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Abstract

Fusing a low spatial resolution hyperspectral image (HSI) with a high spatial resolution multispectral image (MSI) to produce a

fused high spatio-spectal resolution one, referred to as HSI super-resolution, has recently attracted increasing research interests.

In this paper, a new method based on coupled non-negative tensor decomposition (CNTD) is proposed. The proposed method

uses tucker tensor factorization for low resolution hyperspectral image (LR-HSI) and high resolution multispectral image (HR-

MSI) under the constraint of non-negative tensor ecomposition (NTD). The conventional non-negative matrix factorization

(NMF) method essentially loses spatio-spectral joint structure information when stacking a 3D data into a matrix form. On the

contrary, in NMF-based methods, the spectral, spatial, or their joint structures must be imposed from outside as a constraint to

well pose the NMF problem, The proposed CNTD method blindly brings the advantage of preserving the spatio-spectral joint

structure of HSIs. In this paper, the NTD is imposed on the coupled tensor of HIS and MSI straightly. Hence the intrinsic spatio-

spectral joint structure of HSI can be losslessly expressed and interdependently exploited. Furthermore, multilinear interactions

of different modes of the HSIs can be exactly modeled by means of the core tensor of the Tucker tensor decomposition.

The proposed method is completely straight forward and easy to implement. Unlike the other state-of-the-art methods, the

complexity of the proposed CNTD method is quite linear with the size of the HSI cube. Compared with the state-of-the-art

methods experiments on two well-known datasets, give promising results with lower complexity order.

1



 

   Abstract—Fusing a low spatial resolution hyperspectral image 

(HSI) with a high spatial resolution multispectral image (MSI) to 

produce a fused high spatio-spectal resolution one, referred to as 

HSI super-resolution, has recently attracted increasing research 

interests. In this paper, a new method based on coupled non-

negative tensor decomposition (CNTD) is proposed. The proposed 

method uses tucker tensor factorization for low resolution 

hyperspectral image (LR-HSI) and high resolution multispectral 

image (HR-MSI) under the constraint of non-negative tensor 

decomposition (NTD). The conventional non-negative matrix 

factorization (NMF) method essentially loses spatio-spectral joint 

structure information when stacking a 3D data into a matrix form. 

On the contrary, in NMF-based methods, the spectral, spatial, or 

their joint structures must be imposed from outside as a constraint 

to well pose the NMF problem, The proposed CNTD method 

blindly brings the advantage of preserving the spatio-spectral joint 

structure of HSIs. In this paper, the NTD is imposed on the 

coupled tensor of HSI and MSI straightly. Hence the intrinsic 

spatio-spectral joint structure of HSI can be losslessly expressed 

and interdependently exploited. Furthermore, multilinear 

interactions of different modes of the HSIs can be exactly modeled 

by means of the core tensor of the Tucker tensor decomposition. 

The proposed method is completely straightforward and easy to 

implement. Unlike the other state-of-the-art methods, the 

complexity of the proposed CNTD method is quite linear with the 

size of the HSI cube. Compared with the state-of-the-art methods 

experiments on two well-known datasets, give promising results 

with lower complexity order. 

 
Index Terms— High resolution multispectral image (HR-MSI), 

Image Fusion, Low resolution hyperspectral image (LR-HSI), 

Multiplicative update rules (MUR), Non-negative Tucker tensor 

decomposition.  

 

I. INTRODUCTION 

YPERSPECTRAL  imagery is a technique that utilizes a wide 

range of electromagnetic spectrum in image acquisition in 

order to yield more information on what is imaged and identify 

materials or detect processes. As each band of hyperspectral 

image (HSI) is the spectral response to a narrow band of the 

electromagnetic spectrum, it is necessary to collect reflections 

from a wider area on the scene, decreasing the spatial resolution    
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of HSIs. There are several attempts aiming to increase the 

spatial resolution of HSIs in recent years [1-13]. Basically, all 

super-resolution HSI approaches can be described in three  

categories; fusing low resolution hyperspectral image (LR-HSI) 

and high resolution multispectral image (HR-MSI) as a 

Bayesian framework [3, 11, 14-19], non-negative matrix 

factorization (NMF) based methods [4, 20-25] and tensor 

factorization based methods [1, 2, 8, 26-29]. Bayesian 

frameworks build the posterior distribution based on observed 

LR-HSI and HR-MSI and some prior information or 

regularization term and utilize the alternating direction method 

of multipliers (ADMM) [11] optimization method to estimate 

super-resolution HSI. In [11] a Bayesian framework based on a 

sparse representation is introduced to solve the fusion problem, 

thus, the abundance fractions are estimated using ADMM. In 

our previous work [30], a smooth graph signal modeling in a 

Bayesian framework is employed to impose the consistency of 

subspace projection fractions corresponding to the nearby 

nodes by exploiting the graph Laplacian matrix. The method 

proposed in [31] exploits non-local self-similarity based on a 

spatial and spectral sparse representation to estimate both 

matrices of abundance fractions and endmembers, which the 

product of these two matrices leads to the super-resolution HSI. 

The method proposed in [5] uses spectral unmixing and 

Bayesian sparse representation to enhance the spatial resolution 

of hyperspectral images. The most important deficiency of the 

Bayesian frameworks is the necessity to the regularization 

terms. They should be able to comprehensively represent spatial 

information of HSIs, which is lost in the HSI matricizing of 

HSIs stage.   

   As an alternative approach, non-negative matrix factorization 

(NMF) has been widely proposed to fuse pairs of LR-HSIs and 

HR-MSIs. This methods brings the advantages of clear 

physical, statistical, and geometric inference, flexible 

modeling, and less requirement on prior information [32]. As 

HSIs are essentially non-negative data, NMF frameworks are 

quite compatible with the observed data. These approaches first 

unfold the HSI into the matrix form and factorize it into two 

non-negative matrices, called as the basis and the coefficient 

matrices. In order to avoid trapping in the local minima due to 

its non-convex objective function, several constraint NMF 

methods [4, 22, 23, 33] are introduced. Instead of the original 

L1 regularizer, the work in [22] utilizes L1/2 regularizer, on the 
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abundance fractions to enforce the sparse estimation. In  [23] a 

multilayer NMF spectral unmixing is introduced, where the  

products of the sub-layer output factors lead to the super-

resolution image. In [33], using sparsity-constrained deep NMF 

with the total variation regularization, to estimate HR-HSI. 

