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Abstract

Trajectory data has become ubiquitous nowadays, which can benefit various real-world applications such as traffic management

and location-based services. However, trajectories may disclose highly sensitive information of an individual including mobility

patterns, personal profiles and gazetteers, social relationships, etc, making it indispensable to consider privacy protection when

releasing trajectory data. Ensuring privacy on trajectories demands more than hiding single locations, since trajectories are

intrinsically sparse and high-dimensional, and require to protect multi-scale correlations. To this end, extensive research has

been conducted to design effective techniques for privacy-preserving trajectory data publishing. Furthermore, protecting privacy

requires carefully balance two metrics: privacy and utility. In other words, it needs to protect as much privacy as possible and

meanwhile guarantee the usefulness of the released trajectories for data analysis. In this survey, we provide a comprehensive

study and systematic summarization of existing protection models, privacy and utility metrics for trajectories developed in the

literature. We also conduct extensive experiments on a real-life public trajectory dataset to evaluate the performance of several

representative privacy protection models, demonstrate the trade-off between privacy and utility, and guide the choice of the

right privacy model for trajectory publishing given certain privacy and utility desiderata.
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Abstract—Trajectory data has become ubiquitous nowadays, which can benefit various real-world applications such as traffic
management and location-based services. However, trajectories may disclose highly sensitive information of an individual including
mobility patterns, personal profiles and gazetteers, social relationships, etc, making it indispensable to consider privacy protection
when releasing trajectory data. Ensuring privacy on trajectories demands more than hiding single locations, since trajectories are
intrinsically sparse and high-dimensional, and require to protect multi-scale correlations. To this end, extensive research has been
conducted to design effective techniques for privacy-preserving trajectory data publishing. Furthermore, protecting privacy requires
carefully balance two metrics: privacy and utility. In other words, it needs to protect as much privacy as possible and meanwhile
guarantee the usefulness of the released trajectories for data analysis. In this survey, we provide a comprehensive study and
systematic summarization of existing protection models, privacy and utility metrics for trajectories developed in the literature. We also
conduct extensive experiments on a real-life public trajectory dataset to evaluate the performance of several representative privacy
protection models, demonstrate the trade-off between privacy and utility, and guide the choice of the right privacy model for trajectory
publishing given certain privacy and utility desiderata.
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1 INTRODUCTION

P RIVACY is usually referred to as the “ability of an indi-
vidual to control the terms under which personal information

is acquired and used” [1]. Privacy entails the protection of
several data aspects such as collection [2], mining [3], query-
ing [4], and publication [5]. Each of these aspects involves
its own privacy protection models as well as measures to
evaluate privacy level. We focus on data publication in this
work, i.e., releasing datasets without leaking any sensitive
information. Privacy-preserving data publishing has been
extensively studied in the database community, and well-
known techniques have been proposed to anonymize tabu-
lar records stored in the database including k-anonymity [6],
[7] (1998), l-diversity [8], [9] (2006), t-closeness [10] (2007),
and differential privacy [11] (2006).

With the increasing popularity of GPS-enabled devices, a
wide range of location-based services keep track of moving
objects, resulting in massive available spatial trajectory data.
Nowadays, trajectory data analysis has become ubiquitous,
as evidenced by a huge amount of trajectory-related tech-
niques, which can benefit various real-world applications
including urban planning, traffic management, personal-
ized recommendation. However, the analysis of trajectory
data can disclose sensitive information of an individual,
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making it essential to design techniques for privacy pro-
tection. In general, the protection of trajectory privacy is
based on two major directions: location-based services (LBSs)
and privacy preserving trajectory publication (PPTD). On one
hand, privacy protection in LBSs requires that a sufficient
quality-of-service is ensured while preventing an adversary
from learning the exact locations of an individual [12]. On
the other hand, privacy concerns hinder data-holders in
the publication of private trajectories which, therefore, has
spawned extensive research on privacy-preserving trajec-
tory data publishing. These directions are orthogonal and
can be distinguished according to the amount of adversary’s
knowledge (i.e., a sequence of real-time locations for LBSs;
the entire movement history for PPTD) and the protection
scope (i.e., the current location for LBSs; the entire trajectory
for PPTD). We focus on PPTD in this paper, considering
the proliferation of applications relying on the availability
of trajectory data. Formally, the trajectory of an individual
is recorded as a sequence of (geo-position, time) ordered
chronologically. Although trajectory data is representable
in a tabular format (e.g., organizing each individual and
the whole moving history as a record), trajectories cannot
be easily anonymized as “classic” tabular data due to the
following reasons:

• Trajectory data fulfills spatial constraints (e.g., mobil-
ity in an urban area).

• Trajectory locations are not independent (e.g., there
is spatiotemporal continuity between adjacent loca-
tions; it is impossible to jump from a road to another).

• Although trajectory data is highly sparse, only a few
locations can link 95% of individuals [13]. The longer
the trajectory, the easier to break individuals’ privacy.

• Trajectory locations represent geographical features
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mappable into semantics (e.g., POIs) that can directly
reflect individuals’ interests and demographics.

• Trajectories do not have fixed quasi-identifiers [14],
[12]. Sensitivity depends on both single locations
and arbitrary spatiotemporal patterns (e.g., day and
nighttime mobility).

The sensitivity, uniqueness, and low anonymizability of
trajectory data raise many issues and concerns, and hence
extensive research has been conducted to develop effective
techniques for privacy-preserving trajectory data publish-
ing. In the 2000s, two main approaches ad-hoc for spatiotem-
poral data were introduced to protect individual locations
either by producing dummies locations indistinguishable
from the real ones [15] (2005) or by mixing identifiers of in-
dividuals entering/leaving mix-zones [16] (2008). Due to the
need for publishing trajectories, both dummy and mix-zone
models have been adapted to trajectory data. Additionally,
since 2008, generic privacy models for sequential patterns
[7], [9], [10], [11], [17] were also specialized to protect trajec-
tory data, with trajectory k-anonymity being implemented
first [18] by making a trajectory indistinguishable in an
anonymity group including k-1 other trajectories. Differen-
tial privacy has been introduced for trajectory data in [19]
(2012), where, rather than generalizing/suppressing loca-
tions to achieve k-anonymity, authors release synthetic tra-
jectories resembling the original ones. Recently, l-diversity
and t-closeness [20] have also been applied to trajectories to
protect semantic locations (e.g., home, work, and frequently-
visited pubs).

1.1 Positioning and Contributions
In this survey, we analyze and organize the articulated spec-
trum of threat and anonymization models on the publication
of trajectory data. Although lots of trajectory privacy papers
have been recently published in top-tier venues, under-
standing which anonymization models fulfill the publica-
tion requirements is hard especially because ad-hoc privacy
and utility metrics are usually leveraged in these papers,
requiring exhaustive comparison which is missing in these
works. Our goal is to provide a comprehensive and clear
overview of the privacy issues related to trajectory data
as well as the privacy models countering these issues. We
target readers approaching trajectory privacy problems or
with only partial knowledge, and organize the content of the
survey at an increasing level of details to drive readers from
a general perspective to technical and empirical details.

While other surveys on trajectory privacy have been
published already, they are either vertical (e.g., focusing
on wireless sensor networks [21], opportunistic mobile net-
works [22], and automotive applications [23]), or lacking
of a systematic categorization and evaluation of utility and
privacy metrics (e.g., [24], [25], [26]), or have been published
before well-known recent results (e.g., [27]). Overall, the
main contributions of this paper are as follows:

• We provide a detailed overview of trajectory sensitiv-
ity and attacks, to highlight the privacy issues related
to the publication of trajectory data.

• We conduct a systematic analysis of privacy models
applied to trajectory data publishing and the ways to
quantify their privacy level and utility preservation.

• We provide an open-source library integrating im-
plementations of the most representative trajectory
anonymization models developed in the literature,
and systematically evaluate these models using a
publicly-available trajectory dataset.

• Through extensive empirical evaluation of the pri-
vacy models with respect to different utility and
privacy metrics, we guide the logical meaning and
the choice of algorithms for the release of trajectories
given certain privacy and utility desiderata.

The remaining of the paper is organized as follows: We
summarize the privacy threat of trajectories in Section 2
and state-of-the-art privacy protection models for trajectory
publishing in Section 3; Quantitative utility and privacy
metrics are introduced in detail in Section 4; Our experi-
mental results and analysis are reported in Section 5; We
conclude this survey in Section 6 with a summary of some
insightful findings and promising future work.

2 TRAJECTORY SENSITIVITY AND ATTACKS

Sensitive data is personal data (i.e., any information related
to an identifiable person) which, by its nature, is particularly
sensitive and might cause forms of discrimination or unde-
sired profiling. In this section, we categorize what sensitive
data could be exposed by trajectories, and how (technically)
attack models expose those sensitive information from pub-
lished trajectory data, as summarized in Table 1.

2.1 Sensitive Data

Inspired by GDPR [50], we distinguish three categories of
sensitive data: identity (i.e., any data that directly identifies
an individual; e.g., fiscal code and social security number),
personal profile (i.e., any information related to an identifiable
person; e.g., religion and ethnicity), and social relationship
(i.e., any relationship between individuals; e.g., friendship
or partnership). Although the value of trajectory data is
out of question, its peculiar spatiotemporal, sequential, and
recurrent natures threaten the protection of sensitive data.

