feeds a pooling layer, whose task is reducing the dimen-
sionality of each input slice and, consequently, the overall complexity of the considered CNN. The processing
accomplished by the pooling layer can be easily described by referring to a single slice, denoted Y, of the
output volume W. Similarly as the convolution operation, the pooling operation is fed by a portion, having size
Fp × Fp, of the considered slice and generates the SYp

× SYp
output matrix Yp = [Yp[i, j]]. The most popular
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layers of this type are known as max pooling and as average pooling. In the former case, the (i, j)-th pixel of
the output matrix Yp is computed as

Yp[i, j] , max
p,q∈SFp (i,j)

Y [p, q], (198)

whereas in the latter one as
Yp[i, j] ,

1

F 2
p

∑
p,q∈SFp (i,j)

Y [p, q], (199)

where SFp
(i, j) , {(p, q)| −Fp/2 + i ≤ p ≤ i+Fp/2− 1,−Fp/2 + j ≤ p ≤ Fp/2− 1 + j)} and the parameter

Fp is called pool size. It can be shown that

SYp
=
SY − Fp
Sp

+ 1, (200)

where Sp is the stride of the pooling (its meaning is similar to that illustrated above for the parameter S). Note
that the depth Nd of the final output volume Wp generated by pooling is the same as that of W.

Finally, it is important to point out that:
a) in CNN applications, a chain of pairs of convolutional and pooling layers is commonly used. Moreover,

fully connected layers (FC) of different lengths are often added at the end of the cascade of convolutional/pooling
layers, as illustrated in Fig. 17; this allows to combine all the extracted features in a 1D vector.

b) As shown in Paragraphs VI-A-VI-D, CNNs are employed in a number of radar applications ranging from
human activity characterization to autonomous driving. Some experimental results about the use of CNNs in
the classification of three different human activities CNN are illustrated in Section VIII.

Convolution Pooling

Input

image

YS pF
F

PI

dN

SI

W

pW

pYS

dN

Output

image

Figure 16: Representation of the convolution and pooling operations accomplished by a CNN on a greyscale
image. The area corresponding to the convolution input (red square) is moved from left to right, and up and
down over the input image. The convolution generates the activation map Y, that represents a portion of the
output volume W. Pooling is employed to reduce the size of the final map Yp.

Input

Image Output

Convolutional layer

Pooling layer

Fully connected

layer

Figure 17: Architecture of a CNN containing multiple convolutional layers, max pooling layers and fully
connected layers.
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3) Convolutional autoencoders: A convolutional autoencoder (CAE) may represent an appealing technical
option in those applications in which a large amount of labelled data is unavailable. In fact, it combines the
advantages offered by unsupervised learning techniques (i.e., by AEs) with the capability of CNNs to extract the
spatio-temporal information from a sequence of images. The architecture of a CAE is exemplified by Fig. 18; this
network consists of an encoder side, combining convolutional and pooling (i.e., downsampling) layers, and of a
decoder side, made of transposed convolutional (also called deconvolutional) and unpooling (i.e., upsampling)
layers. Each transposed convolutional layer allows to upsample its input feature map with the aim of retrieving
the original shape of the image available at the input of the first convolutional layer contained in the encoder
side. In each unpooling layer, instead, an upsampling procedure exploiting the positions of the maxima stored
in the corresponding max pooling operation executed at the encoder side is accomplished.

Input

Image (  )

Output

Image (  )

Conv1

Conv2

Conv3 Deconv1

Deconv2

Deconv3

Compressed 

Data (  )𝐳

Down-sampling Up-sampling

𝐱
𝐲

Figure 18: Example of CAE architecture.The acronym ConvX (with X = 1, 2 and 3) identifies the X-th
convolutional and pooling layer, whereas DeconvX (with X = 1, 2 and 3) the transpose and unpooling layer.
The vector z can be considered as a compressed representation of the input image x.

4) Recurrent neural networks: In the neural networks treated so far, all the inputs and all the outputs are
time-independent from each other. Features related to the time evolution of the observed data can be extracted
through a recurrent neural network (RNN) [84]. A well known example of RNN is the so called Vanilla RNN,
whose architecture is represented in Fig 19-a). In this network, past information contribute to the computation of
its output, since they are reinjected into the network itself and stored in its internal (i.e., hidden) state. Moreover,
the following three distinct weight matrices are employed by this network: a) the M ×Dr matrix U employed
in the mapping of the Dr-dimensional input vector r

(t)
q at time t to its M -dimensional hidden state h(t); b)

the M ×M square matrix W involved in the update of its internal state; c) the D′r ×M matrix V employed
to map h(t) to its D′r-dimensional output vector o(t). In fact, based on these matrices, the state update of the
network and the computation of its output at time t can be expressed as

h(t) = φ(W h(t−1) + U r(t)
q ) (201)

and as
o(t) = V h(t), (202)

respectively; here, φ(·) denotes a non-linear activation vector function.
It is important to point out that:

a) A RNN can be thought as the result of the interconnection of multiple copies of the same network, each
passing a message to a successor. In fact, unrolling it leads to a chain-like architecture, made of multiple replicas
of the same module and such that each module passes a message to its successor.

b) The standard procedure for training a RNN is known as backpropagation through time (BPTT) [85].
Unluckily, it may not be so effective when training involves long time sequences, because of the so called
vanishing and the exploding gradient problems [86]. The former problem refers to the exponential decrease
observed in the norm of the gradient of the employed cost function during training, whereas the latter one
concerns the opposite behaviour (more specifically, a large increase of the same gradient).

The problems mentioned in the last point can be circumvented by adopting a long short term memory (LSTM)
neural network [87], whose architecture is illustrated in Fig. 19-b). This architecture consists of a memory cell
and of three different multiplicative gates, namely an input gate, an output gate and a forget gate. The input
gate, whose content at time t is denoted i(t), represents the input of the memory cell (whose content at time t
is denoted c(t)) and is employed to protect the content of this cell from perturbations due to irrelevant inputs.
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Figure 19: Architecture of: a) a Vanilla RNN; b) an LSTM neural network.

The output gate, whose content at time t is denoted o(t), protects the other units connected to the output of
the memory cell from perturbations due to irrelevant memory contents. Finally, the forget gate, whose content
at time t is denoted f (t), protects the contents stored in the vector c(t) from the unwanted fluctuations of the
memory at the previous instance (i.e., from c(t−1)). In summary, the cell allows for long term memory storage,
whereas the gates prevent memory contents from being perturbed by irrelevant inputs and outputs.

If r
(t)
q denotes the vector of input features at time t, the time evolution of the LSTM network shown in Fig.

19-b) is described by the equations

i(t) = σ(Ui r
(t)
q + Wi s

(t−1)), (203)

f (t) = σ(Uf r(t)
q + Wf s(t−1)), (204)

o(t) = σ(Uo r(t)
q + Wo s(t−1)), (205)

g(t) = σc(Ug r(t)
q + Wg s(t−1)), (206)

c(t) = c(t−1) � f (t) + g(t) � i(t) (207)

and
s(t) = σc(c

(t))� o(t); (208)

here, σ(·) is a logistic sigmoid vector function, σc(·) is an hyperbolic tangent vector function, the operator �
denotes the Hadamard product, s(t) is the output of the memory cell at time t, Ui,Uf ,Uo and Ug (Wi,Wf ,Wo

and Wg) are weight matrices characterizing the multiplicative gates and referring to the vector r
(t)
q (s(t−1)),

and g(t) can be interpreted as a candidate state, whose influence on the state c(t) is controlled by the input gate
through i(t). From eqs. (203)-(208) it is easily inferred that: a) the contents of the input, output and forget gates
at time t are proportional to a combination of both the vectors r

(t)
q and s(t−1); b) the output state s(t) depends

not only on the cell content c(t), but also on the content of the output gate (i.e. on o(t)).
Let us focus now on the application of an LSTM neural network to an FMCW radar system equipped with

a single TX-RX pair and detecting a person that accomplishes specific activities and, in particular, that runs
or walks. In this case, each observation processed by the LSTM involves Nf consecutive frames, in each of
which Nc chirps are transmitted (see Paragraph II-C). For this reason, the q-th observation processed by the
considered network is extracted from Nf Nc noisy vectors, acquired over Nf consecutive frames, (i.e., over
Nf Nc consecutive chirps). In the p-th frame (with p = 0, 1, ..., Nf − 1), the set of vectors {r(q)

p,0, r
(q)
p,1, ...,

r
(q)
p,Nc−1}, each having size N , is available; here,

r
(q)
p,k =

[
r

(q)
p,k,0, r

(q)
p,k,1, ..., r

(q)
p,k,N−1

]
, (209)

represents the vector of signal samples acquired in the k-th chirp interval of the p-th frame and its n-th sample
r

(q)
p,k,n is expressed by a formula similar to eq. (22) (with n = 0, 1, ..., N−1). In our experiment, the Phased Array

System toolbox available in the MATLAB environment is employed to generate the useful signal component
(i.e., the contribution of the detected person) to the vector r

(q)
p,k (209) [88]. This contribution is modelled as the
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superposition of L different echoes, each originating from a point-like target and associated with a different part
of the body. Moreover, in the p-th frame contributing to the q-th observation, the l-th point target is characterized
by its RCS a

(q)
p,l , its range R(q)

p,l and its radial velocity v(q)
p,l (with p = 0, 1, ..., Nc − 1 and l = 0, 1, ..., L− 1).

These parameters are assumed to be static over each frame; in addition, the values they take on in the p-th
frame are automatically computed by the above mentioned toolbox on the basis of the height hp of the person,
its position and its RCS in the previous (i.e., in the (p−1)-th) frame, the direction of its movement with respect
to the radar system and its radial velocity vq . The dataset processed by the network is

Do , {(Rq, tq); q = 0, 1, ..., N̂t − 1}, (210)

where

Rq ,

[(
x

(q)
0

)T
,
(
x

(q)
1

)T
, ...,

(
x

(q)
Nf−1

)T]T
, (211)

is the q-th noisy observation, tq its label,

x(q)
p , [R̂(q)

p , v̂(q)
p ]T , (212)

and R̂(q)
p and v̂(q)

p are the estimates of the range R(q)
p and of the velocity v(q)

p , respectively, of the considered
person in the p-th frame (with p = 0, 1, ..., Nf − 1); moreover, it is assumed that tq = 1 (−1) if the person is
walking (running), i.e. if |v(q)

p | ≤ vth (|v(q)
p | > vth), being vth a proper threshold.