   Noteworthy, stacking a 3D data into matrix form in NMF-

based approaches loses the neighborhood structures, 

smoothness, and continuity characteristics. In this regard, 

tensors or multiway arrays have been frequently used in 

multidimensional data analysis [26, 28, 34-36]. Additionally, 

exploiting the power of multilinear algebra of the tensor 

representation shows more flexibility in the choice of 

constraints that match data properties. It also can extract more 

general latent components in the data compared with the 

matrix-based approaches. More recently tensor-based 

representation of HSI is widely being used [1, 8, 26, 28, 32]. 

Representation of an HSI as a third order tensor is a structural 

and natural without any information loss model. In most of 

these methods, a low rank tensor representation is exploited to 

estimate the original HR-HSI. It offers the benefit of  extremely 

noise and memory usage reduction, and extracting 

discriminative features[32]. Accordingly, two well-known 

tensor decomposition, Tucker decomposition and canonical 

polyadic decomposition (CPD) are widely used to approximate 

HR-HSIs [8, 26, 28, 29, 37, 38].  Learning a low tensor-train 

rank representation is incorporated in [26] for hyperspectral 

image super-resolution. In [28] a nonlocal coupled canonical 

polyadic (CP) tensor decomposition framework is used to fuse 

hyperspectral and multispectral images. The spatio-spectral 

sparsity prior of HSIs is the constraint that is imposed on the 

core tensor in the CSTF method [8]. Also in [27], nonlocal 

sparse tensor factorization (NLSTF) of HSIs is proposed to 

model non-local self-similarity of HSIs.  

   As a strong prior knowledge, HSIs are naturally non-negative 

data. Thus, applying non-negative constraints to the tensor 

factorization method is expected to further improve the 

performance of the fusion method. In this paper, we extend 

NMF to a tensor framework which is called non-negative tensor 

decomposition (NTD). Contrary to the conventional NMF-

based methods, where, the spectral, spatial, or their joint 

structures must be additionally imposed as a constraint, in this 

paper, a multiway representation of HSIs preserves the spatio-

spectral joint structures of HSIs with no prior knowledge 

resulting a blind framework. We take spectral advantages of 

LR-HSI and spatial advantages of HR-MSI, via straightly 

applying coupled Tucker decomposition to both of the above 

images. Therefore, the proposed method is called CNTD. The 

proposed method comprehensively models multilinear modes 

interactions of HSIs, using Tucker tensor representation, where 

the core tensor precisely expresses relations among different 

modes. The proposed algorithm is straightforward and easy to 

implement, where, the complexity is quite linear with the size 

of the hyperspectral data cube. The main contributions of this 

paper are highlighted below. 

 Extending NMF to a tensor framework, which is called 

NTD.  

 Applying coupled Tucker decomposition to the LR-HSI 

and HR-MSI, to estimate spectral and spatial information 

of HR-HSI, respectively.  

 Preserving spatio-spectral joint structures of HSIs with no 

information loss and no prior knowledge requirement, 

using a multiway representation of HSIs.  

 Giving Lower complexity order comparing with the other 

state-of-the-art methods. 

   The remainder of this paper is organized as follows. Some 

preliminaries on tensors are presented in Section II. Section III 

formulates the HSI-MSI fusion. The proposed coupled non-

negative tensor decomposition (CNTD) method for blind super-

resolution HSI is introduced in Section IV. The complexity 

order of the proposed method is mentioned in Section V. The 

experimental results on two well-known datasets Pavia 

University and Indian Pines, are illustrated in Section VI. 

Finally, conclusion and our future work are given in Section 

VII.  

II. PRELIMINARIES ON TENSORS 

 

   An N-dimensional tensor 𝒳 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁  has N indices 

𝑖1, 𝑖2, … , 𝑖𝑁 and its elements are denoted by 𝑥𝑖1𝑖2… 𝑖𝑁 where 1 ≤

𝑖𝑛 ≤ 𝐼𝑛. Tensor matricization unfolds an N-dimensional tensor 

into a matrix. The mode-𝑛 matricization of 𝒳 reorders/unfolds 

the elements of 𝒳 to form the matrix 𝚾(𝑛) ∈

ℝ𝐼𝑛×𝐼𝑛+1𝐼𝑛+2…𝐼𝑁𝐼1𝐼2…𝐼𝑛−1 . Noteworthy that, matricization of a 

tensor is quite analogous to matrix vectorization. The mode-n 

product of the tensor 𝒳 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁 by the matrix 𝐀 ∈
ℝ𝐽𝑛×𝐼𝑛, is defined by 𝒳 ×𝑛 𝐀, is an N-dimensional tensor ℳ ∈
ℝ𝐼1×𝐼2×…×𝐽𝑛×…×𝐼𝑁, which entries are calculated by 

 𝓂𝑖1…𝑖𝑛−1𝐽𝑛𝑖𝑛+1…𝑖𝑁 =∑𝓍𝑖1…𝑖𝑛−1𝑖𝑛𝑖𝑛+1…𝑖𝑁
𝑖𝑛

𝑎𝑗𝑛𝑖𝑛  (1) 

   The mode-n product 𝓧×𝑛 𝐀 can also be calculated in matrix 

form as 𝐌(𝑛) = 𝐀𝚾(𝑛). For multiple mode-n product the order 

is irrelevant, which is  

 𝓧×𝑚 𝐀 ×𝑛 𝐁 = 𝒳 ×𝑛 𝐁 ×𝑚 𝐀     (𝑚 ≠ 𝑛) (2) 

and for multiple mode-n products with the same modes, the 

order is relevant, which is 

 𝓧×𝑛 𝐀 ×𝑛 𝐁 = 𝓧 ×𝑛 (𝐁𝐀)    (3) 