Identity: Since human mobility is highly unique [13], in-
dividual trajectories act as fingerprints, making individuals
in trajectory datasets likely to be re-identified using only a
few known locations. For instance, a trajectory in a rural area
generates outlier locations that are easily exposed [51], and
the identity of an individual might be uncovered by linking
shared paths (i.e. connecting individuals with high trajec-
tory similarity). Additionally to single trajectory locations,
individual moving history unveils personal routines and
idiosyncratic behaviors that are easily linkable to individual
identities. For instance, the personal gazetteer identifies re-
current locations in everyday life, such as home, work, and
favorite restaurants. Similarly, the location probability distribu-
tion identifies how likely an individual is in a given location
at a given time. Although some spatiotemporal patterns are
extracted for the good purposes such as destination pre-
diction [39], point-of-interest (POI) recommendation [52],
[53], and personalized navigation [54], [55], acquiring these
distinguishable knowledge dramatically enhances attackers’
capability of identifying a specific individual.
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TABLE 1
Categorization of sensitive information, sensitive spatiotemporal patterns, and attack models.

Sensitive Data Attack Model Exploited Spatiotemporal Pattern Reference

Identity Record linkage

Known locations [28], [29], [30]
Location probability distribution [31], [32], [33], [34], [35]
POI / Personal gazetteer [36]
Shared path [37]

Personal profile

Attribute linkage
Recurrent mobility pattern [38], [39], [40]
POI / Personal gazetteer [38], [41], [42], [43], [44], [45]

Probabilistic attack Known locations [46], [47]

Table linkage Aggregate location statistics [48]

Social relationship Group linkage Encounter [49]

Personal Profile: Besides identities, personal gazetteers
(e.g., frequent locations, check-ins, POIs) and individual
mobility also unveil personal profiles. The semantic infor-
mation on locations contained in personal gazetteers expose
individual habits (e.g., religion, wage) to user profiling [45].
Similarly, mobility preferences or recurrent mobility patterns
(e.g., how likely an individual rides a bicycle instead of driv-
ing a car, or knowing her preferred routes or frequent stops)
vary from person to person [56], [57], exposing even religion
[40]. Indeed, by the analysis and prediction of individual
trajectories, it is possible to infer demographics, lifestyle,
and previously-unknown locations [38], [47]. Interestingly,
also from aggregated location statistics (e.g., the number of
individuals covered by a GSM cell) it is possible to infer the
presence of an individual in certain dataset, allowing the
inference of her personal data related to the dataset (e.g.,
her health condition if the dataset is about the movement of
hospitalized people).

Social Relationship: Social relationships affect user mo-
bility [58]. Following the ever-increasing amount of geo-
tagged contents (e.g., check-ins or geo-localized games),
individuals not only expose themselves through personal
gazetteer, but also give the chance of inferring their so-
cial relationships [59]. Additionally, the wide-spreading of
positioning systems (e.g., GPS and wireless access points)
exposes aggregated patterns such as the encounter of peo-
ple in area of interest (i.e., a continuous time interval in
which individuals are close in space; e.g., concerts and
manifestations). For instance, as individuals tend to group
in communities (e.g., family and colleagues), the encounter
and proximity of people in restricted areas unveils social ties
based on co-located trajectories [49].

2.2 Attack Models

Due to the high sensitivity of trajectory data, an adver-
sary can gather sensitive information of individuals within
or across the datasets. We classify existing attack models
on trajectories into two orthogonal categories: linkage and
probabilistic. Linkage attack models refer to what sensitive
data is inferred, and are categorized depending on such
information, while the probabilistic attack models quantify
how much knowledge is revealed by accessing the dataset. As
for sensitive data, the spatiotemporal nature of trajectories
opens new opportunities to specialize these generic attacks
to the spatiotemporal domain.

2.2.1 Linkage Models
Depending on the attack target, linkage models are catego-
rized into record linkage (i.e., inferring individual identity),
attribute linkage (i.e., inferring personal profile such as heal
condition), table linkage (i.e., inferring personal data through
the presence of a known individual in the dataset), and
group linkage (i.e., inferring social relationships).

Record Linkage: Record linkage is the mainstream at-
tack addressed by the state-of-art contributions. An ad-
versary with some background knowledge (e.g., exposed
locations [28], [29], origin and destination locations [30], and
social relationships [60]) can try to identify the record of
a known victim (i.e., perform a re-identification attack). In
[35], linkage is formalized as a k-nearest-neighbor search
(i.e., finding the most similar k individuals to the query
one). While in [32], authors model a linkage attack as a
bipartite graph in which individuals are modeled as two
disjoint vertex sets connected by edges weighted by the sim-
ilarity between the two individuals (e.g., the number of co-
occurrences at a certain spatiotemporal bin). The maximal
match within the bipartite graph [61] identifies the optimal
linkage.

Existing record linkage attacks differentiate by how indi-
vidual similarity is computed (i.e., what spatiotemporal pat-
terns are exploited to link two individuals). In [33], authors
discretize a map into a uniform grid, define the similarity
between two individuals as the Jensen-Shannon divergence
between their two location probability distributions, and
finally link users minimizing the divergence. In [31], authors
link datasets through a spatiotemporal join on co-occurring
locations and time periods, leveraging known locations to
prune the join space. In [37], authors model linkability in
term of spatiotemporal closeness between two trajectories.
Additionally, when a location is missing from a trajectory
at a certain time, authors interpolate such location by lever-
aging the distribution of historical locations. In [35], [62],
authors map trajectories into road network locations, build
compressed spatial signatures of trajectories by selecting the
locations with the highest TF-IDF scores, and formalize link-
age as k-nearest neighbor problem. While these attacks are
based on trajectory micro-data (i.e., raw trajectory locations),
aggregated trajectory data (e.g., the number of users within
an area) also poses privacy issues. In [34], authors exploit
the uniqueness and regularity of human mobility [63] (e.g.,
night and daytime mobility behaviors) to recover individual
trajectories from aggregated mobility data without any prior
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knowledge. Given a dataset representing the number of
trajectories in a cell at a given time, authors iteratively
estimate the probability for an individual to move from
a cell to another in its neighborhood and link adjacent
locations by maximizing such probability.

Attribute Linkage: If sensitive values frequently occur
within similar trajectories, an adversary can uncover sensi-
tive information even though cannot unequivocally isolate
single trajectories (i.e., perform an attribute linkage attack
but not a record linkage attack). Despite value diversity can
be ensured through l-diversity, if distinct sensitive values
sharing a semantic similarity occur frequently within tra-
jectories, an adversary can still cause a privacy breach (i.e.,
perform an attack based on similarity).

POIs and personal gazetteer easily expose personal data,
since they characterize the individual interests [44]. Exam-
ples of POIs are home, work, religion or political parties’
locations [38]. Revealing the POIs can cause a privacy breach
as such data may be sensitive (e.g., frequent visits to a hos-
pital suggest potential diseases). In [38], authors introduce
a Markov model that represents the mobility behavior of
an individual. POIs are states and transitions correspond
to movements from one POI to another. Then, authors
leverage such model to infer home locations (i.e., where
individuals usually spend their night) and regular patterns
emerging from circles in the mobility models. In [41], for
each individual in a dataset of call records, authors extract
her top-N locations (i.e., locations with high frequency)
and join them with census data. In [42], authors intro-
duce an algorithm to classify the POI semantic. Given two
government diary studies (i.e., logs of two-day individual
locations), a multi-class classifier [64] is trained to assign
semantic labels based on individual demographics, time of
visits, and nearby businesses. Furthermore, by extracting
and predicting individual movement patterns (either short-
term [39] or long-term [65]), it is possible to infer sensitive
information such as the mode of transport, demographics
and lifestyle [38]. In [43], given a dataset of location check-
ins, authors use spatiotemporal knowledge and the regular-
ity of human mobility to classify demographics attributes
such as gender, age, education, and marital status based
on the individual’s POIs extracted from check-in dataset.
In [40], a Reddit user identifies Muslim taxi drivers in New
York City by integrating anonymized taxi trips to the daily
praying time. By uncovering which taxi drivers are inactive
at such time, it is possible to infer sensitive information
such as religion. In [45], authors collect and integrate GPS
locations with open data to profile the income, home and
working locations of individuals frequenting a specific mall
by summarizing frequent location patterns.

Table Linkage: The inference of an individual’s presence
in a private dataset can also leak sensitive information.
For instance, knowing that a victim is part of a dataset
of hospital patients implies that she suffers from some
disease [48]. Membership disclosure attacks determine the
presence of target individuals within a dataset. In [48],
authors train a classification model to infer whether an
individual is part of the aggregated released data. Although
differential privacy reduces the attack success ratio, it yields
a significant utility loss. Authors consider an adversary with
different knowledge (e.g., locations or how aggregates were

previously computed). Given a trajectory dataset, authors
extract features for each region of interest (e.g., variance
and sum of values of each location over time), then split the
dataset into training and testing sets, and train the classifier
mentioned above. A peculiar case of disclosure (not directly
related to individual privacy) is the identification of military
bases from the publication of a visual map representing
sport activities using the Strava mobile application [66].

Group Linkage: The analysis of trajectory data can leak
social relationships between individuals in the published
dataset. For instance, individuals in the vicinity of each
other on a frequent basis can share home or work places,
or share the same religious and political orientation [38]. In
[58], authors investigate the influence of social relationships
on human mobility, showing that social relationships can
explain about 10% to 30% of all human movement. In
other words, individuals tend to group in communities (e.g.,
family and colleagues) where community members share
some traits with other members stronger than with non-
members [67]. Such phenomenon motivates group linkage
attack. In [49], authors exploit the ubiquity of Wi-Fi access
points to infer social ties based on co-located trajectories.
Relationships are represented by an undirected weighted
graph where vertices are individuals, edges are relation-
ships, and edge weights quantify the relationship intensity.
Communities are represented as sub-graphs. Authors char-
acterize three relationship types: friends, classmates, and
others. To construct the ground truth data, each relationship
is assigned with one (or more) labels based on survey ques-
tionnaires. Then, they define an encounter as a continuous
time interval in which individuals are close in space, and
extract spatiotemporal features to train a classifier to label
social relationships.