In our experiment, the dataset Do (210) has been acquired in N̂t = 400 independent trials; half of the labels
of this dataset are associated with a walker and the remaining half with a runner; moreover, the estimates R̂(q)

p

and v̂(q)
p are computed by the algorithm consisting of the following two steps:

1) Range Estimation - In this step, the N -dimensional vector r
(q)
p,k (209) undergoes zero padding; this results

in the N0-dimensional vector r
(q)
p,k,ZP, with N0 , MrN (here, the parameter Mr represents the selected

oversampling factor). The last vector feeds a N0-th order FFT, whose output is the N0-dimensional vector
X

(q)
p,k = [X

(q)
p,k,0, X

(q)
p,k,1, ..., X

(q)
p,k,N0−1]T . Then, the average power spectrum

P (q)
m ,

1

Nc

Nc−1∑
k=0

|X(q)
p,k,m|

2, (213)

is computed for k = 0, 1, ..., Nc − 1. Finally, R̂(q)
p is evaluated as (see eqs. (58), (60) and (62))

R̂(q)
p =

c

2µ
f̂ (q)
p , (214)

where f̂ (q)
p = m̂

(q)
p /N0Ts and

m̂(q)
p = arg max

m∈{0,1,...,N0/2}
P (q)
m . (215)

2) Velocity Estimation - This step is based on the Nc-dimensional vector

Â(q)
p = [Â

(q)
p,0, Â

(q)
p,1, ..., Â

(q)
p,Nc−1]T , (216)

where
Â

(q)
p,k = MrX

(q)

p,k,m̂
(q)
p

(217)

and m̂
(q)
p is expressed by eq. (215). Applying zero padding to this vector produces the N

′

0-dimensional
vector Â

(q)
p,ZP, with N

′

0 , MANc (here, the parameter MA represents the selected oversampling factor);
the last vector feeds a N

′

0-th order FFT, whose output is the N
′

0-dimensional vector

d(q)
p ,

[
d

(q)
p,0, ..., d

(q)
p,N ′0/2

, d
(q)
p,−N ′0/2+1, ..., d

(q)
p,−1

]T
. (218)

After solving the maximization problem

k̂(q)
p = arg max

k̃∈{−N ′0/2+1,−N ′0/2+2,...,N ′0/2}

∣∣∣d(q)

p,k̃

∣∣∣ , (219)

the estimate (see eqs. (23) and (60))

v̂(q)
p =

1

2
f (q)
p λ (220)

of the person velocity is evaluated; here,

f (q)
p ,

2k̂
(q)
p

N ′0T0
(221)
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represents the Doppler frequency estimated in p-th frame.
For any q, in generating the sequence of pairs {(R̂(q)

p , v̂
(q)
p ); t = 0, 1, ..., Nf − 1}, the following assumptions

have been made about the detected person:
a) its response to the signal radiated by the radar system consists of L = 16 echoes;
b) its height hp is uniformly distributed over the interval (1.70 , 2.0) m;
c) its initial coordinates in a 3D space are (x

(q)
0 , y(q)

0 , z(q)
0 ) = (0,10,0) m, whereas the coordinates of the

employed radar device in the same reference system are (xr, yr, zr) = (0,0,1) m;
d) the angle φi representing the initial direction of its velocity is uniformly distributed over the domain (60◦ ,

−60◦) ∪ (120◦, 180◦) (the reference line, with respect to which this angle is measured, is perpendicular to the
array of the radar system).

e) the radial velocity v
(q)
p is uniformly distributed over the interval (0.1, 2.1) m/s ((−2.1, −0.1) m/s) if

φi ∈ (60◦ , −60◦) (φi ∈ (120◦, 180◦)) for any p and, in each frame, changes in an independent fashion;
f) the initial amplitude a(q)

0,l is equal to 1V (with l = 0, 1, ..., L− 1).
Moreover, the following choices have been made for the employed radar system:
a) the transmitted waveform is characterized by λ = 4 mm, µ = 1.5625 · 1013 Hz s−1, T = 64 µs and

T0 = 72 µs;
b) each frame consists of Nc = 128 chirps;
c) consecutive frames are separated by a time interval lasting ∆t = 40 ms;
d) the sampling period employed at the receive side is Ts = 12.5µs;
e) the overall number of time-domain samples acquired in each chirp interval is N = 1024 and the standard

deviation of the noise affecting each sample is σw = 0.1 V (see eq. (22));
f) the oversampling factors Mr = 2 and MA = 8, and the threshold vth = 1.1 m/s are selected for the

range/estimation algorithm illustrated above;
g) each observation refers to Nf = 30 consecutive frames.
The representation, on a Cartesian plane, of two different feature vectors (see eqs. (211)-(212)), is provided

in Fig. 20. These vectors are denoted R0 and R1; the former refers to a runner, whereas the latter to a walker.
Note that the range difference ∆R̂0 , |R̂(0)

Nf−1− R̂
(0)
0 | referring to the runner is greater than the corresponding

quantity (i.e., ∆R̂1 , |R̂(1)
Nf−1 − R̂

(1)
0 |) referring to the walker. In this case, the proposed LSTM network is

employed to discriminate a walker from a runner. The core of its architecture is characterized by an LSTM
layer, able to learn the long term dependencies between different frames. The behaviour of network is described
by the block diagram shown in Fig. 19 and by eqs. (203)-(207) (the time index t corresponds to the frame index
p in this case). Moreover, in our experiment, the following choices have been made:

1) the size of the input vector is Dr = 2, whereas that of the inner state is M = 10;
2) the non-linear gate activation function σ(x) = [1 + exp(−x)]−1 is used;
3) the size of each of the weight matrices {Ui, Uf , Ug , Uo} is M × Dr = 10 × 2, whereas that of the

weight matrices {Wi,Wf ,Wg,Wo} is M ×M = 10× 10;
5) both the initial cell content c(0) and the initial state s(0) are independently chosen as random vectors of

size M = 10;
6) a fully connected layer and a softmax layer20 have been added at the output of the LSTM layer to perform

classification.
The adaptive moment estimation (briefly, adam) optimizer [89] has been exploited to train the proposed

network (i.e., to tune all the above mentioned weighted matrices); the batch size, the (constant) learning rate
and the number of epochs selected for this procedure are NS = 32, γ = 10−3 and NE = 50, respectively (see
eq. (106)). Moreover, a training set D of size Nt = 300, corresponding to 75% of the dataset Do (210) has
been employed for training; the remaining part Dts of Do has been used as a test set (collecting N̄t = 100
observations)). Our results have evidenced that a 98% accuracy is achieved by the adopted LSTM network.
These results suggest that:

a) Combining deterministic estimators with deep learning methods can result in classification techniques
achieving excellent performance;

b) Merging range and velocity information can enhance the discrimination capability of the network;
c) Observing range/velocity evolution over time (i.e., over multiple consecutive frames) significantly contribute

to improve network accuracy.
5) Generative adversarial networks: A generative adversarial network (GAN) is a probabilistic generative

method consisting of two deep neural networks, called generator and discriminator, and competing one against
each other [90]; its architecture is shown in Fig. 21. The generator produces a sample21 x = G(z,θg) from

20See Par. IV-D6 for further details about this layer.
21Scalar variables are considered in this paragraph, for simplicity.
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Figure 20: Representation of the elements of the two feature vectors R0 and R1; one refers to a runner (red
lines), the other one to a walker (blue lines).

a pdf fg(x), starting from an input noise variable z ∼ fz(z); here, G(·, ·) is called generative model and is
typically implemented through a neural network, whereas θg is the vector of training parameters.

Generator

Discriminator

( )z zzf
 ,G z θg

( , )x θdD

y( )x xxf

Figure 21: Architecture of a generative adversarial network.

The discriminator, instead, generates the output y = D(x,θd), that represents the probability that an input x
originates from the training data (i.e., from their pdf fd(x)) rather than from the generator pdf fg(x); here, D(·, ·)
represents the discriminative model and θd is the vector of the training parameters characterizing the network
that implements the model itself. In practice, the generative model can be thought as a team of counterfeiters,
trying to produce fake currency for fooling the police, while the discriminator, acting like the police, tries to
detect the counterfeit currency. Competition in this game drives both teams to improve their methods. In fact,
the objective of the training of the generative network is minimizing the accuracy of the discriminative network
when the data generated by the former network are provided to the latter one; on the contrary, the objective
of the discriminator is maximizing the probability of assigning the correct label to both the real data of the
training set and the fake samples originating from the generator. For this reason, the interaction between the
discriminator and the generator can be modelled as a two-player minimax game. This leads to formulating the
optimal strategy of these networks as the solution of the minimax problem

min
G

max
D

V (D,G) (222)

= min
θg

max
θd

V (D,G), (223)

where

V (D,G) , Ex∼fd(x) {logD (x,θd)}] +

+ Ez∼fz(z) {log (1−D (G (z,θg) ,θd))} .
(224)

The backpropagation algorithm can be used for training a GAN; the training process allows the discriminator
of the considered GAN to learn, through a proper feature representation, how to identify real inputs among the
generated data and, similarly, the generator how to generate realistic data.
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Generative adversarial networks have the favourable property that a wide variety of functions can be incor-
porated into their model; these make them able to represent very sharp (and even degenerate) data distributions.
However, their use require the availability of efficient tools to solve the minimax optimization problem (222).
Moreover, a tight synchronization between the generator and the discriminator has to be guaranteed during
training; in fact, if one of the two networks learns too quickly, the other one may fail to learn.

6) Softmax Classification Layer: Generally speaking, the DL methods illustrated above can be employed to
extract the relevant features of an image. Once this result has been obtained, any multi-class problem referring
to that image can be solved by adding a softmax layer to the employed network. If K classes are assumed, the
target of this layer is generating the posterior probability

pi =
exp(ai(r

(L)))∑K−1
j=0 exp(aj(r(L)))

(225)

for the i-th class, with i = 0, 1, ..., K − 1; here,

aj(r
(L)) = wT

j r(L) + wj,0 (226)

and r(L) is an L-dimensional feature vector made available by the previous hidden (convolutional or LSTM)
layer, and wj and wj,0 are an L-dimensional weight vector and a bias term, respectively, characterizing the
softmax layer.

V. COMPARISON OF ML AND DL TECHNIQUES

The ML and DL methods described in Secs. III and IV are compared in Table III in terms of: a) the type
of their training procedure (supervised, S, or unsupervised, U); b) the complexity of their training procedure
(low, L, medium, M, or high, H); c) their classification accuracy; d) their sensitivity to clutter and noise; e)
the method they use for extracting the salient features (manual, M, or automatic, A); f) the size of the dataset
they require in order to achieve a good generalization capability (small, S, or large, L). If these methods are
employed for image classification, it should be always kept in mind that:

1) The K-NN and SVM methods require a limited computational load, but achieve low classification accuracy.
They are outperformed by CNNs and CAEs at the price, however, of a substantially larger computational
effort. Moreover, the last methods are insensitive to a spatial transformation of input data. To understand
the importance of the last property (known as invariance property), let us take into consideration a CNN
employed to classify different objects in a radar image. This network, thanks to the above mentioned
property, is able to select only those portions of the images relevant for its task and its behaviour is not
influenced by other irrelevant characteristics, such as the position of a given target or its rotation.