   The scalar product of two tensors 𝒳,𝒴 indicated as < 𝓧,𝓨 >
= ∑ 𝓍𝑖1,𝑖2,…,𝑖𝑁𝓎𝑖1,𝑖2,…,𝑖𝑁𝑖1,𝑖2,…,𝑖𝑁 . The Frobenius norm of a tensor 

𝓧 is indicated as ‖𝓧‖𝐹 = √< 𝓧,𝓧 > .    
   The mode-n product has two important properties as follows 

 (𝓧 ×𝑛 𝐀) ×𝑚 𝐁 = (𝓧 ×𝑚 𝐁) ×𝑛 𝐀 (4) 

 (𝓧 ×𝑛 𝐀) ×𝑛 𝐁 = 𝓧×𝑛 (𝐁𝐀) (5) 

    



TABLE I 

BASIC NOTATION 

Notation Description 

𝓧 Tensor 

X Matrix 

𝓍 Tensor element 

𝔁 Spectral vector of tensor 

x Scaler 

×𝑛 Mode-n product 

⨂ Kronecker product 

⊛ Hadamard product 

  𝚾(𝑛) Mode-n matricization of tensor X 

  𝐗(𝑛) n mode matrix in Tucker model 

 

   The Tucker decomposition of the N-dimensional tensor 𝓧 ∈
ℝ𝐼1×𝐼2×…×𝐼𝑁 is expressed as mode products of a core tensor 𝒰 ∈
ℝ𝐾1×𝐾2×…×𝐾𝑁 and N mode matrices 𝐕(𝒏) ∈ ℝ𝐼𝑛×𝐾𝑛, which is 

expressed as 

 𝓧 = 𝒰 ×1 𝐕
(1) ×2 𝐕

(2)…×𝑁 𝐕
(𝑁) (6) 

which element-wise form is as below 

 𝓍𝑖1…𝑖𝑁 = ∑ 𝓊𝑘1…𝑘𝑁
𝑘1…𝑘𝑁

𝑣𝑖1𝑘1
(1)
𝑣𝑖2𝑘2
(2)

…𝑣𝑖𝑁𝑘𝑁
(𝑁)

 (7) 

   The mode-n matricization form of  , is expressed by 

Kronecker products (⨂) of the mode-n matricization of the 

core tensor and mode matrices as follows 

 
𝐗(𝑛) = 𝐕

(𝑛)𝐔(𝑛)[𝐕
(𝒏−1)⨂…⨂𝐕(2)⨂𝐕(1)⨂𝐕(𝑁) 

⨂…⨂𝐕(𝑛+2)⨂𝐕(𝑛+1) 
(8) 

where  𝐔(𝑛) is the mode-n matricization of the core tensor 𝒰. 

The Kronecker product of two matrices 𝐀 ∈ ℝ𝐼×𝐽 and 𝐁 ∈
ℝ𝐾×𝐿 is a matrix denoted as 𝐀⨂𝐁 ∈ ℝ𝐼𝐾×𝐽𝐿 is defined as  

  𝐀⨂𝐁 =

[
 
 
 
𝒂𝟏𝟏𝐁     
𝒂𝟐𝟏𝐁    
⋮

𝒂𝑰𝟏𝐁    

𝒂𝟏𝟐𝐁   
𝒂𝟐𝟐𝐁  
⋮

𝒂𝑰𝟐𝐁  

…    
…    
⋱    
…    

𝒂𝟏𝑱𝐁   

𝒂𝟐𝑱𝐁  

⋮
𝒂𝑰𝑱𝐁  ]

 
 
 

 (9) 

   The other properties of Kronecker product and vectorization 

operation (𝑣𝑒𝑐(∙)) that are used in this paper are as below  

 

𝑣𝑒𝑐(𝐔𝐀𝐕𝑇) = (𝐕⨂𝐔)𝑣𝑒𝑐(𝐀) 

(𝐕⨂𝐔)𝑇 = 𝐕𝑇⨂𝐔𝑇  

(𝐕⨂𝐔)(𝐀⨂𝐁) = 𝐕𝐀⨂𝐔𝐁 

(10) 

   All basic notations are represented in Table. I.  

III. PROBLEM FORMULATION 

   As HSIs are naturally a 3D data, the tensor is a more efficient 

representation than matrix form, and we can benefit from its 

ability to exploit intrinsic structures of HSI and multilinear 

interactions of its different modes. Hence in this paper, the 

target HR-HSI is denoted as a three-dimensional tensor 𝓩 ∈
ℝ𝑊×𝐻×𝑆, where 𝑊, 𝐻 and 𝑆 are the dimensions of the width, 

height and spectral (depth) modes, respectively. It is formally 

expressed as  

 
𝓩 = 𝓒 ×1𝐖×2 𝐇×3 𝐒 (11) 

which is called Tucker representation, where 𝐖 ∈ ℝ𝑊×𝑛𝑤 , 𝐇 ∈
ℝ𝐻×𝑛ℎ and 𝐒 ∈ ℝ𝑆×𝑛𝑠 are width, height and spectral dictionary 

matrices, respectively. 𝑛𝑤, 𝑛ℎ and 𝑛𝑠 are the number of each 

mode dictionaries atoms, and 𝓒 ∈ ℝ𝑛𝑤×𝑛ℎ×𝑛𝑠 is the core tensor 

that shows the interactions among different modes.  

   Mode-n (𝑛 = 1,2,3) matricization of 𝓩 are as follows 

 

𝐙(1) = 𝐖𝐂(1)(𝐒⨂𝐇)
𝑇 

𝐙(2) = 𝐇𝐂(2)(𝐒⨂𝐖)
𝑇 

𝐙(3) = 𝐒𝐂(3)(𝐇⨂𝐖)
𝑇 

(12) 

where (⋅)𝑇 denotes the transposition of the matrix.   