2.2.2 Probabilistic Models

A probabilistic attack quantifies how much information an
adversary can gather by accessing the dataset rather than
focusing on exactly what records, attributes, or tables the
adversary can link to a target victim [68]. Intuitively, the
access to a trajectory dataset should not reveal too much
additional information to what is already known by the
adversary. Probabilistic attacks can be considered as a gen-
eralization of attribute linkage [26], since their goal is not to
infer a specific sensitive attribute, but rather to increase the
generic knowledge of an adversary. For instance, given some
locations known by an adversary, while linkage attacks
focus on specific sensitive data, a successful probabilistic
attack can reveal the entire trajectory of an individual (as in
record linkage) as well as the sensitive attributes related to
that trajectory (as in attribute linkage).

Recently, probabilistic attack to the trajectory dataset has
been formalized in [46], where given τ known locations,
an adversary is limited to learn only additional ε locations.
The adversary knowledge can be any continued sequence
of spatiotemporal samples, and the maximum additional
knowledge that she can learn is called leakage. Similarly,
[47] formalizes a probabilistic attack as the probability to
learn a location previously unknown, and produces a pri-
vacy model to remove all the privacy breaches given some
known locations. Intuitively, such probability is related to
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TABLE 2
Privacy models and countered attacks.

Attack Model Privacy Model Reference

Record link.

k-anonymity W4M [69], GLOVE [70]
l-diversity, t-closeness KLT [20]
differential privacy DPT [71], SPLT [72]
dummy DTPP [29]
mix-zone UTMP [73]

Attribute link. l-diversity, t-closeness KLT [20]

Table link. differential privacy DPT [71], SPLT [72]

Group link. - -

Probabilistic differential privacy DPT [71], SPLT [72]

the uniqueness of unknown locations belonging to the tra-
jectories containing the known locations.

3 PROTECTION OF TRAJECTORY PRIVACY

In this work, we focus on privacy protection of trajectories.
We categorize privacy models for the release of anonymized
trajectory data as formal and ad-hoc models. Formal models
are independent from the data type, and extend the ex-
isting principles (e.g., k-anonymity, l-diversity, t-closeness,
and differential privacy) to trajectories. Ad-hoc models are
specific to spatiotemporal data and mobility features (e.g.,
road network constraints). In the following, we first briefly
explain each type of privacy model, and then elaborate on
well-known attempts applied to trajectories. Privacy models
and their countered attacks are summarized in Table 2.

3.1 Formal models
These protection models define privacy on formal require-
ments which are usually expressed as parameters of the
anonymization process. For instance, some models (e.g., k-
anonymity, l-diversity, t-closeness) address quasi-identifier
QI attributes (i.e. attributes enabling to breach identities af-
ter the anonymization process) or other sensitive attributes,
while other models (e.g., differential privacy) try to guaran-
tee an anonymized dataset leaks only controlled amount of
information.

3.1.1 k-anonymity
Among the anonymity models, k-anonymity is the most
extensively studied due to its intuitive anonymization pro-
cess. Generally speaking, a dataset D satisfies k-anonymity
if each QI value D(QI) appears in at least k records. k-
anonymity counters record linkage by ensuring the indistin-
guishability of an individual within a k-anonymous group
and meanwhile minimizing information loss (intuitively,
how much distortion is required to hide the individual
within the group). Note that the optimal k-anonymity has
been proved to be NP-hard [74].

In the context of trajectories, NWA [75] and its extension
W4M [69], as well as GLOVE [70], are well-known imple-
mentations of trajectory k-anonymity and are often taken as
baselines in privacy-model comparisons. However, due to
the fact that the quasi-identifier (QI) in trajectories has not
been formally defined yet, neither of these models follows
the traditional way to achieve k-anonymity on trajectory

data. Instead, two specific frameworks have been developed
accordingly and widely used in the literature. On one hand,
NWA and W4M share a consistent two-step greedy proce-
dure: 1) building groups of at least k similar trajectories,
and 2) anonymizing trajectories in each group. Apparently,
the first step requires the definition of similarity/distance
measures to group trajectories as well as the quantification
of information loss or other utility metrics to perform locally
optimal aggregation. On the other hand, GLOVE shows a
different idea with two steps as well: 1) full calculation of
trajectory-wise merge costs, and 2) hierarchical clustering by
iteratively merging two trajectories with the smallest cost
until each trajectory satisfies k-anonymity. Similarly, it is
crucial to define the merge cost, since it determines not only
to what extent the newly merged trajectories are protected
but also how much utility will be reserved.

NWA: NWA [75] is the first implementation of (k,δ)-
anonymity on trajectory data. It models trajectories as cylin-
drical volumes where radius δ represents the location im-
precision. That is, two trajectories are indistinguishable if
they move within the same cylinder (i.e., are closer than δ).
Technically, NWA coarsens the start and end time of tra-
jectories within an interval of length τ to enforce grouping
trajectories with the same start/end time. In each group,
NWA clusters trajectories in a greedy fashion. In brief, it
selects proper centers of clusters, adds to each cluster the
k-1 nearest trajectories that are closer than a given radius,
and assigns the remaining trajectories to the closest cluster
within the given radius. Note that clusters with less than k
elements will be dropped as well as the outlier trajectories
that cannot be added to any cluster. Finally, NWA ensures
each cluster is (k,δ)-anonymous via space translation while
minimizing distortion at the same time.

W4M: Euclidean distance is employed in NWA, which
makes it only applicable to trajectories with equal length.
W4M [69] extends NWA by introducing an EDR-based time-
tolerant distance measurement between two trajectories. In
particular, W4M adopts the greedy clustering based on the
EDR distance to group trajectories in clusters having at
least k elements, and then exploits the minimum space
translation via spatio-temporal editing to push all the tra-
jectories of a cluster within a cylindrical volume of radius
δ/2. In this way, each trajectory in a group is edited to be
sufficiently similar with its center trajectory so as to make
each cluster become a (k, δ)-anonymity set. Theoretically,
the total computational cost of W4M is O(|D|2n2), where
|D| is the total number of trajectories to be anonymized and
n is the average length of trajectories. It could be quite time-
consuming due to the k-member clustering, and meanwhile
the cost of measuring the EDR distance between two trajec-
tories is proportional to the length of both trajectories.

GLOVE: GLOVE [70] represents a location as a rectangle
in space with a time span rather than a cylindrical volume
used in NWA and W4M. Basically, it consists of two steps:
1) computing the trajectory-wise merge cost (i.e., to what
extent the two trajectories have to be stretched to produce a
new one covering the others), and 2) iteratively merging two
trajectories with the smallest cost until each trajectory is k-
anonymous. At the point level, the stretch effort represents
the smallest loss of accuracy resulted from making two
spatiotemporal points indistinguishable from both spatial
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and temporal dimensions. During the hierarchical clustering
of trajectories, the cost matrix is updated for the newly
generated trajectory if it does not satisfy the k-anonymity
and has to be merged further. In practice, the full calculation
of trajectory-wise merge cost is also time-consuming, which
leads to the time cost of GLOVE to be O(|D|2n2) in total.

Other Implementations: Following the framework of k-
anonymity (e.g., NWA and W4M), many models attempt
to further reduce information loss, such as applying mini-
mum description length principle in a distance metric [76],
coarsening begin/end timestamps to increase the number
of anonymized trajectories [77], and enabling customized
k for specific trajectories and time intervals considering
that trajectories are not equally sensitive [78], [79], [80].
Another typical follow-up is TOPF [81], which uses a dif-
ferent clustering strategy by grouping trajectories with the
same start/end time in k-anonymous groups, and iterates
over the remaining trajectories to add sub-trajectories into
existing groups with the same start/end time. In addition,
[82] builds a weighted graph for each group where vertices
are trajectories, and trajectories overlapping in time are
connected by edges weighted with their Euclidean distance.
Then, the trajectory graph is partitioned into connected
components until no connected component with more than
k vertices exists. [83] extends [82] by including trajectory
direction angle in the similarity function to achieve higher
utility. Rather than directly clustering trajectories, KAM [84]
groups all locations into density-based clusters, transforms
each trajectory to a sequence of cluster centroids, and prunes
all the trajectories whose path is shared by less than k other
trajectories.

3.1.2 l-diversity and t-closeness
Although k-anonymity allows the release of indistinguish-
able data (thus counters record linkage), attribute linkage
can also expose some sensitive information when individ-
uals within an anonymity group share similar values on
some sensitive attributes. Hence, l-diversity [9] is proposed
to ensure that an anonymity group contains at least l
well-represented values for each sensitive attribute. Several
definitions of well-represented values exist. For instance,
a dataset D satisfies distinct l-diversity if the number of
values for the sensitive attribute in D(QI) is at least l. Other
definitions are based on entropy and frequency of values [9].
However, if the distribution of sensitive values in a group
is known (e.g., is highly skewed) or the sensitive values
are semantically similar, privacy can still be leaked [9]. T-
closeness [10] overcomes these limitations of l-diversity in
the protection of attribute linkage threats by ensuring that
the distance between the distribution of sensitive attributes
within a group and the global distribution is smaller than t.