2) Long short term memory networks are able to cope with a sequence of signals evolving over time.
3) Generative adversarial networks are able to generate synthetic images on the basis of a set of noisy input

data. This property can be exploited in radar systems to de-noise images [91] or to detect abnormalities.

VI. APPLICATIONS OF MACHINE AND DEEP LEARNING TECHNIQUES TO MIMO RADARS

In this section we focus on some applications of the learning methods illustrated in Sections III and IV
to MIMO radar systems. More specifically, we illustrate the exploitation of these methods in the following
fields: a) human motion characterization; b) human gesture recognition (HGR); c) fall detection and health-care
monitoring; d) autonomous driving. Various research results are available in the technical literature about these
fields; some essential manuscripts concerning each of them and the use of specific learning methods are listed
in Table IV.

Before delving into the analysis of each application, it is worth pointing out that the processing accomplished
at the receive side of any MIMO radar system employing a learning method for classification and/or regression
is based on the block diagram shown in Fig. 22. First, the received signal undergoes frequency downconversion
to generate its in phase and quadrature components. Sampling these components produces a stream of raw data,
which is pre-processed (e.g., it may undergo FFT processing; see Paragraphs II-C and III-A) before extracting
relevant features from it. Finally, these features are processed by a classifier or by a regression algorithm; in
the former case, a specific object class is selected, whereas, in the latter one, an estimate of the parameters of
interest is evaluated. Feature extraction is based on our prior knowledge about the employed radar system if a
ML method is exploited; on the contrary, features are automatically selected and extracted from pre-processed
data if a DL method is adopted. In the following paragraphs, various details about the processing accomplished
by the blocks appearing in Fig. 22 are provided.
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Figure 22: Block diagram representing the signal processing chain of a MIMO radar system that employs a
learning method.

Methods Learning Complexity Performance Clutter Sensitivity Features Extraction Dataset size
(S/U) (L/M/H) (L/H) (L/H) (M/A) (S/L)

KNN S L L L M S

SVM S L L L M S

Adaboost S M H H M S

PCA U L L L A S

K-Means U L L L A S

AE U H L H A S

CNN S H H H A L

CAE U & S H H H A L

RNN S H H H A L

GAN S H H H A L

Table III: Overview of the main characteristics of the learning techniques described in this manuscript.

A. Human motion characterization

Human motion characterization aims at recognizing and classifying different human activities on the basis of
the micro-Doppler fluctuations observed in the spectrograms of radar signals. These fluctuations are known as
micro-Doppler signatures (see Paragraph II-C). Classifiers employed for this application aim at: a) identifying
different types of human motion (e.g., walking, running and sitting) [92]; b) differentiating human motion from
that of other living animals [93]; c) remotely identifying potential active shooters [94], [95].

In the technical literature about this application, the following two methods are exploited to extract relevant
features from spectrograms: a) manual extraction of handcrafted features; b) automatic extraction of features
based on a data-driven approach. Machine learning methods exploiting manual extraction of features have
been investigated in [95]–[103], whereas the automatic extraction of features from micro-Doppler signatures or
spectrograms through DL methods has been proposed in [91], [92], [94], [104]–[106]. It is important to keep
in mind that:

Learning method Clustering NB K-NN SVM PCA HMM AE CNN CAE LSTM GAN
Field/Manuscript no.

a)
[91]–[106] X X X X X X X X

b)
[107]–[111] X X X

c)
[10], [112]–[117] X X X X X

d)
[15], [118]–[131] X X X X X X X X

Table IV: Specific learning methods investigated in various manuscripts that concern the four application fields
considered in Section VI.
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1) Machine learning methods relying on spectrogram information usually exploit: a) physical features related
to the characteristics of the observed motion; b) transform-based features; c) speech-inspired features.
Physical features include the frequency and the bandwidth of the received waveforms, the offset and the
signal intensity of the associated signature (see Paragraph II-C). The first two physical features are strictly
related to motion dynamics, whereas the other types of features to the RCS of the body of the observed
person [93].

2) Transform-based features exploited by ML methods can be extracted from a received waveform by evaluat-
ing a) its spectral coefficients (e.g., its discrete cosine transform coefficients) or b) other signal-dependent
coefficients. As far as point b) is concerned, the use of linear predictive coding (LPC) has been proposed
in ref. [97] to transform a time-varying Doppler signal in a low dimensional set of prediction coefficients.
A different approach, based on the computation of pseudo-Zernike moments, is illustrated in ref. [98, Sect.
II-A, eqs. (10)-(12)]; this allows to extract relevant characteristics from micro-Doppler signatures, such as
translational and scale invariance.

3) In many cases, the dimensionality of the feature space can be substantially reduced (see Paragraph III-C).
An interesting example of this approach is offered in ref. [99], where the use of a 1D standard PCA and
of a robust PCA for extracting physical features from a Doppler radar signal is investigated.

Frequently used ML methods for the classification of human motion based on a set of handcrafted features
include the naive Bayes (NB) [100], the non linear SVM [101] and the K-NN methods [102]. The use of a
binary SVM classifier for multi-class problems in human motion characterization is investigated in ref. [103],
where a classification procedure based on a decision-tree is proposed. This procedure is based on the idea of
representing a classification problem involving multiple choices as a set of binary classification problems, each
of which is solved through a binary SVM. This approach is exemplified in [103, Fig. 8], where a decision tree
referring to the case of seven classes is illustrated. In practice, a binary SVM is employed for each node of the
employed decision tree in order to separate the possible activities in two groups; if each of the two groups is
further divided, another SVM classifier is used at an underlying node.

The most relevant problems emerging from the study of ML-based classification of human motion concern the
processing methods to be employed for the extraction of hand-crafted features from raw micro-Doppler signals,
the sensitivity of these methods to noise and clutter, and the impact of similarities among the considered
classes on their performance. The ability of a deep neural network to learn the relevant features directly from
the available raw data allows to solve the above mentioned problems. This consideration has motivated the
investigation of deep CNNs (DCNNs; see Paragraph IV-D2) for the automatic extraction of features in human
motion characterization. The use of a DCNN, fed by spectrograms (converted in red green blue, RGB, or
greyscale images), and employing convolutional layers and pooling layers of small size, has been proposed in
ref. [104]. A different DL method, based on the same principles as convolutional autoencoding (see Paragraph
IV-D3), has been developed in ref. [105, Par. IV-C, Fig.8]. It combines the ability of a DCNN to capture local
features of input images with that of an AE to directly learn features through an unsupervised pre-training
procedure. In this case, after an initial and unsupervised pre-training stage, the decoder of a CAE is substituted
by a few fully connected layers and a softmax classifier. This procedure allows the resulting DCNN to learn
specific patterns from the processed signatures, so easing training for supervised classification. The performance
results obtained in this case lead to the conclusion that a CAE not only is able to outperform conventional
classification methods based on handcrafted features (e.g., SVM), but also a standard DCNN.

Finally, it is useful to mention that another important research problem investigated in the field considered in
this paragraph is represented by the de-noising of micro-Doppler spectra. In this case, the training set includes
two different types of images: a) perfectly clean spectrograms; b) the same spectrograms affected by background
noise. The use of a deep GAN, based on a convolutional encoder-decoder structure, has been proposed in ref.
[91] for this application. The performance results obtained in this case evidence that this network does not affect
the relevant components of micro-Doppler spectra and is able to outperform other classic de-noising techniques
commonly used for the suppression of background noise.

B. Human gesture recognition

The significant attention paid to HGR is due to its exploitation in advanced human computer interfaces (HCIs),
that are employed in a number of control, infotainment and security applications. Relevant information about the
dynamics of human gestures are typically contained in the micro-Doppler signatures acquired over consecutive
transmitted frames. Therefore, similarly as human activity characterization, relevant physical features can be
easily extracted from spectrograms. A commonly employed ML tool for classifying vectors of handcrafted
features in HGR systems is represented by hidden Markov modelling [107]. This approach leads to classifying
a new sequence of data, called observation, on the basis of a stochastic model, called hidden Markov model
(HMM), which has been extracted from past observations and describes their generation. If an HMM of a given
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random phenomenon is available, the probability of observing a specific realization (e.g., a specific gesture),
conditioned on a given sequence of hidden states, can be computed. In this case, model training aims at
estimating the so called transition and emission probability matrices of the developed HMM; the former matrix
collects the probabilities to move from a given state to another one, while the latter one the probabilities that
a given observation is generated in each specific state. The efficacy of a HMM-based classifier depends on the
overall number of states characterizing the model; in general, a larger number of states allows to model a more
complicated process and to improve prediction accuracy. However, a discrete state space of small size is often
adopted in HGR applications in order to mitigate the overall complexity of the developed HGR system. This
choice makes the resulting classifier unable to distinguish gestures characterized only by subtle differences in
their spectrograms. For this reason, DCNNs are usually preferred. One of the first important research activities
focusing on the exploitation of this type of networks in HGR is the well known Google’s Soli project [108],
whose scope has been the development of a HGR mobile and wearable device based on a RF sensor. Various
research results about this research field can be found in ref. [109], where it is shown that the accuracy of these
deep classifiers gets worse if: a) the number of classes22 increases; b) the incident angle and/or the distance
between the gesture and the employed radar device get larger. The accuracy of a classifier based on a DCNN
can be improved by extracting features not only from spectrograms, but also from range-Doppler maps [110].
Another DL architecture, specifically developed for RF HGR and combining the ability of a CNN network of
capturing local features of input images with that of coping with time-varying signals, has been investigated in
ref. [111]. This architecture consists of a 3D-CNN for spatial-temporal modelling of short consecutive frames,
an LSTM for extracting global temporal features and a final classification layer (a detailed block diagram is
illustrated in ref. [111, Fig. 7]). This architecture achieves a very high recognition accuracy, and outperforms
other conventional ML and DL methods used in HGR applications, like HMMs or 2D-CNNs.