   Both LR-HSI and HR-MSI are also denoted as three-

dimensional tensors 𝓨ℎ ∈ ℝ
𝑤×ℎ×𝑆 and 𝓨𝑚 ∈ ℝ

𝑊×𝐻×𝑠, 

respectively. 𝑤, ℎ and 𝑠 are the indexes of the width,  height 

and spectral  modes, respectively. LR-HSI and HR-MSI are 

expressed as below 

 𝓨ℎ = 𝓒 ×1𝐖𝒉 ×2 𝐇𝒉 ×3 𝐒 + 𝓔𝒉 (13) 

 𝓨𝑚 = 𝓒 ×1𝐖×2 𝐇 ×3 𝐒𝒎 + 𝓔𝒎 (14) 

where 𝐖𝒉 ∈ ℝ
𝒘×𝒏𝒘, 𝐇𝒉 ∈ ℝ

𝒉×𝒏𝒉 and 𝑺𝒎 ∈ ℝ
𝒔×𝒏𝒔 are width, 

height, and spectral dictionary matrices, respectively, and 𝓔𝒉 ∈
ℝ𝑤×ℎ×𝑆 and 𝓔𝒎 ∈ ℝ

𝑊×𝐻×𝑠 are the independent and identically 

distributed (i.i.d.) noise of 𝒴ℎ and 𝒴𝑚, respectively.  

   Conventionally, LR-HSI and HR-HSI are considered to be the 

spatial and spectral down-sampled version of HR-HSI, 

respectively. Therefore, the LR-HSI acquisition process can be 

formulated as  

 𝓨ℎ = 𝓒 ×1 (𝐏1𝐖) ×2 (𝐏2𝐇) ×3 𝐒 + 𝓔𝒉 (15) 

 𝐖ℎ = 𝐏1𝐖 (16) 

 𝐇ℎ = 𝐏2𝐇 (17) 

where 𝐏1 ∈ ℝ
𝒘×𝑊 and 𝐏2 ∈ ℝ

𝒉×𝐻 are spatial separable down-

sampling operators of width and height modes, respectively. 

They are point spread functions (PSF) of imaging sensor and 

assumed to be known. Similarly, HR-MSI can be expressed as 

 𝓨𝑚 = 𝓒 ×1𝐖×2 𝐇 ×3 (𝐏3𝐒) + 𝓔𝒎 (18) 



 𝐒𝑚 = 𝐏3𝐒 (19) 

where 𝐏3 ∈ ℝ
𝑠×𝑆 is spectral down-sampling operator, which is 

spectral response function (SRF) of the imaging sensor and 

assumed to be known.  

IV. PROPOSED CNTD APPROACH FORMULATION    

   The goal of fusing LR-HSI and HR-MSI is to estimate a high 

spatio-spectral target image of HSI. Since  𝑤 ≪ 𝑊 , ℎ ≪ 𝐻 and 

𝑠 ≪ 𝑆, the super-resolution problem is severely ill-posed, some 

prior information is needed to regularize the fusion problem. 

Orthogonality and statistical independency of basis vectors in 

the Tucker representation, sparsity, smoothness, and non-

negativity of HSIs are some constraints that help to find a 

unique solution for the super-resolution problem of HSIs [39-

41]. 

  Accordingly, in this paper, we propose a new method based 

on coupled non-negative tensor decomposition (CNTD). The 

proposed method performs Tucker tensor factorization for LR-

HSI and HR-MSI subject to non-negative tensor decomposition 

(NTD). The original NMF method inherently loses spatio-

spectral joint structure information when unfolding a 3D data 

into the matrix form. Therefore in this paper, we impose NTD 

to the both tensor of HSI and MSI straightly. The CNTD 

method effectively combines multiple data tensors, where the 

intrinsic spatio-spectral joint structures of HSI can be losslessly 

represented and interdependently exploited. The proposed 

CNTD method is illustrated in Fig. 1. 

  Considering (11), (13), and (14), LR-HSI and HR-MSI fusion 

problem is formulated as the constrained least squares 

optimization problems, expressed as follows    

 

 

min
𝒞,𝐖𝒉,𝐇𝒉,𝐒

 ‖𝓨ℎ − 𝓒 ×1𝐖𝒉 ×2 𝐇𝒉 ×3 𝐒‖𝐹
2    

 

𝑠. 𝑡.   𝓒,𝐖𝒉, 𝐇𝒉, 𝐒 ≥ 0 

(20) 

 

min
𝒞,𝐖,𝐇,𝐒𝒎

‖𝓨𝑚 − 𝓒 ×1𝐖×2 𝐇 ×3 𝐒𝒎‖𝐹
2  

 

𝑠. 𝑡.   𝓒,𝐖𝒉, 𝐇𝒉, 𝐒 ≥ 0 

(21) 

 

where ‖⋅‖𝐹 denotes the Frobenius norm. Hyperspectral and 

multispectral data fusion based on non-negative Tucker 

decomposition are achieved by the estimation of the 

corresponding dictionaries and the core tensor. NTD is 

straightforward to formulate and easy to implement likewise the 

conventional NMF. Non-negative Tucker tensor decomposition 

attempts to decompose a non-negative data tensor into the 

multilinear products of a non-negative core tensor and non-

negative mode dictionary matrices [42]. We execute the 

multiplicative update rule (MUR) to minimize the predefined 

optimization problems (20) and (21). We perform the 

multiplicative updating algorithms for NTD, which we directly 

derive from NMF multiplicative algorithms. The convergence 

to local optima under the non-negativity constraints has been 

proven in [20, 43], which can be applied to our case as well. 

 

A. Updating mode dictionary matrices 

   Updating algorithms for each mode dictionary matrices can 

be easily derived by matricizing the Tucker model into 

associated modes. We use extended MUR for the NTDs of  𝓨ℎ,  

hence the first mode matricization of 𝓨ℎ is as below 

𝐘𝒉(1) ≈       𝐖𝒉      ⏟      
1𝑠𝑡 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒
 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑁𝑀𝐹

𝐂(1)(𝐒⨂𝐇𝒉)
𝑻

⏟        
2𝑛𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 
 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑁𝑀𝐹

 
(22) 

where 𝐘𝒉(1) and 𝐂(1)  are the first mode matricization of LR-

HSI (𝓨ℎ) and the core tensor (𝓒), respectively.   Equation (22) 

can be treated as the conventional NMF, where each fraction is 

updated using MUR.  