KLT: A trajectory is intrinsically a sequence of spa-
tiotemporal points which can have various semantic infor-
mation such as POI or road network. KLT [20] is the only
approach implementing both l-diversity and t-closeness in
trajectory protection. It follows the framework of GLOVE
[70] to ensure k-anonymity. Further, it involves the semantic
data by partitioning the whole space into several regions,
each of which is denoted as an irregular polygon covering
various types of POIs. Each location in a trajectory located
in a specific region is associated with the heterogeneous

semantic labels. When merging trajectories, it combines
neighboring regions to make the resulting region satisfying
l-diversity (i.e., the number of distinct POI categories in that
region should exceed l). Similar operations are applied to
achieve t-closeness. That is, more neighboring regions are
merged until the divergence between its POI distribution
and that of the global city is no larger than t. Compared with
GLOVE, the total computational cost of KLT increases to
O(|D|2n2N), whereN is the number of regions in the space.
The extra cost is caused by retrieving the list of regions
when computing the cost matrix and merging trajectories
for achieving two additional criteria.

Other Implementations: Except KLT considering both l-
diversity and t-closeness formulations, some other models
also implement l-diversity. For instance, (K,C)L-privacy
[85] guarantees that any sub-sequence τ of any known
L locations is shared by at least K trajectories and that
the confidence to infer any sensitive value from τ is at
most C . Any sub-sequence q, 0 < |q| ≤ L is a violating
sequence if it does not satisfy KCL conditions, and it will
be suppressed from the trajectories. Similarly, PPTD [86]
suppresses a critical sub-trajectory τ if the possibility to
link an individual in the private dataset given the sub-
trajectory τ is higher than a given threshold. (α,K,L)-privacy
[87] guarantees that any sub-trajectory τ is contained in a
group of at least k elements, the probability of inferring
a sequence of L sensitive locations from τ is lower than
α, and the probability to infer a sensitive value v is lower
than α. (l,α,β)-privacy [88] ensures distinct l-diversity, α-
sensitivity (i.e., the probability to infer sensitive value is
below α), and β-similarity (i.e., the probability to infer a
value within a sensitive group is below β). Authors identify
critical sequences of maximum length m (upper bound to
the adversary knowledge) and modify/drop them to en-
force l-diversity, α-sensitivity and β-similarity. c-safety [89]
protects semantic trajectories based on the generalization of
visited places within a POI taxonomy. This is similar to l-
diversity, but the number of sensitive places is not fixed.

3.1.3 Differential Privacy

Differential privacy [11] ensures that the presence of a record
in a dataset leaks a controlled amount of information ε. An
algorithm f satisfies ε-differential privacy if for any two
datasets D1 and D2 that differs on at most one record,
and all sets S of values in the image of the algorithm (i.e.,
S ⊆ Range(f)), it has

Pr(f(D1) ∈ S) ≥ eε · Pr(f(D2) ∈ S)

where Pr is the probability to observe a specific output. Dif-
ferential privacy is usually guaranteed by generating syn-
thetic data from the original one with controlled amount of
random noise. In the field of traditional relational database,
several randomized mechanisms have been already utilized
to achieve ε-differential privacy. For example, the Laplace
mechanism adds noise drawn from the Laplacian distribution
Lap(∆f

ε ) [11] to the original database w.r.t. the function f .
Another well-known technique is the exponential mechanism
[90] that handles complex cases where the function f maps
the data to strings, trees or other non-numerical data, which
makes the Laplace mechanism no longer suitable.
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Existing differential privacy models for trajectories share
a common procedure: 1) modeling raw trajectories to cap-
ture the statistical distribution of original data, and 2) sam-
pling synthetic trajectories (i.e., data not preserving truthful-
ness at record level) from the constructed mobility model.
On top of this basic framework, the approaches vary from
many aspects such as the ways of modeling trajectories, the
sampling methods or the mechanism for noise injection.

DPT: DPT [71] is one of the most famous models achiev-
ing differential privacy on trajectory data which adapts the
Laplacian mechanism to publish synthetic trajectories. In
DPT, the entire space is discretized at different resolutions to
build the hierarchical reference systems modeling the trajec-
tories at various speeds. Each reference system corresponds
to a prefix tree to store the counts of trajectories moving
through these grid cells based on the l-order Markov process
where l is smaller than the height of tree. Furthermore,
an adaptive model selection step is proposed to learn the
optimal height of tree as well as dropping some useless trees
with high noise and low utility in the ε-differential private
manner. The privacy budget ε is divided into two parts, one
of which is responsible for the bias caused by the removal of
trees and the other is for the Laplace-based noise added to
the counts in the tree nodes. Minimizing the error defined by
these two parts is the goal of model selection step. Finally,
after the hierarchical reference system is stable, a direction
weighted sampling strategy is adopted by remembering the
recent trend of directionality during sampling. Avoiding
sudden unrealistic changes of direction can improve the
utility of synthetic trajectories. In principle, the runtime
complexity of DPT is O(|D|n|Σ||O|), where |Σ| denotes all
the possible anchor points in the spatial domain and |O|
indicates the number of the required synthetic trajectories
as the output.

SPLT: SPLT [72] can be regarded as a variant of differen-
tial privacy which provides some sort of indistinguishabil-
ity. Generally speaking, it ensures that an adversary cannot
distinguish whether a synthetic trajectory is generated by
a certain individual compared with other k-1 individuals
in the original dataset. SPLT synthesizes trajectories with
high semantic similarity (simS) and low geographic similarity
(simG) compared to the original ones. Intuitively, given
two individuals’ mobility data, when simG is very low
(i.e., the two do not frequently visit the places that are
spatially close), simS can still be high (i.e., the frequent
places are semantically similar, e.g., “home” and “work”).
To this end, for each seed trajectory, authors compute a
1st-order Markov model representing the probability to
visit and transit between locations. An aggregated mobility
model is derived by averaging all the individual models.
Next, a location-semantic graph is built by regarding each
location as a vertex and weighting the edges based on the
semantic similarity between locations. Vertices of this graph
are clustered into classes, so that locations within the same
class have similar semantics and could be visited in a same
way regardless of their geographic distance. Then, each seed
trajectory is transformed into a sequence of semantic classes.
A valid trace similar to a seed is generated by sequentially
picking a location from the semantic class and meanwhile
enforcing its geographical consistency with the aggregated
mobility model. Finally, authors run a privacy test to decide

whether to release each synthetic trace under the required
statistical dissimilarity (based on EDR distance) and plausible
deniability (i.e., the synthetic trace could be generated by at
least k − 1 alternative trajectories).

Other Implementations: As DPT does not consider tem-
poral information in trajectory data, SafePath is proposed in
[91] to synthesize spatiotemporal trajectories by adding the
timestamp location to the prefix tree. Another drawback of
DPT is the poor utility reserved in the output dataset. To this
end, DP-STAR [92] synthesizes trajectories by injecting noise
to various utility features including density grid, mobility
model, trip distribution, route length. Raw trajectories are
rewritten by their representative points derived from the
minimum description length metric. A density-aware grid
structure is built to preserve the spatial densities in the orig-
inal dataset despite the Laplacian noise added to the counts.
The mobility model in DP-STAR is actually a collection of
transition probabilities by aggregating and averaging each
individual model and the noise is injected to Markov chain.
Besides, by taking care of users’ trip lengths using a median
length estimation method, it preserves more utility of data.
In addition to the Laplace mechanism, many researchers
also work on implementing differential privacy in trajectory
data through the exponential mechanism [90]. For instance,
[93] formalizes anonymity group as the one with the highest
utility (i.e., intra-group similarity) among the groups in all
the possible partitions. Since the number of partitions is
exponential, authors provide a sub-optimal solution which
leverages a single partitioning instance. Similarly, in [94],
authors assign utility to k-means clustering in terms of intra-
cluster distance and sample a clustering partition from an
exponential distribution. In [95], authors generate synthetic
trajectories by incrementally sampling the next trajectory lo-
cation distance and direction from exponential distributions.
Finally, differential privacy can also be achieved via ran-
domized response, i.e. deciding by chance whether to return
the actual outcome or a randomized one. In [96], authors
sample trajectory locations and interpolate the missing ones.
Since locations adjacent to sensitive ones may leak sensitive
information, Lclean [97] determines the correlation between
sensitive and adjacent locations. For each sensitive region,
Lclean finds sequences close in space/time that either do
not contain sensitive information or show strong correla-
tions. Given the sequences, Lclean substitutes trajectory sub-
sequences via randomized response, making it impossible
for an adversary to predict sensitive regions.

3.2 Ad-hoc Models

Some ad-hoc models have also been developed to address
privacy-preserving publication specific to trajectory data.
In this section, we discuss two popular models: mix-zone
(i.e., geographical areas in which individuals must swap
pseudonyms) and dummy (i.e., synthetic trajectories resem-
bling the original ones).

3.2.1 Mix-zone
Basically, a mix-zone refers to a geographical region on the
map where passing objects must change their pseudonyms
to avoid being tracked by the adversaries. The attackers
need to observe pseudonyms of all ingress/egress events in
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order to reconstruct mappings between pseudonyms (i.e.,
record linkage). To apply mix-zones for trajectory privacy
protection, existing approaches are mainly composed of
two separate parts, i.e., the placement of mix-zones and
the anonymization of trajectories. As the latter process is
straightforward, researchers usually focus on the former
one. In practice, to balance the level of privacy protection
provided by Mixzone-based models and the reserved utility
of generated trajectories, the placement of mix-zones is
usually regarded as an optimization problem with many
constraints to be satisfied, such as location accuracy (i.e., the
bigger the area, the lower the accuracy), sampling accuracy
(i.e., the higher the sampling rate, the more accurate the
linking is), and computational cost (i.e., the more mix-zones,
the higher the computational cost).