C. Fall detection and health-care monitoring

Human falls represent a worldwide health problem and are known to be one of the main causes of unintentional
injury death in seniors; this motivates the recent interest in devising electronic systems able to detect their
occurrence. Another important problem in the field of technology for human health concerns the development
of non-invasive and non-contact devices for monitoring human vital signs, such as breath and heart rates, and
sleep quality. Various results in both research areas have evidenced that innovative solutions to both problems
can be developed by exploiting ML and DL methods fed by the micro-Doppler signatures acquired through
a radar system. In any case, when the overall number of classes to be identified increases and the degree of
dissimilarity between the Doppler signatures characterizing them reduces, DL methods are preferred, since they
achieve better accuracy.

An interesting study on the dynamics of human falls analysed through micro-Doppler signatures can be found
in in ref. [112], where it is shown that fall accidents can be distinguished from normal activities on the basis of:
a) the strength of the received echo (i.e., the RCS of the subject under test); b) the distance of the radar device
from the body of the subject under test during a fall; c) the Doppler information acquired during the movement
of the subject itself. Experimental results have evidenced that, when a subject starts falling, the observed Doppler
frequency increases steeply; on the contrary, the RCS of the human subject gradually decreases since its tilt
angle gets larger. In this case, ML and DL algorithms can be trained to detect a fall on the basis of the time
variations of Doppler signatures. A specific DL classifier based on a stacked AE and exploiting a range-Doppler
radar has been developed in ref. [113], where it is shown that the proposed solution is more accurate than
PCA-based methods in detecting different actions, such as falling, walking, sitting and bending.

The use of learning techniques in the analysis of sleep stages has been investigated in ref. [114], where a
solution based on a K-NN classifier has been proposed.

The exploitation of learning techniques for heart and breath rate estimation represents a challenging problem,
because a large and heterogeneous datasets for network training cannot be easily built and contactless systems
for vital sign monitoring are strongly limited by body movements. Some interesting contributions to this field
are provided by refs. [115], [116] and [117]. More specifically, a method based on a classical feed-forward NN
for hearth rate estimation is proposed in ref. [115], whereas a DL method for body movement compensation is
investigated in ref. [116]. Finally, a contactless breathing disorder recognition system using 2.4-GHz Doppler
radar and based on a linear SVM classifier is developed in ref. [117].

The real-time implementation of radar sensing methods for HGR, health monitoring and fall detection can
be computationally intensive. This problem becomes more relevant in all those applications in which multiple
persons have to be monitored in the same environment; in fact, in such cases, the exploitation of the MIMO
technology becomes mandatory, because of the need of localising multiple agents. This explains why an important

22The maximum number of distinct hand gestures considered in ref. [109] is equal to 10.
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technical challenge is represented by the exploitation of hardware platforms that support parallel computing
(namely, FPGAs and GPUs), require a limited power consumption and can manage a large data rate at their
inputs [10].

D. Autonomous driving

Automotive radar represents one of the key enabling technologies for autonomous driving. The typical processing
chain employed for target detection in a MIMO FMCW radar system for automotive applications is represented
in Fig. 23. The signals acquired through multiple receive antennas undergo multidimensional FFT processing;

Range FFT

Doppler FFT

DoA FFT

Detection 

(CFAR, 

thresholding) 

Clustering

(DBSCAN,

K-means) 

I/Q raw data

N

VN

Target Info

Figure 23: Typical processing chain employed in automotive radar systems [4].

this allows to extract range, Doppler and DoA information. The data generated by the FFT blocks are processed
by a detection algorithm, whose objective is identifying the presence of multiple extended targets, and estimating
their spatial coordinates and their radial velocity (i.e., the Doppler shift characterizing them). Each of the detected
targets (e.g., pedestrians, cars or bicycles) usually appears as a cloud of point targets; the association of each
point to a given extended target is called clustering. The simplest unsupervised strategy that can be adopted for
target detection is thresholding; in this case, a target is detected if the amplitude spectrum of the acquired signals
exceeds a fixed threshold, as illustrated in Paragraphs III-A and III-B4 for specific FMCW radar systems. A
more refined alternative is represented by the constant false alarm rate (CFAR) technique [132]. This method
consists in estimating the level of interference in each cell in the range domain of interest and in exploiting
these information for the detection of the presence of a target in each cell of a radar image. Unluckily, due
to the high resolution achieved by automotive radars, a single target can occupy multiple adjacent cells; when
this occurs, the CFAR technique undergoes performance degradation because of the contamination affecting the
estimated interference level. Clustering techniques rely on the key idea that each cluster of points is a region
containing a group of detected targets, whose center typically corresponds to the point target characterized by
the strongest reflectivity (see Par. III-C). This means that each cluster has a density (in terms of targets per
region) which is considerably larger than that outside it; for this reason, a given point is expected to be part of
a cluster if the number of its neighbours is greater than a proper threshold. Learning methods for unsupervised
clustering include the density based clustering algorithm (DBSCAN) [118], [119], and the K-means algorithm
[120]. The main difference between these two methods consists in the fact that the former method, unlike the
latter one, does not require prior knowledge of the number of clusters and their shape.

All the techniques described above (namely, thresholding, CFAR and clustering) allow to detect multiple point
targets and to cluster them. In general, learning methods can be adopted to improve detection performance.
A number of technical problems have been identified in this area; most of them require the development of
sophisticated signal processing algorithms. Specific contributions about the use of ML methods in target detection
can be found in refs. [121]–[123]. In particular, a K-NN classifier is proposed as an alternative to robust CFAR
detection in ref. [121], whereas the use of the SVM and PCA techniques for improving angular resolution is
investigated in ref. [122]. The use of DL methods for target classification in a 2D space, instead, have been
studied in refs. [15], [124]–[131]. It is worth mentioning that, in the technical literature, the first results about
the use of DL methods in automotive radar systems appeared after 2015, when it was found that DCNNs were
able to simultaneously detect, localize and classify multiple targets by simply analysing 2D range-azimuth (or
range-Doppler) maps. Networks originally developed for computer vision applications, like AlexNet [133] or
ImageNet [134], have inspired the architecture of various networks for automatically extracting features from
automotive radar images [15], [124], [125]. Despite this, the CNNs usually devised for automotive applications
are not as deep as those employed in computer vision. This difference is mainly due to the fact that: a) the
information provided by range-azimuth or range-Doppler maps are not as rich as traditional RGB images; b)
the employed inference procedure has to be as fast as possible [126]. These ideas are exemplified by the CNN
proposed in ref. [127] for the classification of automotive targets, like motorcycles, cars, bicycles and pedestrians;
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its architecture, illustrated in ref. [127, Fig. 2], consists of three convolutional layers and filters of size 3 × 3
(whose depths are equal to 32, 64 and 128, respectively). Moreover, each convolutional layer is followed by
a 2 × 2 average-pooling layer, two fully-connected layers and a softmax layer, which is used at the end for
classification. A relevant novelty introduced in this work (and in ref. [128] too) consists in considering a certain
region of interest (ROI) around the desired targets in the analysed scene as prior information to be used during
training, in order to improve the learning procedure.

Deep learning methods can be also employed to solve the problem of scene understanding, i.e. of correctly
interpreting the events occurring around it (e.g., the event of a vehicle passing near a pedestrian that crosses a
road). In this case, improving the prediction accuracy of the employed NN requires exploiting the information
contained in the frames preceding and following the frame under test because of the high variability of the
data provided by MIMO radar systems. An architecture based on the cascade of a LSTM module with a CNN
has been proposed in ref. [129]; this exploits the temporal information provided by radar signals and is able to
capture the dynamics of the surrounding scene.

Finally, it is worth mentioning that learning methods can be also employed to detect the fatigue of the
driver’s eyes [123] and to mitigate the interference orginating from the transmission of multiple MIMO radars
in the same area. In general, the interference affecting a MIMO radar system can be due to the system itself
(self-interference) or from other radar systems placed on the same vehicle or on other vehicles (cross or mutual
interference); in both cases, this phenomenon results in an increase of the observed noise floor and, consequently,
affects the detectability of targets. The use of RNNs for interference mitigation has been investigated in refs.
[130] and [131].

VII. CURRENT TRENDS IN RESEARCH ON MIMO RADARS

In this section, a short description of three research trends in the field of DL techniques for MIMO radars
is provided. More specifically, we first focus on transfer learning, and recent DL methods for object detection
and classification. Then, we discuss the role that explainable artificial intelligence (XAI) may play in the radar
field.

A. Transfer learning

The minimization procedure accomplished by a deep NN trained from scratch (through random initialization)
may lead to a local minimum which is far from the globally optimal solution if the involved cost function is
highly non-convex. Moreover, if the dataset employed in network training is not large enough, the risk of over-
fitting is quite high. These problems are likely to arise in radar applications. When this occurs, transfer learning
could represent a tool to solve them; in fact, this method often allows to achieve a good generalization capability
even if the available dataset is limited [135], [136]. Transfer learning is based on the idea of exploiting the
knowledge gained from a different domain to solve other related classification problems. Two approaches to the
exploitation of this method in radar applications have been recently proposed. The first approach, developed for
the classification of human activities, is based on training an unsupervised network, characterized by an encoder-
decoder structure and employed to learn specific patterns appearing in the available dataset [137]. When the
decoder becomes able to reconstruct the input data with a reasonable accuracy, it is removed, and fully connected
and softmax layers are added in cascade to the associated encoder. Finally, the resulting network is trained in
a supervised manner with a smaller, but labelled dataset: this procedure is called fine-tuning.

The second approach is based on the architecture represented in Fig. 24 and developed in ref. [138]. In this
case, a DCNN network trained on a large dataset of RGB images is combined with fully connected and softmax
layers initialized from scratch; this results in a new network, which is fine-tuned on a small dataset.

The decision about which type of transfer learning has to be preferred is based on the size of the available
dataset and on the similarity of the last dataset with the one used for pre-training the selected network architecture.
It has been shown that the final score of a DCNN-based classifier can be improved either by exploiting a pre-
training procedure based on a simulated radar dataset [139] or by employing a pre-trained DCNN on a separate
large scale RGB dataset [138].