 

 
(a) 

 
(c) 

 
(b) 

Fig. 1. Illustration of the proposed CNTD method for hyperspectral and multispectral data fusion; (a) the LR-HSI Tucker decomposition, (b) the HR-MSI Tucker 

decomposition, (c) the fused superresolution image (HR-HSI).



   Considering (22), the first mode dictionary is updated as 

 𝐖𝒉 ← 𝐖𝒉⊛
𝐘𝒉(1)[𝐂(1)(𝐒⨂𝐇𝒉)

𝑻]
𝑻

𝐖𝒉𝐂(1)(𝐒⨂𝐇𝒉)
𝑻[𝐂(1)(𝐒⨂𝐇𝒉)

𝑻]
𝑻 (23) 

where the fraction line is used here to denote the element-wise 

division.    

   Analogously the second mode dictionary matrix can be 

updated using the second mode matricization of 𝓨ℎ, which is 

as  

𝐘𝒉(2) ≈       𝐇𝒉      ⏟      
1𝑠𝑡 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒
 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑁𝑀𝐹

𝐂(2)(𝐒⨂𝐖𝒉)
𝑻

⏟        
2𝑛𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 
𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑁𝑀𝐹

 
(24) 

and the second mode dictionary matrix is updated as below  

 

 
𝐇𝒉 ← 𝐇𝒉⊛

𝐘𝒉(2)[𝐂(2)(𝐒⨂𝐖𝒉)
𝑻]
𝑻

𝐇𝒉𝐂(2)(𝐒⨂𝐖𝒉)
𝑻[𝐂(2)(𝐒⨂𝐖𝒉)

𝑻]
𝑻 (25) 

   Equivalently the third mode matricization of 𝓨ℎ is 𝐘𝒉(2) ≈

𝐒𝐂(3)(𝐇𝒉⨂𝐖𝒉)
𝑻. Therefore, the spectral mode dictionary (𝐒) 

is updated as  

 

 
𝐒 ← 𝐒⊛

𝐘𝒉(3)[𝐂(3)(𝐇𝒉⨂𝐖𝒉)
𝑻]
𝑻

𝐒𝐂(3)(𝐇𝒉⨂𝐖𝒉)
𝑻[𝐂(3)(𝐇𝒉⨂𝐖𝒉)

𝑻]
𝑻 (26) 

B. Updating core tensor  

   Considering (10) and (13) we have 

 𝑣𝑒𝑐 (𝐘𝒉(1)) = 𝑣𝑒𝑐(𝐖𝒉𝐂(1)(𝐒⨂𝐇𝒉)
𝑻) 

                 = (𝐒⨂𝐇𝒉⨂𝐖𝒉)⏟        
1𝑠𝑡 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒
 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑁𝑀𝐹

𝑣𝑒𝑐(𝐂(1))⏟      
2𝑛𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 
𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑁𝑀𝐹

 
(27) 

which can be treated as the conventional NMF as well. 

Incorporating MUR to calculate the core tensor (𝓒), which is as  

𝑣𝑒𝑐(𝐂(1)) ← 𝑣𝑒𝑐(𝐂(1)) 

                   ⊛
(𝐒⨂𝐇𝒉⨂𝐖𝒉)

𝑻𝑣𝑒𝑐(𝐘𝒉(1))

(𝐒⨂𝐇𝒉⨂𝐖𝒉)
𝑻(𝐒⨂𝐇𝒉⨂𝐖𝒉)𝑣𝑒𝑐(𝐂(1))

 

(28) 

considering (10) and (22) the numerator of  (28) is as 

(𝐒⨂𝐇𝒉⨂𝐖𝒉)
𝑻𝑣𝑒𝑐(𝐘𝒉(1)) 

                   = ((𝐒⨂𝐇𝒉)
𝑻⨂𝐖𝒉

𝑻)𝑣𝑒𝑐(𝐘𝒉(1)) 

                   = 𝑣𝑒𝑐 (𝐖𝒉
𝑻𝐘𝒉(1)(𝐒

𝑻⨂𝐇𝒉
𝑻)
𝑻
) 

                   = 𝑣𝑒𝑐((𝓨ℎ ×1𝐖𝒉
𝑻 ×2 𝐇𝒉

𝑻 ×3 𝐒
𝑻)(1)) 

(29) 

and its denominator considering (10) is as  

(𝐒⨂𝐇𝒉⨂𝐖𝒉)
𝑻(𝐒⨂𝐇𝒉⨂𝐖𝒉)𝑣𝑒𝑐(𝐂(1)) 

         = ((𝐒⨂𝐇𝒉)
𝑻⨂𝐖𝒉

𝑻)((𝐒⨂𝐇𝒉)⨂𝐖𝒉)𝑣𝑒𝑐(𝐂(1)) 

        = [((𝐒⨂𝐇𝒉)
𝑻(𝐒⨂𝐇𝒉))⨂(𝐖𝒉

𝑻𝐖𝒉)]𝑣𝑒𝑐(𝐂(1)) 

= 𝑣𝑒𝑐 ((𝐖𝒉
𝑻𝐖𝒉)𝐂(1)(𝐒

𝐓𝐒⨂𝑯𝒉
𝑻𝑯𝒉)) 

= 𝑣𝑒𝑐((𝓒 ×1𝐖ℎ
𝑇𝐖ℎ ×2 𝐇ℎ

𝑇𝐇ℎ ×3 𝐒
𝑇𝐒)(1)) 

(30) 

   As a result the core tensor 𝓒 is updated as         

 𝓒 ← 𝓒⊛
𝓨ℎ ×1𝐖ℎ

𝑇 ×2 𝐇ℎ
𝑇 ×3 𝐒

𝑇

𝓒 ×1𝐖ℎ
𝑇𝐖ℎ ×2 𝐇ℎ

𝑇𝐇ℎ ×3 𝐒
𝑇𝐒

 (31) 

   We also perform MUR for 𝒴𝑚 in a similar way, which is 

detailed for 𝒴ℎ. Accordingly updating relations for 𝒴𝑚 factors 

are given as follows 

 

𝐖 ← 𝐖⊛
𝐘𝒎(1)[𝐂(1)(𝐒𝒎⨂𝐇)