UTMP: UTMP [73] formalizes the deployment of mix-
zones as an optimization problem by minimizing the num-
ber of pairwise-associated vertices in a road network. Two
vertices are pairwise associated if a moving object can travel
from one to the other without going through any mix-
zone. As the optimal placement of mix-zones is a NP-hard
problem, a heuristic solution is proposed in [73] to reduce
computational cost. The road network is partitioned into
disconnected components by looking for the articulation
points (or called cut vertices) through a depth-first search.
For each component, it finds a maximal independent set
by iteratively adding non-adjacent vertices such that all the
vertices that are not in the independent set are selected. To
maintain the budget constraint K , it iteratively removes the
vertex introducing the least number of pairwise associations
from the candidate set until the total number of mix-zones is
less than a given value K . As can be seen, determining the
mix-zones is irrelevant to the original trajectory dataset but
only depends on the structure of road network. Hence, the
total computational cost of mix-zone placement in UTMP
is O(|V |(|V | + |E|)), where |V | is the number of anchor
points and |E| represents the number of edges connecting
those points in the road network. Furthermore, the cost
of anonymizing the trajectory dataset D with an average
length of n is O(|D|nK) in total, since it only needs to
replace trajectory points with mix-zones.

Other Implementations: Some follow-up Mix-zone al-
gorithms have been proposed to further improve privacy
protection. For example, MobiMix [98] models a mix-zone
as a k-anonymous region, where k individuals enter in some
order, swap pseudonyms, and none leaves it before another
k individuals have entered. The placement, geometry, and
time spent inside mix-zones affect the privacy level. In-
tuitively, it is easy to perform a first-in first-out attack if
staying time is constant. Randomness ensures reordering,
however, individuals are not always able to spend random
time inside a road network, and do not follow uniform
transition probabilities when entering/exiting the mix-zone
(e.g., in case of trafficked routes [99]). MobiMix introduces
the time window bounded non-rectangular mix-zone model: for
each road junction, a mix-zone region starts from the center
of the junction and expands to the outgoing road segment.
The length of the region is proportional to the average
road-segment speed, providing the best protection against
timing attacks. On the contrary, [30] attempts to figure out
the vulnerabilities of Mix-zone methods by conducting an

attack under the assumption that moving objects follow the
shortest path between origin/destination locations. It claims
that an adversary can compare the minimum path between
known origin/destination locations using the Dijkstra algo-
rithm in a road network and the minimum DTW distance
between the anonymized trajectories.

3.2.2 Dummy
Basically, the objective of dummy anonymization is similar
to those synthesizing trajectories. However, unlike DPT [71]
or SPLT [72], no mathematical formulation is adopted in
dummy models. Instead, the generation of dummy candi-
dates for each input trajectory is defined and executed in
various ad-hoc ways. The effectiveness of dummy-privacy
models highly relates to the potential capability to rule out
unqualified trajectories.

DTPP: DTPP [29] generates dummy trajectories based on
the assumption of some exposed locations. When produc-
ing dummy trajectories for a real trajectory, those exposed
locations are remained in dummies while all the others
are replaced by their neighboring points picked from the
located grid cell. Meanwhile, all the generated dummy
traces are verified by whether to be connective in the road
network and be feasible in terms of the maximum speed
derived from the true trajectory. Basically, DTPP generates
k-1 dummy trajectories to form an anonymous trajectory set
including the real one (whereas in k-anonymity no synthetic
trajectory is generated). Each unexposed location in a trajec-
tory should have at least l−1 alternatives in its dummies to
ensure the diversity. Note that any unqualified trajectory
or too sensitive location according to the anonymity re-
quirements will be suppressed directly. Theoretically, DTPP
is a very time-consuming model as the generation of k-
1 dummies for each single trajectory takes O(n3m2) time
complexity, where n is the average length of trajectories and
m denotes the average number of anchor points within a
grid cell. Hence, processing a dataset D with DTPP costs
O(|D|n3m2) in total.

Other Implementations: Instead of considering the road
network, [100] generates dummy trajectories resembling
individuals moving in free space given three privacy param-
eters: short-term disclosure (i.e., the probability of successfully
identifying a true individual location), long-term disclosure
(i.e., the probability to identify a trajectory depending on
its intersection with others), and distance deviation (i.e., the
distance between dummy and real trajectories for a given
individual). Authors introduce the random pattern strategy,
which selects dummy start/end points and intermediate
movements as random moves towards the end point. On
the other hand, several implementations aim to reduce the
number of generated dummies by applying different strate-
gies. In [101], authors introduce the K-intersected strategy,
where, given K intersection points as input, a dummy
trajectory is generated by composing two sub-dummy tra-
jectory sets: one between two intersection points (a sub-
dummy is obtained by performing random moves from the
start to the end point), and one of sub-dummies that do not
contain intersection points. In [102], authors introduce the
adaptive generation strategy for dummy trajectories. For each
given rotation angle and location in a trajectory, authors
synthesize a new candidate dummy trajectory satisfying the
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distance distortion, and then perturb trajectory locations to
achieve more uniformly distributed trajectories by moving
these locations in sparse areas. In [103], authors attempt
to generate dummies resembling known individual move-
ments between known stop locations.

4 EVALUATION METRICS

Naturally, a good privacy protection model should be able
to balance two metrics: privacy (how much private infor-
mation is leaked) and utility (how much information is
retained/lost). On one hand, returning completely random
data guarantees privacy but results in null utility. On the
other hand, retaining raw data maximizes utility but ensures
no additional privacy. Therefore, privacy-preserving pub-
lication of trajectories aims to anonymize spatiotemporal
dataset to release an altered version that prevents the disclo-
sure of sensitive information while preserving its usefulness
for certain analytic tasks. In this section, we provide a
systematic summarization of privacy and utility metrics that
have been used in the literature to evaluate the performance
of existing privacy models designed for trajectories, some of
which are also considered in our experiments.

4.1 Privacy Metrics
We first introduce some typical examples in different classes
of privacy metrics along with the privacy models to which
they can be applied (Table 3). The metrics provide a privacy
evaluation additional to the privacy guarantees achieved
in the formal privacy models, namely k tunes the size of
the anonymity group in k-anonymity; l tunes the “well-
represented” sensitive values in l-diversity; t tunes the
distance of sensitive-attribute distributions between original
and anonymized data in t-closeness; and ε tunes the amount
of leaked information in differential privacy.

Group-based Metrics: For a group-based privacy model
(e.g., k-anonymity, l-diversity and t-closeness), all the indi-
viduals within an anonymity group are indistinguishable
from one another. The anonymity group size bounds the prob-
ability of identifying an individual within a group (namely,
1 divided by the group size) [84].

Sensitive Attribute Disclosure: When protecting sen-
sitive attributes attached to the released trajectory records
(e.g., l-diversity and t-closeness), the disclosure risk of an
anonymized trajectory should be considered. In [88], au-
thors identify the risk in terms of both identity disclosure
and attribute disclosure given a sub-trajectory τ :

Prdis(τ) = max(
1

|S(τ)|
,

α

|D(τ)|
)

where D(τ) is the set of trajectories including τ , and S(τ)
returns the set of sensitive values belonging to D(τ). α is a
smoothing parameter.

Attack Success: Success metrics quantify how effec-
tive/accurate an attack model is. For instance, identification
accuracy measures how many individuals can be accurately
identified (i.e., linked back to the original records) after
anonymization [104], [105], [30], [73]. In practice, this kind
of metrics mostly depends on the adopted attack model.
However, every privacy model usually aims at a specific
attack, which leads to the lack of formal quantification and

makes the comparison of privacy models difficult. Based
on our summarization in Table 2, all the aforementioned
privacy protection models can be applied to counter record
linkage attack (i.e., re-identification attack), making it the
best option to evaluate attack success ratio for comparing
different models.

Mutual Information: [94] uses mutual information to
understand how much information an anonymized dataset
leaks about the original one. In general, given two ran-
dom variables X and Y , mutual information measures
their mutual dependence, i.e. to what extent knowing one
variable reduces uncertainty about the other. Hence, given
two trajectories denoted as time series x(t) and y(t) with
t = {1, ..., N}, the mutual information is defined as:

MI(x, y) =
∑
t

∑
x(t)

∑
y(t)

Pr(x(t), y(t))log
Pr(x(t), y(t))

Pr(x(t))Pr(y(t))

Pr(x(t)), P r(y(t)) are generic in [94] but can be specified
according to what is measured. In particular, Pr(x(t)) of
trajectories can represent the probability/frequency that
individuals in the dataset occur in location x(t) at time t,
and Pr(x(t), y(t)) measures the joint probability.

4.2 Utility Metrics
It is crucial for any privacy model to preserve sufficient data
utility, which is usually measured from two perspectives in
the literature: the quality of trajectory data and the quality
of data mining results for a specific trajectory operation.

4.2.1 The Quality of Data
We classify the data-based utility metrics into two cate-
gories: statistical metrics and spatial metrics.

Statistical Metrics: Basically, the quality of data be-
fore and after anonymization can be compared based on
some statistical features. Anonymization is inevitably ac-
companied by information loss, which should be minimized
to preserve enough data utility. Defining information loss
varies according to the purpose and the way of achieving
anonymization. For example, [106] as a suppression tech-
nique regards the information loss as the sum of distance
between each suppressed trajectory and the original one. In
[14], the average information loss is defined as the shrink of
the probability that an object can be determined in a certain
position. [107] evaluates point-level information loss based
on the translation ratio which is the percentage of modified
points in each trajectory after anonymization.