B. Object detection and classification

The aims of object detection and classification are the labelling of all the objects appearing in a given image
and the generation of a bounding box identifying their position. The fast R-CNN [140] and faster R-CNN [141]
are examples of region-based CNNs for object detection based on bounding boxes. Another relevant solution of
this type is represented by the solo called You only look once (YOLO) network23. When building up a dataset for

23The name of this network has been inspired by the human ability of looking once at an image and instantly recognizing the objects it
contains.
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Figure 24: Architecture of a DCNN pre-trained on dataset of RGB images and fine-tuned on a small dataset of
radar images.

training this network, each detectable target is bounded with a box characterized by specific size and position in
the whole image. If an object detection problem in which different targets can be associated to several (say, K)
classes is considered, the YOLO network should be preferred to the other methods mentioned above because of:
a) its ability to predict not only the size and the position of the bounding box associated with a given target, but
also the probability that the target inside a given box belongs to a certain class; b) its architecture which, being
based on a CNN, is simple and fast; c) its ability to learn very general representations of objects. The results
illustrated in ref. [142] for various applications evidence that a YOLO network outperforms a R-CNN in terms
of detection ability, since it produces a lower number of false negatives. However, it is important to remember
that a YOLO network usually makes a significant number of localization errors and, consequently, achieves a
limited accuracy. Better results are obtained if an improved architecture, known as YOLO v2 and originally
proposed in ref. [143], is adopted. This new version of the YOLO network is still based on a convolutional
architecture, but employs anchor boxes24 in predicting the position of objects. The use of anchor boxes makes
the learning procedure easy, since the network has only to adjust and refine their size in order to fit an object
detected in the processed image. A specific application of the YOLO v2 network to a MIMO radar system is
illustrated in Paragraph VIII-B.

A recent research topic in the field of target detection and classification is represented by the use of semantic
segmentation, that represents a powerful technique adopted for classifying the pixels of an image (a fixed set
of classes is assumed in this case). The state of the art in semantic segmentation for image processing is
represented by: a) fully convolutional networks (FCNs) [144], in which a convolutional network endowed with
a pixel classification layer (instead of a fully connected layer) is used; b) SegNet [145] and U-Net [146], both
based on a symmetrical encoder-decoder architecture. A more complicated method is represented by instance
segmentation, whose aim is not only detecting and classifying all the objects appearing in an image, but also
generating the segmentation of each instance appearing in the bounding box associated with each detected object.
To accomplish the last task, the Facebook AI research group has proposed a new method called, Mask-R-CNN,
that extends a Faster R-CNN by adding a branch for the prediction of the segmentation mask in each ROI [147].

It is important to note that the application of the above mentioned DL techniques to object detection and
localization in radar images is still at an early stage. Despite this, specific DL methods inspired by FCNs and
U-Net have been already implemented for detecting and estimating the position of different targets (like cars and
other automotive targets) on the basis of range-Doppler-azimuth radar maps [148]–[150]. Moreover, the use of
semantic segmentation in the radar field has been already investigated for the classification and localization of
3D point clouds of automotive targets, like cars, tractors and pedestrians; various results referring to automotive
MIMO radars that operate at 77 GHz can be found in refs. [151] and [152]. The experimental results shown in
these manuscripts evidence that the performance of the NNs employed for semantic segmentation substantially
improves if radar data are fused with those one provided by optical sensors. It should not be forgotten that radar
information can be augmented by an highly dense point cloud generated by a lidar device and that lidar data
can be replaced by radar data in case of adverse weather or lighting conditions. An example of radar-centric
automotive dataset based on radar, lidar and camera data for is described in ref. [153]; this dataset has been
exploited in ref. [154] to test DL algorithms for 3D object detection.

C. Explainable artificial intelligence

Neural networks and sophisticated decision methods are currently employed in a number of applications
to solve complicated tasks. The requirement of transparency is becoming more and more important in AI,
especially when it is employed in autonomous systems. Unluckily, understanding which features are evaluated

24Anchor boxes are a set of predefined bounding boxes having certain height and width.
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a) b)

Figure 25: a) Colocated MIMO radar system and b) pico-flexx camera employed in our experiments.

by a DNN in taking its decision is a complicated problem. Explainable artificial intelligence is a new branch of
AI and concerns the problem of how the effectiveness of a deep network can be guaranteed [155]. An interesting
method to improve the transparency of a DNN is based on the visualization of the features learned by each
layer of the network [156]. The first layers of a DCNNs tested on radar images typically learn basic features,
that depend on the size of their convolution filters. In fact, large (small) filters memorize general shapes (more
specific properties), whereas some filters are also able to learn noise and clutter [105]. An alternative method to
get some insight on the learning process of a CNN is based on the idea of identifying the parts of a radar image
that are relevant for the classification of the object under test; such parts are also known as spatial supports. This
approach allows to assess if a specific network is robust in taking its decision on the basis of a correct analysis
of the given image. A specific technique, called saliency extraction, is based on this idea and, in particular, on
the evaluation of the so called saliency map, as illustrated in ref. [157].

VIII. EXPERIMENTAL RESULTS

In this section we show how specific ML and DL methods can be employed in a commercial colocated
MIMO radar system to: a) classify three different human activities; b) estimate the range and DoA (azimuth)
of a single target in a 2D propagation scenario. In both case, such methods are compared, in terms of accuracy
and processing time; moreover, in case b), a comparison with deterministic methods is also made.

It is worth stressing that, unlike the previous sections, the results illustrated below do not originate from a
synthetically generated dataset. In fact, the following tools have been exploited to generate them:

1) A colocated FMCW MIMO radar manufactured by Inras GmbH [158]. This radar device, shown in Fig.
25-a) and employed to acquire all our measurements, operates in the E-band (the center frequency of its
transmitted signal is f0 = 77 GHz) and is equipped with a TX ULA and an RX ULA, consisting of NT = 2
and NR = 16 antennas, respectively (see Fig. 26-a)); even if, in principle, 2 · 16 = 32 virtual channels are
available (see Paragraph II-C), only NV = 31 of them are exploited in our work, since two elements of
the virtual array overlap.

2) A pico-flexx camera manufactured by PMD Technologies Inc. [159]. This time-of-flight camera, shown in
Fig. 25-b) and employed as a reference sensor in our experiments, is based on a near-infrared vertical cavity
surface emitting laser, and is able to provide a depth map or, equivalently, a three-dimensional point-cloud
of a small region of the observed environment (its maximum depth is equal to 4 m, whereas its FOV is
62◦ × 45◦).

3) A desktop computer equipped with a single i7 processor. All our software has been developed in the
MATLAB and/or Python environment and run on this computer.

In the following two paragraphs, we provide various details about the experiments accomplished for the two
specific applications mentioned above and illustrate the most relevant results we obtained.

A. Human activity classification

Our first experiment concerns the classification of following three different human activities: walking, running
and jumping. The following choices have been made in the acquisition of our measurements:

1) The person whose activity has to be classified is alone and is in front of the employed radar device.
2) A single pair of TX-RX antennas is used (since angular information is not required).
3) The transmitted waveform is characterized by the following parameters: Nc = 128, T = 128 µs, TR = 32

µs and B = 1 GHz (consequently, µ = 7.8 · 1012 GHz/s; see eq. (4)).
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Figure 26: Geometry of a) the physical TX and RX arrays and b) the corresponding virtual array of the radar
device shown in Fig. 25-a).

4) At the receive side, analog-to-digital conversion is accomplished at the sampling frequency fs = 80 MHz
and N = 1024 samples are acquired over each chirp period and an oversampling factor Mr = 4 is
considered for our processing.

Different classification methods have been tested for this application. First of all, we took into consideration
the following five ML methods: a linear SVM technique, the K-NN technique (with K = 4), an Adaboost
classifier with decision stumps as weak learners (see Paragraph III-B4), a customised double stage SVM binary
classifier (CSVM) and a specific version of the Adaboost, called Stagewise Additive Modeling using a Multi-
class Exponential loss function (SAMME) [160]. As far as DL methods are concerned, we have taken into
consideration a specific CNN only, since, as shown below, the preprocessed data feeding it can be interpreted
as 2D images.

All these methods are fed by the matrices E and G defined at the end of Paragraph II-C (see eqs. (31) and
(32)) and whose sizes are Nf ×N ′0 and N ′f ×N ′0, respectively (in all the experiments made for the considered
application, Nf = 143, N ′0 = 256 and N ′f = 512 have been selected). It is also worth remembering that the
former (the latter) matrix is used to generate the spectrogram (the CVD) of the received signal. Examples of the
spectrograms associated with the three possible activities are shown in Figs. 27-(a), -(b) and -(c) (note that the
same time scale is used in all these figures), whereas an example of CVD is illustrated in Fig. 28. Moreover,
in the last figure, two additional plots, one referring to the cadence frequency of the observed motion (left), the
other one to its velocity (bottom), are also given for completeness. From Figs. 27-28 it is easily inferred that:
a) The period of the spectrogram (i.e., the distance between its consecutive peaks) is inversely proportional to

the speed of the observed motion.
b) The shape of the spectrogram is influenced by the type of motion.
c) The CVD diagram contains important information regarding the motion and it is strictly related to the shape

of the spectrogram. In fact, the principal components characterizing the observed motion can be identified
in the CVD diagram in correspondence of the so-called cadence frequencies; each of these frequencies
indicates how frequently a specific velocity component repeats in the observation interval.

An experimental campaign has been accomplished to build up an experimental dataset, that collects Nt = 150
observations equally divided among the three classes. Each observation refers to Nf consecutive frames, each
consisting of Nc chirps, and is acquired over an observation interval whose duration is TO = 3 s (each frame
lasts TF = TO/Nf = 21 ms). Moreover, the q-th entry of the dataset Do processed by the above mentioned
ML methods is represented by the couple (rq, tq) (see eq. (74)), where

rq = [rq,0, rq,1, rq,2, rq,3] (227)

is a 4D feature vector (so that Dr = 4) and tq is a integer label identifying the specific activity which the vector
rq is associated with (tq = 0, 1 and 2 if the observed person is walking, running or jumping, respectively). The
first three elements of the vector rq (227) depend on the value Gq = [G

(q)
l,m] of the matrix G computed for the

q-th observation, since
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walking

running

jumping

Figure 27: Spectrograms observed for the following three different activities: walking (top), running (center)
and jumping (bottom).

Figure 28: Representation of a CVD and of two diagrams extracted from it (one providing information about
cadence frequencies, the other one about velocities). In the diagram appearing on the left, the three strongest
frequency components are identified by blue, red and green dashed lines; each line is associated with the velocity
profile shown in the other diagram and having the same colour.

here,
l̂q , arg max

l∈{0,1,...,N ′f−1}
V

(q)
l , (231)

l̂q,k is the index identifying the k-th largest peak appearing in the sequence {V (q)
l ; l = 0, 1, ..., N ′f − 1} (with

k = 0 and 1),

V
(q)
l ,

N ′0−1∑
m=0

G
(q)
l,m, (232)

and µ(q)
k is the mean of the elements of the l̂q,k-th row of the matrix Gq , i.e. of the vector

G
(q)

l̂q,k
,
[
G

(q)

l̂q,k,0
, G

(q)

l̂q,k,1
, ..., G

(q)

l̂q,k,N ′0−1

]T
, (233)
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with k = 0 and 1. The last feature of rq (227) (namely, the quantity rq,3) depends on the value Eq of the matrix
E computed for the q-th observation, since it represents the period of the spectrogram, i.e. the distance between
two consecutive peaks observed along the time dimension. It is important to point out that:

1) The parameter rq,0 (228) represents the strongest frequency component detected in the CVD diagram (see
Fig. 28). The value of this parameter is expected to increase with the speed of the observed person.