𝑻]
𝑻

𝐖𝐂(1)(𝐒𝒎⨂𝐇)
𝑻[𝐂(1)(𝐒𝒎⨂𝐇)

𝑻]
𝑻 

(32) 

 𝐇 ← 𝐇⊛
𝐘𝒎(2)[𝐂(2)(𝐒𝒎⨂𝐖)

𝑻]
𝑻

𝐇𝐂(2)(𝐒𝒎⨂𝐖)
𝑻[𝐂(2)(𝐒𝒎⨂𝐖)

𝑻]
𝑻 (33) 

 𝐒𝒎 ← 𝐒𝒎⊛
𝐘𝒎(3)[𝐂(3)(𝐇⨂𝐖)

𝑻]
𝑻

𝐒𝒎𝐂(3)(𝐇⨂𝐖)
𝑻[𝐂(3)(𝐇⨂𝐖)

𝑻]
𝑻 (34) 

 
𝓒 ← 𝓒⊛

𝓨𝑚 ×1𝐖
𝑻 ×2 𝐇

𝑻 ×3 𝐒𝒎
𝑇

𝓒 ×1×1𝐖
𝑻𝐖×2 𝐇

𝑻𝐇 ×3 𝐒𝒎
𝑇𝐒𝒎

 
(35) 

   The CNTD proposed algorithm starts from NTD for the LR-

HSI owing to its spectral information. As the initialization 

phase, we use the method used in [8]. 𝐖ℎ, 𝐇ℎ, 𝐒 and 𝓒 via (16), 

(17), (26), and (31), respectively while the other variables are 

fixed to inherit the reliable spatial information obtained from 

multispectral data. Then, 𝐖𝒉, 𝐇𝒉, 𝐒 and 𝓒 are alternately 

updated via (23), (25), (26), and (31), respectively until 

convergence of the cost function in (20).  

   The next step of the proposed algorithm is applying NTD to 

the HR-MSI. As the initialization phase, 𝐒𝑚 is set by (19) and 

𝐖, 𝐇 and 𝓒 are updated using (32), (33), and (35), respectively 

benefiting the spectral information of LR-HSI. As the 

optimization phase, 𝐖, 𝐇, 𝐒𝒎 and 𝓒 are alternately updated by 

(32)-(35) while the other variables are fixed, until convergence 

of the cost function in (21). The superresolution HSI is 

calculated using the estimated core tensor and mode dictionary 

matrices. Table. II illustrates the procedure of the proposed 

CNTD method.   



TABLE II 

ALGORITHM. 1 THE PROPOSED COUPLED NON-NEGATIVE TENSOR 

DECOMPOSITION BASED METHOD PROCEDURE 

Input: LR-HSI (𝓨ℎ), HR-MSI (𝓨𝑚). 

Output: HR-HSI (𝓩) 

1. Estimate PSF (𝐏1, 𝐏2), SRF (𝐏3), using method 

presented in [44]. 

2. Initialize the core tensor (𝓒) and mode dictionaries 

(𝐖,𝐇, 𝐒) using  method presented in [8].   

3. NTD for 𝓨ℎ 

             Initialize 𝐖ℎ, 𝐇ℎ, 𝐒 and 𝓒 via (16), (17), (26) and    

             (31), respectively. 

             Update 𝐖𝒉, 𝐇𝒉, 𝐒 and 𝓒 alternately via (23), (25),  

             (26) and (31), respectively until convergence of the          

              cost function in (20). 

4. NTD for 𝓨𝑚 

             Initialize 𝐒𝑚, 𝐖, 𝐇 and 𝓒 via (19), (32) and (33),  

             (35) respectively.  

             Update 𝐖, 𝐇, 𝐒𝒎 and 𝓒 alternately via (32)-(35)  

              until convergence of the cost function in  

              (21). 

5. Using the estimated 𝐖, 𝐇, 𝐒 and 𝓒 to calculate the HR-

HSI (𝓩) via Tucker tensor decomposition, which is 

represented in (11). 
 

V. COMPUTATIONAL COMPLEXITY  

   Finally, we analyze the computational complexity of the 

proposed method. According to Algorithm 1, the proposed 

method includes two sub-optimization problems, which engage 

MURs to estimate  𝓨ℎ and 𝓨𝑚 factors. Each sub-optimization 

problem mainly contains four updating steps. Therefore, the 

overall computational complexity of the proposed algorithm is 

briefly expressed as 

  

𝑶(𝑛𝒘𝑊𝐻𝑆) + 𝑶(𝑛𝑤𝑛ℎ𝑛𝑠𝐻𝑆) +
𝑶(𝑛𝑤𝑛ℎ𝑛𝑠𝑊𝑆) + 𝑶(𝑛𝑤𝑛ℎ𝑛𝑠𝑊𝐻) +
𝑶(𝑛ℎ𝑛𝑠𝑊𝐻𝑆) + 𝑶(𝑛𝑤

2𝑊) + 𝑶(𝑛ℎ
2𝐻) +

𝑶(𝑛𝑠
2𝑆) + 𝑶(𝑛𝑤𝑛ℎ

2𝑛𝑠
2) + 𝑶(𝑛𝑤

2 𝑛ℎ𝑛𝑠)  

(36) 

   Noteworthy, the complexity of the proposed method 

outperforms the other state-of-the-art methods [3, 8]. Unlike the 

CSTF method [8] and SSSR method [3], As in (36), It is 

observed that the complexity of the proposed algorithm is quite 

linear with the size of HSI cube (𝑊, 𝐻, 𝑆), which is the same 

as that of conventional NMF algorithm. Owing to the fact that 

each update step of the proposed CNTD method can be 

considered as an NMF problem.  