Spatial Metrics: From another perspective, trajectory
data intrinsically has certain spatial properties, which are ex-
pected to be consistent as much as possible after anonymiza-
tion. Therefore, several spatial utility metrics have also
been proposed and utilized in existing works. For exam-
ple, [108] aims at capturing the distance-based distortion
of spatial shapes between the original trajectory and the
anonymized one. In particular, if a location is removed in
the anonymized version for protection, a constant penalty
will be applied as it leads to the utility loss of trajectories.
Additionally, authors emphasize two desirable utility fea-
tures: location preservation expects fewer fake locations are
used to anonymize any original location to facilitate appli-
cations accurately; and reachability requires any anonymized
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TABLE 3
Privacy metrics with their scope of application.

Type k-anonymity l-diversity and t-closeness Differential Privacy Mix-zone Dummy

Group-based 3 3 - - -
Sensitive information - 3 - - -
Attack success 3 3 3 3 3
Mutual information 3 3 3 3 3

trajectory to guarantee the geographical distance from its i-
th location to the next (on the real-world road network) is
controlled. In [92], two spatial indicators are proposed in a
similar manner: 1) trip error is to quantify the preservation
of each trip’s start and end regions. Technically, it is defined
as the grid-based Jensen-Shannon divergence between trip
distributions of the original and the anonymized datasets; 2)
diameter error is measured by the Jensen-Shannon divergence
between the diameter distributions, where the diameter of a
trajectory is computed as the farthest distance between any
pair of locations.

4.2.2 The Quality of Data Mining Results
Apart from the above metrics evaluating the utility of data
itself, another category of utility metrics pay attention to the
performance of some trajectory operations such as querying,
clustering, and pattern mining.

Query-based Metrics: Naturally, the accuracy of an-
swering some trajectory queries can demonstrate whether
the anonymized dataset is still useful. [109] proposes two
categories of operators for querying moving objects. The
first category contains two point-based queries:Where(T, t)
returns the exact location of trajectory T at time t, and
When(T, l) returns the time at which the individual is
located at location l in trajectory T . The second category is a
set of spatiotemporal range query operators to qualitatively
describe an object’s relative position with respect to a region
from different aspects. The average relative error used in [110]
quantifies the accuracy of query answers. It computes the
average number of trajectories incorrectly retrieved by a
certain COUNT query q within a workload Q, where the
correctness is measured relative to the original dataset:

error(q) =
|q(D∗)− q(D)|

q(D)
,

error(Q) =

∑
q∈Q error(q)

|Q|

where q(D) and q(D∗) represent the result sets when using
the query q to retrieve the original dataset D and the
anonymized dataset D∗, respectively.

Clustering-based Metrics: The utility of data can be
measured by the quality of clustering results obtained from
the original and anonymized dataset, respectively. [84] fo-
cuses on two indicators: 1) the precision to measure how
the singularity of a cluster is mapped into the anonymized
cluster; and 2) the recall to measure how the cohesion of a
cluster is preserved. Similarly, [111] considers a utility met-
ric called global fitness measuring the quality of clustering.
It first generates some representative regions (RR) using a
density-based clustering method on the end points of all
trajectory segments and then generalizes the RRs to satisfy

the k-anonymity. The fitness of a cluster after generalization
is based on the consistency of internal and external degrees,
which indicates the number of sub-trajectories that arrive or
depart from this region. In other words, it does not require
exactly the same clusters after anonymization. Instead, the
distribution of in-degree and out-degree should not change
too much.

Mining-based Metrics: Frequent pattern mining is a
popular task applied in trajectory analysis. [112] utilizes
the precision = Nm/Nr and recall = Nm/Na to measure
the performance of privacy-preserving pattern mining algo-
rithms. Here, Nr and Na represent the total number of pat-
terns in the original mining results and the anonymized re-
sults, respectively; and Nm denotes the number of matched
patterns that occur in both datasets. [92] adopts the frequent
pattern support to measure the average relative error with
respect to the divergence of top-k patterns’ support:

E =
1

k

∑
P∈FP (k,D)

s(D,P )− s(D∗, P )

s(D,P )

where the supports of a certain pattern P in the original
dataset D and the anonymized dataset D∗, denoted as
s(D,P ) and s(D∗, P ), are computed by the number of P ’s
occurrences in D and D∗ respectively; and the set FP (k,D)
consists of the top-k frequent patterns discovered from D.

5 EXPERIMENTS

In this survey, we have conducted extensive empirical eval-
uation to show the pros and cons of each type of privacy
protection models. In the following, we will first describe
the dataset, evaluation metrics and compared methods used
in our experiments, and then report our experimental results
and analysis comprehensively.

5.1 Experiment Setting
Datasets: Various types of trajectory datasets have been
used to evaluate the performance of existing privacy mod-
els, such as taxi trips, user check-ins, phone call records,
Bluetooth readings, etc. In this work, we adopt the publicly-
available taxi dataset, T-Drive, to systematically compare the
trajectory protection models discussed in Section 3. T-Drive
[113] was generated by 10,357 taxis during the period of 2-8
February 2008 within Beijing, China. There are 94,177 raw
trajectories consisting of 15 million GPS points. On average,
the sampling rate is 3.1 minutes per point and the Euclidean
distance between two continuous points is about 600 meters.
We also generate some synthetic datasets from T-Drive with
different characteristics (e.g., dataset size, sampling rate,
average trajectory length), to evaluate the sensitivity and
scalability of the privacy protection models.
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Evaluation Metrics: We compare the privacy models from
various performance criteria including privacy metrics, util-
ity metrics, and computational cost. Based on the existing
evaluation metrics summarized in Section 4, we choose
some representative measures as the privacy and utility
metrics to compare all the models:

• Privacy metrics: As the attack success ratio can apply
to all types of privacy models (formal and ad-hoc)
and the record linkage attack (i.e., re-identification at-
tack) is the most mainstream threat, we use the state-
of-the-art re-identification algorithm [35] to evaluate
the linking attack accuracy (LA);

• Utility metrics: We consider information loss (INF)
[107] at the statistical level, diameter error (DE) and
trip error (TE) [92] at the spatial level, and f-measure
of frequent patterns (FFP) [112] from the trajectory
mining perspective.

Compared Methods: We report in this section the most
relevant privacy models used for trajectory protection. Rele-
vance is defined in terms of: (i) representativeness (i.e., for
each type of privacy models, we select the implementations
at the core of more recent contributions) and (ii) number
of citations (i.e., how popular the privacy model is). The
algorithms chosen for empirical comparison are:

• W4M [69] and GLOVE [70] as they represent the well-
known major contributions to trajectory protection
under k-anonymity;

• KLT [20] as it is the only attempt that adapts both
l-diversity and t-closeness to trajectory data for tack-
ling the semantic attack;

• DPT [71] as its noisy prefix-tree is at the core of many
contributions on differential privacy for trajectories;

• Mixzone [73] as it provides a well-studied multiple
mix-zone placement;

• Dummy [29] as it is the most well-known approach
for the generation of dummy trajectories against the
attack of exposed locations.

All the algorithms are implemented in Java1, and eval-
uated on a server with two Intel(R) Xeon(R) CPU E5-2630,
10 cores/20 threads at 2.2GHz each, 378GB memory, and
Ubuntu 16.04 operating system.
Parameter Setting: All the privacy models need to deter-
mine some hyper-parameters that play very different roles
in the anonymization process. Parameter selection is not
an easy task for a fair comparison among these models.
Hence, we first conduct a series of preliminary experiments
to understand the functionality of parameters within each
model, respectively. Considering the trade-off between per-
formance (i.e., the privacy protection level and the data
utility reserved), we finally fix these parameters as follows:

• k = 5 (W4M, GLOVE, KLT and Dummy);
• l = 3 (KLT and Dummy);
• t = 0.1 (KLT);
• δ = r = 500 m (δ in W4M and radius r in Mixzone);
• ε = 5.0 (DPT);
• m = 1000 (total number of mix-zones in Mixzone).

1. Github link of the open-source library will be added later.

5.2 Results and Analysis
In order to comprehensively compare the anonymization
models, we evaluate their privacy protection level, utility
loss, and time cost when varying the trajectory dataset size,
sampling rate, and average length, respectively.

5.2.1 Sensitivity to Dataset Size
We examine the scalability of the privacy models as well as
their sensitivity to the dataset size (i.e., number of objects).
In particular, we generate six datasets with varying sizes by
randomly sampling 100, 200, 500, 1000, 1500, and 2000 taxis
respectively from T-Drive, along with all their original tra-
jectories, and then apply each of the anonymization models.
The results are depicted in Fig. 1.

Privacy Protection: Recall that we employ the current
state-of-the-art re-identification algorithm [35] to simulate
the linking attack. Each taxi is represented by a single tra-
jectory (reflecting its whole moving history) in the dataset.
After the anonymization, we apply [35] to search for the
most similar trajectory in the anonymized dataset D∗ for
each original one in D. If two matched trajectories belong to
the same object in the original and anonymized datasets,
it will be regarded as a successful linkage. The linking
accuracy is calculated by LA =

|D∗
s |

|D∗| , where D∗s denotes the
set of anonymized trajectories that are successfully linked.
Apparently, the higher the LA is, the less protection the
anonymization model can offer.