2) The parameters l̂q,0 and l̂q,1 identify the two strongest frequencies (denoted f̂q,0 and f̂q,1, respectively)
detected in the CVD referring to the q-th observation; such frequencies are evaluated as

f̂q,k =
l̂q,k

N ′f TF
, (234)

with k = 0 and 1.
3) The parameter µ(q)

k is the mean of the velocity profile expressed by the N ′0-dimensional vector G
(q)

l̂q,k
(233).

4) The parameter rq,1 (229) represents the covariance between the velocity profiles G
(q)

l̂q,0
and G

(q)

l̂q,1
, whereas

rq,2 is the overall energy associated with both profiles; our experimental data have evidenced that the value
of rq,1 (rq,2) decreases (increases) as the speed of the observed person gets larger (smaller).

5) The value of rq,3 is inversely proportional to the speed of the observed person, since an increase of the
speed shortens the period of the spectrogram.

As far as the adopted ML methods are concerned, the following choices have been made:
a) The K-NN classifier is structured as illustrated in Paragraph III-B4.
b) The classifiers based on the SVM and the Adaboost methods exploit the pairwise classification approach

illustrated at the end of Paragraph III-B4. For this reason, they combine L = K(K − 1)/2 = 3 identical binary
classifiers (i.e., base learners).

c) The CSVM method is obtained by cascading two linear SVM binary classifiers (whose behaviour is
described in Paragraph III-B4). The first SVM classifier (denoted SVM #1) distinguishes jumping from the
rest of the activities and is fed by the feature vector r′q = [rq,0 , rq,1] (in this case, the scalar labels t′q = 1
and t′q = −1 are associated with jumping, and with walking and running, respectively). The second classifier
(SVM #2) processes the observations related to running and walking only and is fed by the feature vector
r′′q = [rq,2 , rq,3] (in this case, the scalar labels t′′q = 1 and t′′q = −1 are associated with walking and running,
respectively). The final predictions of the CSVM are generated on the basis of the SVM #1 (SVM #2)
predictions for jumping (running and walking).

d) The employed version of the SAMME method is the one implemented in the Python library Scikit-
learn [161] (namely, sklearn.ensemble.AdaBoostClassifier) and represents a specific version of
the Adaboost technique for solving multi-class problems; in practice, it is based on a decision tree classifier
characterized by two nodes (instead of a simple decision stump). This methods outperforms a classical Adaboost
technique by simply emphasizing the weights assigned to misclassified points.

In our experiment, a N -fold cross-validation, with N = 5, has been employed. The accuracy achieved by
the considered ML methods and the processing time they have required for training and prediction are listed in
Table V.

From these results, it is easily inferred that:
a) The accuracy is reasonably good in all cases (slightly above the 90%).
b) The Adaboost performs marginally better than the K-NN and SVM methods, at the price of substantially

larger computation time.
c) The best trade-off in terms of performance and computation time is achieved by the K-NN technique.
d) The CSVM method requires a lower computational effort (especially in training) with respect to the method

based on SVM and round-robin binarization. This is mainly due to the fact that the former approach
employs only two learners, whereas the latter one three binary classifiers.

e) The SAMME algorithm achieves the same accuracy as the round-robin binarization of the classic Adaboost,
even if its computation time (in both training and prediction) is approximately ten times smaller.

The ML methods tested in the first part of our experiment exploit a dataset of manually extracted features (see
eqs. (227)-(230)). On the contrary, the CNN employed in the second part of our experiment is able to classify
human activities by recognizing specific patterns directly in the matrix E. A description of its architecture is
provided in Table VI. The first three layers of the employed network are represented by three convolutional 2D
filters, having size 15 × 5 and depths 4, 8 and 16; moreover, each filter feeds a linear rectifier, followed by a
max pooling layer. Each max pooling layer allows to halve the size of the image made available by the previous
layer, so that a significant dimensionality reduction is obtained. The first three layers are followed by another
2D convolutional filter with a batch normalization layer. The last layers are represented by a fully-connected
(FC) and a softmax (Soft) layer transforming the residual 2D image in a vector of size 3, since three classes
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SVM K-NN ADA CSVM SAMME

Accuracy (%) 89 90 91 90 91

Training time (s) 0.1 0.03 4.5 0.06 0.45

Prediction rime (s) 0.01 0.01 0.5 0.01 0.05

Table V: Accuracy, training time and prediction time evaluated for each of the ML methods considered for
human activity classification.

Layers Filters Size Stride Output

Convolutional + ReLu 4 15× 5 1 143× 53× 4

Max pooling - 15× 5 2 65× 25× 4

Convolutional + ReLu 8 15× 5 1 65× 25× 8

Max pooling - 15× 5 2 26× 11× 8

Convolutional + ReLu 16 15× 5 1 26× 11× 16

Max pooling - 3× 3 2 12× 5× 16

Convolutional + BN + ReLu 3 3× 3 1 12× 5× 3

FC + Soft 3 - - 1× 1× 3

Table VI: Architecture of the CNN employed for the classification of three human activities.

are considered. It is worth noting that the adoption of a CNN having a small depth is justified by the fact that
spectrograms referring to the three activities are quite different, as exemplified by Fig. 27.

The q-th entry of the dataset Do processed by the employed CNN is represented by the couple (rq, tq), where,
however, the observation rq is represented by the value Eq taken on by matrix E in the q-th acquisition (the
label tq , instead, has the same meaning as in the ML case). Moreover, Nf = 143 and N̄ ′0 = 53, and N̂t = 150
are assumed for the size of the matrix E and for the dataset Do, respectively. Network training is based on 60%
of the whole dataset (the remaining part of the dataset has been equally divided to generate a validation set and
a test set); moreover, it has been accomplished by an SGD minimization procedure, which is characterized by
a subset S of 4 training data samples, a learning rate γ(i) = 10−3 for any i and an overall number of epochs
NE = 50 (see eq. (106)). A 96% classification accuracy has been achieved in this case; therefore, the proposed
DL method achieves a substantially better generalization capability that the ML counterparts described above.
We should not forget, however, that this result is achieved at the price of a training time of about 25 s; this
is substantially larger than that required by the considered ML methods (see Table V). Finally, it is important
to mention that the computation time required by the employed CNN for evaluation a new prediction is about
0.03 s and, consequently, is reasonably short and comparable with the one characterizing the considered ML
methods.

B. Estimation of the range and azimuth of a single target

The second application we have investigated concerns the detection of a specific target moving on a 2D
multi-target scenario, and the estimation of its range and azimuth. In our experiment, the target to be detected is
an omnidirectional reflector, obtained by putting together eight corner reflectors (and inspired by the architecture
of the echo-master corners used for maritime applications). This target is mounted, through a vertical carton
support, on a Propeller Scribbler 3 mobile robot manufactured by Parallax Inc [162]. This robot has been
programmed to move randomly inside a square white region delimited by four opaque black lines and whose
side is equal to 2.5 m, as shown in Fig. 29; note that two corner reflectors have placed on the borders of this
region in order to build a multi-target scenario. The following choices have been made in the acquisition of our
measurements:

1) The whole antenna array shown in Fig. 26-a) is exploited, so that NV = 31 distinct virtual channels are
available at the receive side.

2) The waveform radiated by each TX antenna is characterized by the following parameters: Nc = 1, T = 64
µs, TR = 32 µs and B = 2 GHz (consequently, µ = 3.13 · 1013 GHz/s; see eq. (4)).

3) At the receive side, analog-to-digital conversion is accomplished at the sampling frequency fs = 40 MHz
and N = 2048 samples are acquired over each chirp period.
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4) The reference position of the target with respect to a three-dimensional reference system is evaluated by
means of the pico-flexx camera. This sensor is aligned with the radar system, being mounted on the same
plastic support of the radar device and at a fixed distance from it (about 10 cm) along the vertical direction.

The following two supervised DL methods have been tested: a) a feed-forward NN exploiting some manually
extracted features (further details about this method are provided below); b) a YOLO v2 NN for object detection
(see Paragraph VII-B).

Figure 29: Experimental-setup developed for our second application. The region of interest is delimited by an
opaque and black line; two coner reflectors are located on its border. A robot, equipped with corner reflectors,
moves randomly inside that area. The employed radar system and pico-flexx camera are placed on the tripod
visible on the right.

The q-th entry (rq, tq) of the dataset Do processed by the employed feed-forward NN is generated as follows.
The label tq associated with the q-th observation rq is defined as

tq , [R̂q, φ̂q] (235)

where R̂q and φ̂q represent the estimates of the target range Rq and azimuth φq , respectively, evaluated on the
basis of the point-cloud made available by our pico-flexx camera. Such a camera generates the Np × 3 matrix

P , [x y z], (236)

collecting the 3D coordinates of Np = 38304 distinct points; here, x, y and z are Np-dimensional column
vectors. The deterministic algorithm developed for the estimation of the target range and azimuth involves the
computation of the estimates (x̂q , ŷq, ẑq) of the target coordinates (xq , yq, zq) in the q-th observation; note that
zq (i.e., the target height) is assumed to be approximately known (zq ∼= 0.4 m). This algorithm consists of the
following three consecutive steps:

1) The size of the search space for the couple (x̂q , ŷq) is reduced by extracting the set25

Sq , {(xq,n, yq,n, zq,n)|zmin ≤ zq,n ≤ zmax;n ∈ ∆q}, (237)

from the matrix P (236); here, ∆q is a proper subset of the set of integers {0, 1, ..., Np− 1} and consists
of N̄q elements, whereas zmin = 0.3 m and zmax = 0.5 m represent two thresholds.

2) The estimates

x̂q = 1/N̄q

N̄q−1∑
n=0

xq,n, (238)

ŷq = 1/N̄q

N̄q−1∑
n=0

yq,n (239)

and

ẑq = 1/N̄q

N̄q−1∑
n=0

zq,n (240)

are computed. The estimate ẑq (240) is exploited only to check if the vector (x̂q , ŷq, ẑq) is meaningful,
i.e. if the condition ẑq ≈ 0.4 m is satisfied; if this does not occur, the thresholds appearing in the RHS

25Note that, in this step, our prior knowledge about the target height is exploited.
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of eq. (237) should be properly adjusted (i.e., zmin should be increased and/or zmax reduced) in order to
improve the obtained accuracy.