VI. EXPERIMENTS AND RESULTS 

A. Data sets 

   The proposed CNTD-based method is performed on two well-

known data sets. The first data set is the Pavia University image 

[45], which is acquired by the reflective optics system imaging 

spectrometer (ROSIS) optical sensor upon the urban area of the 

University of Pavia, Italy. The reference HR-HSI of size 120 ×
120 × 93  with spatial resolution 1.3 m per pixel and water 

absorption bands (with a spectral range from 0.43 to 0.86 m) 

removal is illustrated in Fig. 2. The LR-HSI is produced by 

applying a Gaussian blurring filter and down-sampling it by a 

factor of 4. Therefore, the LR-HSI size is 30 × 30 × 93, which 

is shown in Fig. 2. The HR-MSI with the size of 120 × 120 ×
4  is constructed using the IKONOS like reflectance spectral 

response function depicted in Fig. 3. (for more details about 

spectral response and spatial blurring functions see [44]). 

   The second data set is the Indian Pines image, which was 

captured by NASA Airborne Visible and Infrared Imaging 

Spectrometer (AVIRIS) [46]. The reference image is of size 

120 × 120 × 224  across the spectral range from 0.4 to 2.5 μm 

with a spatial resolution of 20 m per pixel. The water absorption 

and very low SNR bands (1-4, 104-115, 150-170, 223, and 

224) are removed and the LR-HSI of size30 × 30 × 185 is 

constructed after down-sampling and blurring operation, which 

is performed just the same as for the Pavia data set. The HR-

MSI of size 120 × 120 × 6 is produced using the LANDSAT-

like spectral responses function, depicted in Fig.3. 

   
            (a)                              (b)                            (c) 

Fig. 2. The first and second rows show the composite color images of Pavia 

University and Indian Pines data sets, respectively; (a) HR-MSI, (b) LR-HSI 

(c) reference image. 

 
Number of band 

 (a) 

 
           Number of band 

 (b) 
Fig. 3. Spectral response functions; (a) IKONOS like spectral response function, (b) LANDSAT-like spectral response function



B. Evaluation criteria 

   The performance of the proposed method is validated using 

the five indexes given below. The first index is the spectral 

angle mapper (SAM) which measures the spectral distortion 

between estimated HR-HSI (�̂�) and reference image (𝓩), where 

�̂�𝑗 and 𝔃𝑗 are pixel spectral responses of �̂� and 𝓩, respectively. 

It is defined as    

 SAM(𝓩, �̂�) =
1

𝑊𝐻
∑arccos (

�̂�𝑗
𝑇�̂�

‖�̂�𝑗‖2 ‖𝔃𝑗‖2

)

𝑊𝐻

𝑗=1

 (37) 

while the ideal SAM value is zero degree.  

   The second index is the root mean square error (RMSE) to 

evaluate the quality of estimated HR-HSI (�̂�) compared with 

the reference image (𝓩). It is calculated as 

  
RMSE(𝓩, �̂�) = √

‖𝓩 − �̂�‖
𝐹

2

𝑊𝐻𝑆
 

(38) 

     The third evaluation index is error relative global-

dimensional synthesis (ERGAS), which also measures the 

spectral distortion between the estimated HR-HSI (�̂�) and the 

reference image (𝓩), which is defined as 

ERGAS = 100
𝑊𝐻

𝑤ℎ
√
1

𝑆
∑(

(RMSE(�̂�𝑖,:, 𝐙𝑖,:))

𝜇𝐙𝑖,:
)

2𝑆

𝑖=1

 (39) 

where �̂�𝑖,: and 𝐙𝑖,: are the ith
  bands of �̂� and 𝓩, respectively. 𝜇𝐙𝑖,: 

is the mean of 𝐙𝑖,:. In the case of perfect reconstruction, the ideal 

value of ERGAS is zero. 

   The fourth index is the degree of the distortion (DD), defined 

as  

 DD(𝓩, �̂�) =
1

𝑊𝐻𝑆
‖𝑣𝑒𝑐(𝓩) − 𝑣𝑒𝑐(�̂�)‖

1
 (40) 

where  ‖⋅‖1 is ℓ1 norm, 𝑣𝑒𝑐(𝓩) and 𝑣𝑒𝑐(�̂�) are vectorization 

of tensors 𝓩 and �̂�, respectively. Note that the smaller DD, the 

better spectral quality.      

   The fifth index is the universal image quality index (UIQI) 

[47]. It is calculated for windows of size 32 × 32 and averaged 

over all windows. The UIQI between the ith band of �̂� and 𝓩 is 

given by 

UIQI(𝐙𝒊, �̂�𝑖) =
1

𝑑
∑

𝜎
𝐙𝑗
𝑖 �̂�𝑗
𝑖

𝜎𝐙𝑗
𝑖𝜎�̂�𝑗

𝑖

2𝜇
𝐙𝑗
𝑖𝜇�̂�𝑗

𝑖

𝜇𝐙𝑗
𝑖 + 𝜇�̂�𝑗

𝑖

𝑑

𝑗=1

2𝜎
𝐙𝑗
𝑖𝜎�̂�𝑗

𝑖

𝜎𝐙𝑗
𝑖+𝜎�̂�𝑗

𝑖
 (41) 

where d is the number of windows, �̂�𝑗
𝑖 and 𝐙𝑗

𝑖 are the jth window 

of ith band of the reference image and reconstructed HR-HSI, 

respectively, 𝜎
𝐙𝑗
𝑖 �̂�𝑗
𝑖  is the sample covariance between 𝐙𝑗

𝑖 and �̂�𝑗
𝑖, 

𝜇
𝐙𝑗
𝑖  and 𝜎

𝐙𝑗
𝑖  are the mean and standard deviation of 𝐙𝑗

𝑖, 

respectively. After averaging over all bands, the UIQI index 

between  �̂� and 𝓩 is expressed as 

 UIQI(𝓩, �̂�) =
1

𝑆
∑UIQI(𝐙𝒊,:, �̂�𝑖,:)

𝑆

𝑖=1

 (42) 

   The UIQI ideal value is one. All the experiments with this 

subscene are implemented using MATLAB R2016a version run 

by an Intel Core I5 at 3.4 GHz and 32-GB random access 

memory computer. 