Overall, the linking accuracy drops slightly with the
increase of dataset size. This is consistent with our ex-
pectation as the attack model needs to choose from more
candidates to determine the matched individuals. Among
all the anonymization models, Dummy and W4M provide
much worse privacy protection than the others, with a
linking accuracy of at least 80%. W4M modifies each tra-
jectory to make it more similar with its pivot in the cluster.
If two points are matched spatially, both of them will be
reserved in the resulting trajectory. As a consequence, many
original points are actually unchanged, making it highly
possible to have a successful linking attack. In Dummy,
points selected for the dummy trajectories are usually close
to the unexposed true locations, and hence they are mostly
located together within a small area and easy to be linked.
KLT performs much better than GLOVE in terms of privacy
protection, thanks to the newly-incorporated l-diversity and
t-closeness mechanisms. However, neither of them can beat
Mixzone after the number of objects increases to over 500.
Apparently, DPT provides the best protection against the
re-identification attack, since it completely reconstructs all
synthetic trajectories based on the differentially private HRS
(hierarchical reference system) without preserving any per-
sonal information of the original ones.

Utility Loss: Most approaches are relatively stable in
terms of utility loss regardless of the varying number of
objects to be protected. Information loss (INF), as the utility
metric at the point level, illustrates that only W4M retains
around 70% of raw points in the anonymized trajectories.
While all the others either obscure the true identifiers of all
objects (Mixzone and Dummy), distort all the spatial points
(DPT), or completely merge k-anonymous trajectories from
original ones and assign new identifiers (GLOVE, KLT). Re-
garding other metrics including the divergence of diameter
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Fig. 1. Impact of object number.

and trip (DE and TE, respectively) and the F-measure of
top frequent patterns (FFP), the performance of Dummy and
W4M are more desirable, since they preserve more infor-
mation from the original dataset during the anonymization
process. This shows a clear trade-off between the power
of privacy protection and utility preservation for all these
models. It is worth noting that when only a small number of
objects are anonymized, DPT cannot discover any frequent
sequential patterns occurring in the original dataset, which
is caused by the incomprehensive mobility model captured
by DPT from the extremely small original dataset. Hence,
both pros and cons of DPT are quite obvious (i.e., strong
privacy guarantee while large utility loss, and a higher
requirement for data volume). Another notable observation
is that the l-diversity and t-closeness mechanisms have a
negative impact on the utility preserving, as demonstrated
by the slightly worse results of KLT than those of GLOVE
for all the utility metrics.

Time Cost: The efficiency of W4M is also acceptable in
practice, since it only takes around 2 minutes for anonymiz-
ing 2000 objects’ mobility data. However, GLOVE, KLT, and
Dummy are too time-consuming to serve for the anonymiza-
tion of a real-life trajectory dataset (In fact, all the three mod-
els were only evaluated on some very small-scale datasets,
e.g., with at most hundreds of objects, in their original pa-
pers). In comparison, the efficiency of GLOVE is better than
that of KLT which takes some extra time to guarantee the
l-diversity and t-closeness criteria during anonymization.
Dummy is relatively less sensitive to the growth of dataset
size |D| than GLOVE and KLT, and its efficiency surpasses
both GLOVE and KLT after |D| increases to over 1200.

5.2.2 Sensitivity to Trajectory Sampling Rate

We expect that the sampling rate of trajectories, namely
the average time interval between two consecutive points
in the trajectories, may have some influence on the uncer-
tainty of trajectory data. In another word, low-sampling-
rate trajectories might lose most details of their movement,
while on the contrary, more detailed trajectories with higher
sampling rate always provide richer information that can
be exploited as a weapon against personal privacy. Addi-
tionally, higher sampling rate leads to denser dataset and
longer trajectories, which also poses great challenges to the
efficiency of the anonymization models. Hence, in this part,
we explore the capability of each privacy model in tackling
trajectories with different sampling rates. Given the original
T-Drive dataset which is around 3 minutes per point, we
generate another five datasets with sampling intervals of
60, 300, 600, 1800, 3600 seconds, respectively. In particular,
when preprocessing the T-Drive dataset, we insert extra
samples into the raw trajectories based on the road network
structure [114] to reach the denser sampling rate of 60s,
while a straightforward down-sampling method is adopted
to construct all the other sparser datasets. The empirical
results are illustrated in Fig. 2.

Privacy Protection: Interestingly, most models are hardly
influenced by the change of sampling rate except Mixzone.
This is because the taxi trajectories used in the experiment
are based on users’ demands, making them more random
and less personalized. Taxis run on the road network, and
inserting/removing several points uniformly from the origi-
nal trajectories will not affect much on the overall spatiotem-
poral distribution of the data, leading to a relatively stable
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Fig. 2. Impact of trajectory sampling rate.

linking accuracy for most of the privacy models. Mixzone,
on the contrary, incurs an increase in linking accuracy from
15% to 68% when the sampling rate drops from 60s to
1h. Objects using the Mixzone mechanism would change
their pseudonyms when passing mix-zones, meaning that
the whole trajectory would be cut into subsequences be-
longing to different fake identities. Intuitively, the extent to
which trajectories are divided by the predefined mix-zones
partially depends on the density of trajectory data. That is,
sparser trajectories are less likely to entering a certain mix-
zone and be partitioned, as there are much fewer points in
total. As a result, more original points would remain in the
anonymized trajectories, which causes higher possibility to
re-identify the objects.

Utility Loss: The overall trend of information loss (INF)
when we change the trajectory sampling rate is quite similar
to that when varying the dataset size (as shown in Fig.
1). W4M is still the best privacy model in keeping the
point-level information from the original trajectories. Recall
that the sampling rate affects the density of trajectories
but not the trip distribution, where a trip is defined as a
specific grid-based OD pair in the trajectory. Hence, the
divergence of trip distribution (TE) between the original
and the anonymized datasets does not change much for
almost all the privacy models. The divergence of diameter
distribution (DE), on the contrary, shows some notable de-
crease in KLT, Mixzone, and DPT when the sampling interval
increases from minute-level to hour-level. With the trajecto-
ries becoming sparser, the modification of points (due to
anonymization) would cause less fluctuation in their spatial
coverage (i.e., diameter distribution) and thus leading to

a smaller DE. As for the frequent pattern mining (FFP),
GLOVE, KLT and DPT notably show an increasing trend
when the sampling interval grows from 1 to 5 minutes per
point. In particular, the densest dataset generated by DPT
can hardly retain any frequent patterns when the sampling
rate is very high, caused by the excessive trajectory noise
introduced into the mining algorithms.

Time Cost: As expected, denser dataset takes much
more time to finish the anonymization no matter which
model is adopted. A notable thing is that the efficiency
performance of Dummy, Glove and KLT are quite similar
on denser datasets (i.e., with the sampling interval of less
than 600s), while Dummy quickly surpasses the other two,
especially the KLT, after the sampling interval grows to over
300s. This implies that Dummy might be more suitable for
handling sparser trajectory data.

5.2.3 Sensitivity to Trajectory Length

In our experiment, we represent each object (taxi) by a single
trajectory which aggregates together the whole moving his-
tory of that object. We expect the average trajectory length,
namely the number of points per trajectory, would reflect
the amount of information contained in the trajectory and
thus has some impact on the performance of the privacy
protection models. T-Drive is a one-week taxi dataset with
the average trajectory length of over 1200 points [113]. We
generate six datasets from T-Drive with the average length
of n = 50, 100, 200, 500, 800, and 1000 points respectively.
In particular, we only preserve the first n points for each
trajectory that is longer than n. The empirical results are
shown in Fig. 3.
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Fig. 3. Impact of trajectory length (i.e., average number of points in a trajectory).

Privacy Protection: Interestingly, the privacy protection
that GLOVE, KLT and Mixzone provide enhances with the
increasing trajectory length, while Dummy and W4M present
a slightly opposite trend. Regarding Mixzone, the longer the
trajectory, the more possible it passes through multiple mix-
zones, and thus the more segments it is split into. Therefore,
it is less likely to link the anonymized trajectory (i.e., the
segments) with the real matched one in the original dataset.
In GLOVE and KLT, k-anonymous trajectories are merged
together based on the pre-computed stretch costs. According
to the definition of cost, merging longer trajectories associ-
ated with larger spatial area and wider time span inevitably
loses much more spatiotemporal accuracy, which indicates
that the resulting trajectory will be more dissimilar to the
original two trajectories. Thus, it makes sense that the link-
ing accuracy decreases with the increase of trajectory length
processed by either of them. On the contrary, generating
longer dummy trajectories in the Dummy model reduces the
uncertainty of trajectories while providing more personal
information, which naturally increases the risk of privacy
leak. Moreover, the linking attack model [35], [62] employed
in our experiments would benefit from the more nearby
points occurring in the dummy trajectories for successfully
identifying the ground-truth matching. Similarly, the intrin-
sic nature of W4M determines that its ability of protecting
trajectory privacy against this kind of re-identification attack
is affected by the average trajectory length (i.e., the amount
of information it provides). Finally, DPT still outperforms
all the other anonymization models when resisting linking
attack in spite of the trajectory length. This is achieved by
the reconstructed trajectory data with random noise.

Utility Loss: The ability of these privacy models preserv-
ing data utility is not greatly affected by the average length
of trajectories. In short, W4M still performs the best in terms
of all the adopted utility metrics, and the performance of
Dummy is also desirable. Whereas, Mixzone can only achieve
an acceptable result on discovering top frequent patterns
(FFP) yet preserving the trip distribution (TE) worst than all
the others. The results in Fig. 3 also verify again that DPT
cannot generate synthetic trajectory datasets with sufficient
utility, despite its superiority in privacy protection against
linking attack. The gap between KLT and GLOVE is enlarged
with the increase of trajectory length, especially on DE and
FFP metrics. As explained before, merging longer trajec-
tories intrinsically results in more loss of spatiotemporal
accuracy contained in the original data. In particular, KLT
has to compromise more information than GLOVE in order
to further satisfy l-diversity and t-closeness.