3) The estimates
R̂q =

√
x̂q + ŷq (241)

and
φ̂q = arctan (ŷq/x̂q) (242)

are evaluated.
The observation rq labelled by tq (235) is defined as26

rq ,
[
ψ̂q,0, ψ̂q,1, ..., ψ̂q,NV −1, f̂q

]T
, (243)

where f̂q is the frequency associated with the detected target (and estimated on the whole array) and ψ̂q,v is
the phase of the signal spectrum computed at the frequency f̂q for the v-th virtual element (with v = 0, 1, ...,
NV − 1); note that the size of the vector rq (243) is Dr = NV + 1 = 32. The deterministic algorithm employed
for the computation of the frequency f̂q and the phases {ψ̂q,v} forming rq (243) consists of the following two
steps:

1) Coarse estimation of the target position - The N -dimensional vector of the time domain samples acquired
over the v-th virtual antenna (see eq. (51)) undergoes zero padding and FFT processing of order N0 = N ·Mr

(in our experiment, N0 = 8192, since Mr = 4). This produces the N0-dimensional vector X
(q)
v (see eq.

(53)), which is employed to compute the power spectrum P
(q)
v = [P

(q)
v,0 , P (q)

v,1 , ..., P (q)
v,N0−1] on the basis

of eq. (56). Then, given (see eq. (58))

l̂(q)v , arg max
l̃∈{bm,...,bM}

P
(q)

v,l̃
, (244)

a target is detected on the v-th antenna if P (q)

v,l̂
(q)
v

> Pd, where Pd is a proper threshold; here, the integer
parameter bm (bM ) identifies the frequency bin corresponding to the minimum (maximum) measurable
range Rm (RM ). In our experiment, Pd = 0.9, and

bm =

⌊
2µN0TsRm

c

⌋
= 42 (245)

and
bM =

⌊
2µN0TsRM

c

⌋
= 147, (246)

since Rm = 1.0 m and RM = 3.5 m have been assumed. The procedure illustrated above is accomplished
for each virtual channel (i.e., for v = 0, 1, ..., NV − 1) and is employed to generate the set

Sl̂ , {l̂
(q)
vk

; k = 0, 1, ..., N̄V − 1}, (247)

with vk < vk+1 for any k; the size N̄V of this set is usually smaller that NV , since: a) the target may
be missed on one or more virtual channels (this occurs when the condition (244) is not satisfied); b) the
elements of Sl̂ are required to be distinct. The elements of Sl̂ are collected in the vector l̂q = [l̂

(q)
v0 , l̂(q)v1 ,

..., l̂(q)vN̄V −1
]T . Then, the following vectors are computed: a) the N̄V -dimensional vector f̂q = [f̂

(q)
v0 , f̂ (q)

v1 ,

..., f̂ (q)
vN̄V −1

]T and R̂q = [R̂
(q)
v0 , R̂(q)

v1 , ..., R̂(q)
vN̄V −1

]T , that collect N̄V estimates of the target frequency and
range, respectively (these quantities computed on the basis of eqs. (60) and (62), respectively); b) the set
of N̄V vectors {Â(q)

vk ; k = 0, 1, ..., N̄V −1}, where Â
(q)
vk = [Â

(q)
vk,0

, Â(q)
vk,1

, ..., Â(q)
vk,NV −1]T is made of the

complex amplitudes evaluated over the whole virtual array on the basis of eq. (61) under the assumption
that l̂ = l̂

(q)
vk for any k; d) the set of N̄V vectors {ψ̂

(q)

vk
; k = 0, 1 , ..., N̄V − 1}, where

ψ̂
(q)

vk
= [ψ̂

(q)
vk,0

, ψ̂
(q)
vk,1

, ..., ψ̂
(q)
vk,NV −1]T (248)

and ψ̂
(q)
vk,l

is equal to the phase of the complex gain Â
(q)
vk,l

for any k and l (see eq. (40)). Finally, each
of the vectors {Â(q)

vk } undergoes zero padding, that increases their size to N̄0 = 128, and N̄0-th order
FFT processing for azimuth estimation (see eqs. (70)-(72)). This produces the vector φ̂q = [φ̂

(q)
v0 , φ̂(q)

v1 ,
..., φ̂(q)

vN̄V −1
]T , collecting N̄V different estimates of the target azimuth. Therefore, this step produces N̄V

26Unwrapped phases are employed in this case, since they ease network training
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distinct estimates {(f̂ (q)
vk , R̂(q)

vk , φ̂(q)
vk ); k = 0, 1 , ..., N̄V − 1} of the target frequency, range and azimuth,

respectively.
2) Fine estimation of the target position - A single estimate of the target frequency, range and azimuth is

evaluated in this step on the basis of the N̄V estimates {(f̂ (q)
vk , R̂(q)

vk , φ̂(q)
vk )} available at the end of the

previous step. This estimate is computed as follows. First, we compute

v̂q = min
l̃∈Sl̂

∣∣∣φ̂q − φ̂(q)
vl̃

∣∣∣ , (249)

under the constraint ∣∣∣R̂q − R̂(q)
vl̃

∣∣∣ < Rth, (250)

with Rth = 0.3 m; here, the quantities R̂q and φ̂q are expressed by eq. (241) and eq. (242), respectively,
and Sl̂ is the set defined by eq. (247). Then, the vector rq (243) is evaluated as

rq = [ψ̂
(q)

v̂q , f̂
(q)
v̂q

]T (251)

where the vector ψ̂
(q)

v̂q is expressed by eq. (248) with vk = v̂q .
The entire dataset is generated by accomplishing the feature selection procedure expressed by eqs. (249)-

(250) for any q. It is important to stress that, in our experiment, only a specific target must be selected for each
observation. In fact, in a multiple target scenario like the one we are considering, it is hard to understand which
elements of the set Sl̂ (247) are associated with the target of interest.

The vector rq (251) generated by the deterministic procedure described above represents the input of our
feed-forward NN, whose response is the bidimensional vector t̂q , [t̂q,0, t̂q,1]; the elements of this vector
represent the estimates of the range and the azimuth, respectively, of the target detected on the basis of the q-th
observation (see eq. (235)). This network contains three hidden layers, consisting of M1 = 30, M2 = 20 and
M3 = 10 neurons (see Fig. 13). Each of them employs a ReLu, characterized by the transfer function

h(x) = xu (x) , (252)

where u (·) denotes the unit step function. The estimates of the target range and azimuth are computed by the
output layer, that contains two neurons only.

The size of the whole dataset acquired in our experiment is N̂t = 1438; 80% of it has been exploited for
training the considered NN and the remaining part for its test (therefore, the size of the training set and that
of the test are Nt = 1150 and N̄t = 288, respectively). Moreover, training has been accomplished by an adam
optimizer; the batch size, the (constant) learning rate and the number of epochs selected for this procedure
are NS = 4, γ = 10−3 and NE = 50, respectively (see eq. (106)). The elements of the feature vector rq
(with q = 0, 1, ..., Nt − 1) have been scaled before applying it to the network (more specifically, a min-max
normalization has been employed [163]); this ensures that the absolute value of such elements belongs to the
interval [0, 1] and makes the training procedure more effective. The accuracy achieved by the network over the
test set has been assessed by evaluating the RMSEs

ε̂R =
1√
N̄t

∥∥∥R̂− R̂NN

∥∥∥ (253)

and
ε̂φ =

1√
N̄t

∥∥∥φ̂− φ̂NN∥∥∥ , (254)

where R̂ (φ̂) is the N̄t-dimensional vector collecting the values of the target range (azimuth) estimated by
means of the pico-flexx camera over the test set and R̂NN (φ̂NN ) is the corresponding prediction computed
by our NN (||x|| denotes the Euclidean norm of the vector x). The network performance has been also assessed
by evaluating its detection score

Ac =
NC

NC +NW
, (255)

where NC (NW ) is the number of trials in the test set in which both target azimuth and range have been
correctly (wrongly) estimated (note that NC + NW = N̄t). In the q-th trial, estimation is deemed correct if
|R̂q − t̂q,0| ≤ ∆R and |φ̂q − t̂q,1| ≤ ∆φ, where ∆R = 20 cm and ∆φ = 5.5◦. It is worth pointing out that
the values selected for the parameters ∆R and ∆φ account for the limited resolution of the employed camera
and radar system. Actually, the value selected for ∆R may look larger than expected, because of the high
resolution that can be potentially achieved by both our radar device and pico-flexx camera. However, readers
should not forget that the algorithm employed for the computation of R̂q is not error free (see eq. (241) and
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Methods ε̂R ε̂θ AC Training Prediction
(m) (◦) (%) (sec) (msec)

FFT based 0.09 3.0 88 - 5

ANN 0.07 3.5 92 8 10

YOLO v2 0.03 1.5 98 398 20

Table VII: Accuracy, detection score, training and prediction time of a deterministic estimation algorithm, a
feed-forward NN and a YOLO v2 network.

(242)), especially when the cluster of points ∆q (237) is not so dense or when the size N̄q in eq. (240) is large.
A low density in the set Sq could be observed when, for instance, the robot reaches the corners of the delimited
area or in presence of optical disturbances.

The estimated accuracy and precision achieved by the adopted NN together with the time required for its
training and testing are listed in Table VII. In the same table, the values of the same parameters evaluated on
the basis of the deterministic algorithm employed for feature extraction are also provided; note that, for any q,
this algorithm can be exploited to generate the estimates R̂(q)

v̂q
and φ̂(q)

v̂q
of the target range and azimuth, on the

basis of v̂q (249) (note that R̂(q)
v̂q

and φ̂(q)
v̂q

represent the v̂q-the element of the vectors R̂q and φ̂q , respectively).
From these results it is easily inferred that: a) the NN is able to accurately predict the position of the target;
b) it outperforms the deterministic algorithm in terms of both accuracy and precision; c) its prediction time is
comparable with the computation time required by the deterministic algorithm.