C.  Parameters discussions 

   In order to evaluate the sensitivity of the proposed CNTD-

based method w. r. t. its essential parameters including the 

number of mode (width, height, and depth) dictionary atoms 

𝑛𝑤, 𝑛ℎ and 𝑛𝑠. We run the proposed method for the different 

number of mode dictionary atoms.  Fig. 4 (a), Fig. 4 (b), and 

Fig. 4 (c) show the RMSE of the estimated Pavia University and 

Indian Pines data sets as functions of the number of mode 

dictionary atoms 𝑛𝑤, 𝑛ℎ and 𝑛𝑠, respectively. As can be seen 

from Fig. 4 (a) and (b), the RMSE for both data sets has a steep 

fall when  𝑛𝑤 and  𝑛ℎ vary from 5 to 200. However, when they 

grow higher, the RMSE does not change obviously. Therefore, 

the 𝑛𝑤 and 𝑛ℎ are set as 167 for both data sets. As Fig. 4 (c) 

shows, the RMSE for Pavia University decreases as 𝑛𝑠 varies 

form 5 to 40. For Indian Pines, the RMSE curve decreases as 𝑛𝑠 
varies form 5 to 100, and then they do not change obviously as  

𝑛𝑠 increases further. Hence, we set 𝑛𝑠 as 100 for both Pavia 

University and Indian Pines data sets, although it gives 

acceptable results for much lower values of 𝑛𝑠. Consequently, 

the proposed CNTD method needs the larger width and height 

mode dictionaries, and a smaller spectral mode dictionary. The 

reason is that the spectral signatures of HSIs generally live in 

low dimensional subspaces.     

 
            𝑛𝑤 

 
            𝑛ℎ 

 
             𝑛𝑠 

           (a)             (b)                (c) 

Fig. 4. The RMSE as functions of the number of atoms 𝑛𝑤, 𝑛ℎ and 𝑛𝑠 for the proposed CNTD method; (a) 𝑛𝑤, (b) 𝑛ℎ, (c) 𝑛𝑠. 



D. Comparison with the other fusion methods 

   The proposed fusion method is compared with state-of-the-art 

methods, which are shown in Table III and IV for Pavia 

University and Indian Pines data sets, respectively. The 

comparisons include RMSE, SAM, DD, ERGAS, UIQI, for all 

approaches. It can be seen that the proposed method 

outperforms the other competing ones in terms of RMSE DD, 

and UIQI indexes and promising results for the other indexes. 

Noteworthy, as can be seen from (36), the proposed method 

achieves lower complexity order than some of the state-of-the-

art methods such as [8] and [3] which have non-linear 

complexity order with the size of HSIs cube.  

   In order to compare the performance of the competing 

methods in preserving spatial structures, the error images which 

reflect the differences between the estimated HR-HSI and 

reference image for the 30th band of both data sets are shown in 

Fig. 5. It shows the error images of the LR-HSI, CSTF [8], 

NLSTF [27] and proposed CNTD method. It can be seen that 

the proposed method can estimate spatial details of the HR-HSI 

with much lower error than the others for both data sets.   

TABLE III 

QUANTITATIVE METRICS OF THE DIFFERENT FUSION METHODS ON THE PAVIA 

UNIVERSITY DATA SET [45] 

Method 
Pavia University data set 

RMSE SAM DD ERGAS UIQI 

Ideal value 0.000 0.000 0.000 0.000 1.000 

CNMF[25] 0.011 2.039 0.009 1.089 0.985 
CSTF[8] 2.160 2.390 1.055 1.230 0.991 

CNN [48] / 2.230 1.370 1.338 0.992 

NLSTF[27] 1.452 0.964 0.846 0.520 0.993 
CNTD method 0.008 1.963 0.005 1.169 0.996 

 
TABLE IV 

QUANTITATIVE METRICS OF THE DIFFERENT FUSION METHODS ON THE 

INDIAN PINES DATA SET [46] 

Method 
Indian Pines data set 

RMSE SAM DD ERGAS UIQI 

Ideal value 0.000 0.000 0.000 0.000 1.000 

CNMF[25] 0.010 1.740 1.280 0.804 0.993 

CSTF[8] 1.533 1.363 0.997 1.082 0.974 

CNN [48] / 2.270 2.090 1.060 0.820 

NLSTF[27] 0.899 0.768 0.484 0.755 0.984 
CNTD method 0.009 1.661 0.006 1.249 0.972 

   
                      (a)                     (b)                       (c) 

   
                     (d)                     (e)                       (f) 

   
                      (g)                    (h)                        (i) 

Fig. 5. The error images of 30th band of Pavia University and Indian Pines data sets; The first row shows the error image of LR-HSI for (a) Pavia University data 

set, (b) Indian Pines data sets, (c) reference image. The second and third rows show the error images of the estimated HR-HSI for Pavia University and Indian 
Pines data sets, respectively; (d) and (g) CSTF method [8], (e) and (h) the NLSTF method [27], (f) and (i) proposed CNTD method. 
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Fig. 6. The first and second rows contain the error images of 30th bands of Pavia University and Indian Pines data sets, respectively; (a) LR-HSI, (b) the CSTF 
method [8], (c) the NLSTF method [27], (d) the proposed CNTD method, (e) reference image. 

For more visual comparison the 30th band of LR-HSI and 

estimated HR-HSI of the CSTF [8], NLSTF [27] and proposed 

CNTD method are compared with the reference HR-HSI in Fig. 

6. It shows that the proposed CNTD method can correctly 

estimate most of the spatial details of the HR-HSI, though there 

are a few distortions in the fusion results. 

VII. CONCLUSION  

   The main object of this paper is to extend NMF to a tensor 

frame and perform it on LR-HSI and HR-MSI to estimate the 

super-resolution image. The introduced basic NTD model 

should be treated as/emphasized like /the conventional NMF-

based model, which is quite general in nature with no spatio-

spectral constraints. According to this, the proposed method is 

called blind hyperspectral and multispectral Images Fusion 

using CNTD. The proposed CNTD-based method is compared 

with the state-of-the-art methods, which gives promising results 

with quite linear complexity order with respect to the size of the 

HSIs cube.  

   As our future work, we can incorporate some prior 

information, such as spectral self-similarity, sparsity, 

smoothness, and local consistence besides the non-negative 

tensor decomposition, they may help to find better unique basis 

vectors in a Tucker representation. 
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