Time Cost: Inevitably, the anonymization time arises
with the average length of trajectory, since more data needs
to be protected carefully during the anonymization process.
This is also consistent with our theoretical complexity anal-
ysis for these models as discussed in Section 3. It is worth
noting that the time cost of Dummy is the most influenced
by the increase of trajectory length compared with the
other algorithms. Specifically, at the beginning (e.g., average
trajectory length of around 50 points), its efficiency is quite
close to that of GLOVE, while it almost consumes as much
time as that of KLT when the trajectory length reaches 1000.
Theoretically, the Dummy algorithm runs in cubic time of n,
where n is the average length of trajectories, while the time
cost of either GLOVE or KLT is only quadratic to n.



15

5.3 Discussion

As a brief summary of the experiments detailed above, we
compare the overall performance of representative trajec-
tory protection models and examine how they are affected
by the variation of dataset size (i.e., total number of objects),
sampling rate (i.e., average time interval between two con-
secutive points), and average trajectory length (i.e., number
of points), respectively. The linkage attack model [35], [62]
we choose in the experiments is quite generalized and can
be countered by all the anonymization algorithms. We also
evaluate their capability of utility preservation from four
different perspectives: information loss (INF) at the statisti-
cal level, diameter error (DE) and trip error (TE) measuring
the spatial coverage and trip distribution respectively, and
f-measure of frequent patterns (FFP) examining the usability
for high-level trajectory mining tasks.

Basically, these models show very different character-
istics in practice. Some models (i.e., W4M and Dummy)
are able to preserve more data utility but cannot resist
the re-identification attack well. On the other hand, DPT
provides strong guarantee of privacy protection without
considering much on data utility. Overall, the k-anonymity
models (i.e., GLOVE and KLT) and ad-hoc model Mixzone
achieve the best trade-off between privacy protection and
utility preservation. In particular, KLT outperforms GLOVE
when countering the linking attack by further incorporating
l-diversity and t-closeness into the k-anonymity mechanism,
at a slight increase of utility loss. This verifies the necessity
of considering location semantics when protecting trajectory
privacy. However, the price of the superior performance in
GLOVE and KLT is the increase of computational complex-
ity, as illustrated in both theory and practice. This is also
the first time that the efficiency of trajectory anonymization
models is highlighted and systematically evaluated.

6 CONCLUSION, INSIGHTS AND FUTURE WORK

In this paper, we provide a comprehensive summarization
and a systematic empirical study of the existing privacy
protection models for trajectory publication. Specifically, we
identify three types of sensitive information that can be
discovered from trajectories (i.e., identity, personal profile
and social relationship) as well as the typical attack models
widely-used to expose such information (i.e., record linkage,
attribute linkage, table linkage, group linkage, and prob-
abilistic attack). We then discuss in detail how the well-
known formal anonymization models (i.e., k-anonymity, l-
diversity, t-closeness, and differential privacy) and ad-hoc
models (i.e., mix-zone and dummy) are adopted to trajec-
tory protection. In our experiments on a real-life trajectory
dataset, various privacy and utility metrics are utilized to
compare the performance of these models and showcase
their pros and cons for privacy-preserving data publishing.

6.1 Observations and Insights

We provide some insights on the superiority and limitation
of each type of trajectory protection model, based on our
algorithm analysis and observations in the experiments.

k-anonymity is overall the most powerful tool against the
linkage attack (e.g., re-identification attack), well-balancing

privacy protection and utility preservation. It is a relatively
simplistic principle of data privacy, which relies on making
k elements indistinguishable via some common techniques
such as generalization and suppression. However, its limita-
tions are also obvious, especially when applied to trajectory
data. First, it makes no assumption on the apriori adversary
knowledge and cannot resist attribute linkage. Second, it is
difficult to formally define the quasi-identifier and equiv-
alent class in trajectory data since individuals’ movements
are highly unique and personalized. Finally, how to merge
trajectories with the least utility loss still needs further study.

l-diversity and t-closeness are proposed to fix the vulner-
abilities of k-anonymity, in particular the attribute linkage
attack. Anonymization models that apply both mechanisms
to trajectory data are rare, as the identification of sensitive
attribute in trajectories is still a challenging task. In addition,
they still have no quantification of the information leaked by
accessing/querying an anonymized dataset, which is crucial
to trajectory data due to the apriori knowledge potentially
owned by adversaries. For example, an experienced attacker
with background knowledge is able to infer private informa-
tion (e.g., an individual’s presence/absence in a trajectory
dataset) by repeatedly querying the data.

Differential privacy is a powerful model which has no as-
sumption on the type/amount of the adversary knowledge.
It generates synthetic dataset from the original one through
introducing random noise by Laplace or exponential mech-
anisms. Although it shows obvious superiority in tackling
the linkage attack when applied to trajectory protection, it
still suffers from a huge utility loss due to the tremendous
modifications of the original points.

Dummy, as an ad-hoc model specifically applied to tra-
jectory data, aims at generating duplicate candidates to hide
the original ones. However, the dummy trajectories are still
spatially and temporally close to each other, leading to low
privacy protection. The benefits and drawbacks of Mixzone
model are also obvious. On one hand, the anonymization
process only costs limited time linear to the dataset size. On
the other hand, a reliable third-party is always necessary
to record the mappings between all the true identities and
extensive pseudonyms so as to reconstruct the trajectories
for analysis. Besides, the number of mix-zones also affects
model performance. The more mix-zones, the more a trajec-
tory is split into segments with unique pseudonyms. This
not only causes an adversary to lose the tracking target
but also damages data utility. Last but not least, Mixzone is
usually good at preventing long-term tracking of trajectories
while allowing short-term tracking.

6.2 Open Challenges and Future Directions

We summarize some open challenges observed in this work,
and introduce some future directions for follow-up studies
in the field of privacy-preserving trajectory data publishing:

Model Adaption: Existing formal privacy models (i.e., k-
anonymity, l-diversity, t-closeness, and differential privacy)
have demonstrated their superiority in relational database,
while it is still a challenging task to effectively adapt them to
the trajectory data. The main issue of applying k-anonymity,
l-diversity and t-closeness mechanisms lies in the inconsis-
tency between relational modeling and trajectories. Unlike
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tabular records with well-defined attributes, a trajectory is
intrinsically a sequence of spatiotemporal points, making it
difficult to formally define both quasi-identifiers and sensitive
attributes. Naturally, quasi-identifiers should be relatively
unique and representative of an individual. [62] presents a
pioneering work that extracts “signatures” from trajectories
and utilize them as quasi-identifiers to protect against the re-
identification attack. However, combining signatures with
k-anonymity models and merging quasi-identifiers is still a
promising research direction yet to be explored. Similarly,
POIs have been used in existing trajectory anonymization
models to simulate sensitive attributes. Indeed, POIs reflect
location semantics which can potentially expose some sensi-
tive information such as an individual’s religious or political
orientation, health status, etc. However, aggregating all the
POIs (as in existing work) may introduce noise into model
formalization. Instead, a selection mechanism to identify the
real sensitive attributes should be studied. As for differential
privacy, despite its proved superiority in relational database,
how to accurately model people’s collective spatiotemporal
behavior and location semantics from trajectories and how
to effectively introduce random noise for data generation
are still challenging.

Model Efficiency: Based on our empirical results on a real-
life trajectory data, k-anonymity models (i.e., GLOVE and
KLT) and ad-hoc model Mixzone achieve the best trade-off
between privacy protection and utility preservation, when
countering the linkage attack. However, the cost is a huge
increase of computational complexity. Hence, improving the
efficiency of these models is definitely a promising direction
for follow-up research, as real-world trajectory datasets are
inevitably large-scale and the volume continues to grow
with more data being collected over time. Although the run-
ning time of Mixzone is linearly proportional to the dataset
size once the collection of mix-zones is determined, finding
the best mix-zones (i.e., optimal mix-zone placement) is
still a challenging and time-consuming process, which calls
for effective approximation algorithms to be developed for
addressing this NP-hard problem. As for GLOVE and KLT,
the most costly operation in both models is the calculation of
pairwise trajectory merge cost for identifying k-anonymous
equivalent classes (i.e., clustering) so as to minimize utility
loss. However, real trajectories are usually localized, and
merging trajectories that are far away from each other in
either space or time would naturally result in huge utility
loss. In other words, merge costs only need to be calculated
between nearby trajectories. Hence, it is also a promising
direction to utilize such trajectory “locality” in GLOVE and
KLT, and design effective pruning/indexing techniques to
reduce the computation of trajectory merge costs.

Model Evaluation: It is necessary to evaluate and compare
with state-of-the-art anonymization models in terms of both
privacy protection and utility preservation. Data utility has
been extensively considered in existing work, and this sur-
vey provides a comprehensive summary of utility metrics
as well as a detailed classification that targets at different
aspects of trajectory utility. Whereas, most privacy metrics
are model-specific, except the attack success ratio discussed
in Section 4.2. The absence of a standard privacy definition
makes it difficult to measure privacy, compare between the
anonymization algorithms, or make an informed choice for

model selection. Therefore, a set of more generalized pri-
vacy metrics (e.g., mutual information, information entropy)
need to be devised for a fair model comparison.
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