In general, feed-forward NNs require a clever selection of their feature vector; for this reason, some expertise
in radar systems is desirable when applying them to target detection and estimation. This problem can be
circumvented by applying the YOLO v2 network (see Paragraph VII-B). Let us illustrate now how this network
can be employed to solve the target detection and estimation problem taken into consideration in this paragraph.
The q-the element of the collected dataset

Do , {(rq,bq, tq) ; q = 0, 1, ..., N̂t − 1} (256)

consists of the following three components:
1) The noisy observation rq = Jq , where Jq = [J

(q)
l,m] is a range-azimuth matrix having size N0 × N̄0 and

computed on the basis of the measurements acquired in the q-th trial. The element on the l-th row and the
m-th column of Jq is defined as

J
(q)
l,m ,

1

N0 N̄0
|
N̄0−1∑
v=0

N0−1∑
n=0

Sl,m|, (257)

where
Sl,m = r̂(ZP )

v,n exp
(
−j2πn f̂lTs

)
exp

(
−j2πv d

λ
sm

)
(258)

with l = 0, 1, ..., N0− 1 and m = 0, 1, ..., N̄0− 1; here, r̂(ZP )
v,n is the n-tn element of the N0-dimensional

vector r
(ZP )
v that results from zero padding N -dimensional vector of time domain signal samples acquired

over the v-th virtual antenna, Ts the sampling period, fl , l/(N0Ts) is the center frequency of the l-th
frequency bin and sm , 2 (m− N̄0/2)/N̄0 is the m-th normalized spatial frequency. Note that the matrix
Jq can be computed through a N0 × N̄0-order 2D FFT, and that the range and azimuth associated with
J

(q)
l,m (257) are (see eqs. (62) and (72), respectively)

R̄l = fl
c

2µ
(259)

and
φ̄m = arcsin sm, (260)

respectively.
2) The vector

bq = [lq,mq, wq, hq] (261)

describing the bounding box associated with the detected target; here, the couple of integers (lq,mq)
identifies the frequency bin and the normalised spatial frequency, respectively, corresponding to the center
of the box and wq (hq) represents the width (height) of the box itself.
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Layers Filters Size Stride Output

Convolutional + BN + ReLu 16 5× 5 2 52× 52× 16

Max pooling - 2× 2 2 26× 26× 16

Convolutional + BN + ReLu 32 5× 5 2 12× 12× 32

Max pooling - 2× 2 2 6× 6× 32

Convolutional + BN + ReLu 64 3× 3 1 6× 6× 64

Max pooling - 2× 2 2 3× 3× 64

Convolutional + BN + ReLu 128 3× 3 1 3× 3× 128

Convolutional + BN + ReLu 256 3× 3 1 3× 3× 256

Convolutional + BN + ReLu 512 3× 3 1 3× 3× 512

Convolutional 6 1× 1 1 1× 1× 6

Table VIII: Architecture of the CNN employed for target detection and estimation.

3) The label tq; this equal to 1 (−1) if a target is detected (absent).
In our experiment, we have selected N0 = 8192 and N̄0 = 128 in the computation of the elements of the

matrix Jq . However, since Rm = 1.0 m (RM = 3.5 m) and φm = −55◦ (φM = 55◦) have been assumed
for the minimum (maximum) range, the N0 × N̄0 matrix J has been resized to an N̄l × N̄m matrix, where
N̄l = bM − bm + 1 = 106 (the values of the parameters bm and bM are expressed by eqs. (245) and (246),
respectively), N̄m = dM − dm + 1 = 106, with

dm =

⌊
N̄0

2
(sm + 1)

⌋
= 11 (262)

and
bm = 42. (263)

In addition, a square shape with wq = hq = 12 has been always assumed for the bounding box; its parameters
lq and mq have been computed as

lq = arg min
bm≤l̃≤bM

∣∣∣R̂q −Rl̃∣∣∣ (264)

and as
mq = arg min

dm≤m̃≤dM

∣∣∣φ̂q − φm̃∣∣∣ (265)

where R̂q (φ̂q) is expressed by eq. (241) (eq. (242)) and Rl̃ (φm̃) by eq. (259) (eq. (260)) with l = l̃ (m = m̃).
The size of the dataset Do (256) is N̂t = 1438; 80% of its elements are used for training and the remaining part
for testing; consequently, the sizes of the training set and the test set are Nt = 1150 and N̄t = 288, respectively.
Data augmentation has been performed on the training and test set in order to reduce network overfitting, since
their sizes are not so large; this procedure consists in randomly flipping and scaling the input image and the
associated box.

The architecture of the employed network is summarized in Table VIII. It consists of a cascade of 22
layers and is fed by a normalized version of the resized range-azimuth matrix generated through the procedure
illustrated above and having size N̄l × N̄m = 106 × 106. Each of its first two convolutional layers has stride
S = 2 and is followed by a max pooling layer for dimensionality reduction. The use of a batch normalization
(BN) layer after each convolutional layer allows to avoid overfitting, since the dataset size is not so large;
consequently, other forms of regularization (as dropout) are not required. The activation function at the end
of each convolutional layer is ReLu (see eq. (252)). The filter depth in the last convolutional layer must be
proportional to NA · (NPA

+K), where NA is number of anchor boxes, NPA
is the number of predictions per

each anchor and K is the number of classes (see refs. [142] and [143]). Since, in our test, NA = 1, NPA
= 5

and K = 1 (if the background is ignored), the selected filter depth is equal to 6. A transform layer and an
output layer are also included in the architecture of the adopted network. The former layer improves network
stability in predicting the possible locations for the bounding box, whereas the latter one refines the estimate of
the bounding box location.

If the NK candidate boxes {bq[k] = [lq[k], mq[k], wq[k], hq[k]]T ; k = 0, 1, ..., NK − 1} (all labelled by
tq = 1) are identified by network, the index k̂q of the bounding box

b̂q =
[
lq[k̂q],mq[k̂q], wq[k̂q], hq[k̂q]

]
(266)
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best fitting the ground truth box is evaluated as

k̂q = arg max
k̃∈{0,1,...,NK−1}

I
(q)

k̃
, (267)

where

I
(q)

k̃
=
A

(q)
BG ∩A

(q)
BP

A
(q)
BG ∪A

(q)
BP

(268)

is the intersection over union (IOU) associated with the k-th candidate box; here, A(q)
BG (A(q)

BP ) represents the
surface of the ground truth (predicted) bounding box referring to the q-th observation. In our experiment, a
target is detected if I(q)

k̃
> Ith, where Ith = 0.1 is a properly selected threshold. Once the predicted bounding

box b̂q (266) is known, the estimate of the target range (azimuth angle) is evaluated by setting l = lq[k̂q] (
m = mq[k̂q]) in eq. (259) (eq. (260)); note that the values selected for the parameters l and m identify the
center of the predicted bounding box.

The training procedure of the adopted network has been carried out through the SGD algorithm; a batch size
NS = 10, a learning rate γ(i) = 10−3 and a number of epochs NE = 25 have been assumed (see eq. (106)).
The testing procedure has evidenced that this network is able to predict the bounding boxes characterized by
I

(q)

k̃
> 0.1 over 98% of the test set. A realization of range-azimuth map associated with the matrix J and of

the associated ground truth and the predicted bounding boxes around the detected target is illustrated in Fig.
30, where the position of the two corner reflectors placed on the border of the area of interest is also identified
(see Fig. 29). These results deserve the following comments:
a) The network is able to detect the target on the basis of the value of range and azimuth obtained through the

pico-flexx camera.
b) In the considered case, the IOU between the ground truth bounding box (red line) and the predicted one

(green line) is quite large, being equal to 0.73. Consequently, the estimate of the position of the target
(green circle) is very accurate and certainly much better than the one used as reference (red cross) (note
that |R̂q −Rlq [k̂q ]| = 0.001 m and |φ̂q − φmq [k̂q ]| = 0.9◦ in this case).
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Figure 30: Range-azimuth map referring to the scenario illustrated in Fig. 29. The ground truth bounding box
and the position of the target are identified by a red square and a red cross, respectively. The prediction of
the network, together with the estimated bounding box, are identified by a green circle and a green square,
respectively.

The values of the achieved accuracy (evaluated in terms of the RMSEs ε̂R (253) and ε̂φ (254)), the detection
score (255), and the computational time required for training and testing are listed in Table VII. From these
results it is easily inferred that:
a) The YOLO network outperforms our (deterministic) FFT-based method in target detection and estimation.
b) The value of the YOLO detection score Ac (255) is really high and better than that provided by the feed-

forward NN.
c) The YOLO RMSE ε̂R (ε̂φ) is smaller than (close to) the one characterizing the feed-forward NN.
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These results lead to the conclusion that the YOLO network is more robust than the feed-forward NN. Note
also that, even if the complexity of this network is higher than those of the other two methods, the time it
employs for computing its prediction is not too long, being in the order of few milliseconds.

Since the YOLO v2 network tries to solve also a binary classification problem, other two important parameters
for evaluating its performance are its precision

P =
TP

TP + TN
(269)

and its recall
R =

TP
TP + FN

, (270)

where TP (TN ) represents the overall number of true positives (true negatives), i.e. the number of targets (false
targets) classified correctly, and FN is the overall number of false targets classified as targets. The precision
versus recall plot evaluated in the considered experiment is shown in Fig. 31. These results lead to the conclusion
that, in this case, the precision remains high for large values of the recall and drops steeply only when the recall
exceeds 0.9. The area under the curve shown in Fig. 31 represents the so called mean average precision (mAP );
in this case, we have found that mAP = 93% (note that the value of this parameter is expressed as a percentage
since the precision P (269) and the recall R (270) are defined in the range [0 , 1]).
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Figure 31: Representation of the precision versus recall plot referring to the YOLO v2 network employed in
the second application. Note that, if the recall exceeds the threshold identified by the vertical dashed line, the
precision decreases steeply.

IX. CONCLUSIONS

Thanks to recent developments of electronic technology and advances in signal processing algorithms, colo-
cated MIMO radar systems have reached a stage of maturity that allows their adoption in a number of
applications. Existing algorithms developed for target detection and estimation in radar systems equipped with
antenna arrays do not always provide satisfactory performance in such applications, because of the complexity
of colocated MIMO radar devices and of the propagation scenario in which they operate. This motivates the
adoption of machine learning and deep learning techniques, since these are able to extract relevant information
from the available data in the absence of an accurate mathematical description of the behaviour of radar devices
and of the mechanisms of electromagnetic propagation. Even if important steps have been made in this field
in the last years, significant research efforts are still required to make the adoption of these techniques in
commercial systems a reality. In this manuscript, after providing essential information about MIMO radars
and the deterministic algorithms they employ for target detection and estimation, we have shown how some
learning methods can be exploited to solve simple classification and regression problems in FMCW radar systems
operating in a 2D propagation scenario and in the presence of point targets. This allows readers to become familiar
with some basic concepts and tools originating from the fields of radar systems and learning methods. Then,
various applications of learning methods to specific technical problems have been illustrated and relevant trends
in research on MIMO radars have been identified. Finally, the application of machine learning and deep learning
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methods to two specific problems, namely human activity classification and range azimuth estimation, has been
investigated. Our numerical results, based on experimental datasets acquired through a colocated MIMO device
operating at 77 GHz, allow readers to grasp how such methods can be exploited to solve real world problems. A
pervasive use of such methods should be expected in the near future, as understanding of the learning methods
described in this manuscript is becoming deeper and deeper, and MIMO technology is continuously evolving.
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