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Abstract

We consider the capacity optimization of submarine links when including a realistic model of the gain-flattened constant-pump

erbium doped fiber amplifiers (EDFA). While Perin et al. [1] numerically attacked this optimization for Constant-Gain (CG)

amplified links, we extend the analysis also to more realistic submarine constant power-spectral-density (CPSD) links. As in

[1], we concentrate on a single spatial mode of a spatial division multiplexed (SDM) link at low EDFA pump power Pp, and

thus consider only the impairments of amplified spontaneous emission noise. Here we adopt a novel semi-analytical approach

which consists of fixing the inversion x1 of the first EDFA (the state-variable of the link) and analytically finding capacity

C(x1) by searching over the x1-feasible input wavelength division multiplexed (WDM) PSD distributions. Then the optimum

inversion x1 that maximizes C(x1) is numerically obtained. This approach enables us to get both approximate (for CG links)

and exact (for CPSD links) capacity-maximizing WDM input distributions, which vary inversely with the EDFA gain profile.

For CG links the optimal WDM allocation is called the gain-shaped water-filling. Other practical allocations are analyzed,

such as the signal to noise ratio equalizing allocation (CSNR), and the constant input power (CIP) allocation which uses a flat

WDM distribution. We find that, for typical submarine span attenuations around 10dB and when the link works at the optimal

inversion x1, CIP and CSNR achieve essentially the same capacity as the optimal allocation. At sufficiently large pump Pp (>=

30 mW) the optimal inversion x1 is such that the EDFA gain at 1538nm equals the span attenuation, for EDFA emission and

absorption as in [1]. When span attenuations increase to 20dB, then we start seeing an advantage of the optimal allocation.

Another key finding is that optimized CG and CPSD links behave roughly the same, with a slightly superior capacity for CPSD.
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Abstract—We consider the capacity optimization of subma-
rine links when including a realistic model of the gain-flattened
constant-pump erbium doped fiber amplifiers (EDFA). While
Perin et al. [1] numerically attacked this optimization for
Constant-Gain (CG) amplified links, we extend the analysis also
to more realistic submarine constant power-spectral-density
(CPSD) links. As in [1], we concentrate on a single spatial
mode of a spatial division multiplexed (SDM) link at low
EDFA pump power Pp, and thus consider only the impairments
of amplified spontaneous emission noise. Here we adopt a
novel semi-analytical approach which consists of fixing the
inversion x1 of the first EDFA (the state-variable of the link)
and analytically finding capacity C(x1) by searching over the
x1−feasible input wavelength division multiplexed (WDM) PSD
distributions. Then the optimum inversion x1 that maximizes
C(x1) is numerically obtained. This approach enables us to
get both approximate (for CG links) and exact (for CPSD
links) capacity-maximizing WDM input distributions, which
vary inversely with the EDFA gain profile. For CG links the
optimal WDM allocation is called the gain-shaped water-filling.
Other practical allocations are analyzed, such as the signal to
noise ratio equalizing allocation (CSNR), and the constant input
power (CIP) allocation which uses a flat WDM distribution.
We find that, for typical submarine span attenuations around
10dB and when the link works at the optimal inversion x1,
CIP and CSNR achieve essentially the same capacity as the
optimal allocation. At sufficiently large pump Pp (& 30 mW)
the optimal inversion x1 is such that the EDFA gain at 1538nm
equals the span attenuation, for EDFA emission and absorption
as in [1]. When span attenuations increase to 20dB, then we
start seeing an advantage of the optimal allocation. Another key
finding is that optimized CG and CPSD links behave roughly
the same, with a slightly superior capacity for CPSD.

Index Terms—Optical Communications, Optical amplifiers,
Submarine transmission, Signal Droop.

I. INTRODUCTION

Submarine systems are fundamentally power constrained.
The quest for energy efficiency has become critical,

and new industrial cable designs have arisen, leveraging
space division multiplexing (SDM) with either fiber bundles
combined with pump-farming solutions at the industrial level
[2], [3], or investigations of multi-core fiber solutions at
the research level [4]. For each spatial-mode, line optimiza-
tion has also been rethought, with suggestions to optimize
amplifiers bandwidth [1], gain shaping filters [5], [6], or
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the wavelength division multiplexing (WDM) input power
spectral density (PSD) [1], [7], also known as pre-emphasis,
most often based on direct numerical or machine-learning
optimization.

In particular, Perin et al. [1] numerically studied how
the capacity of submarine single-mode fiber links with end-
span gain-flattened, fixed-pump erbium-doped fiber ampli-
fiers (EDFA) scales with the EDFA pump power. The end-
to-end pump requirements of SDM links based on fiber
bundles are then inferred from the single-mode fiber results.
In [1], the detailed EDFA physics were first introduced
into the capacity-maximizing design of submarine pump-
power constrained links. The innovative concept was that of
bringing the bandwidth-signal to noise ratio (SNR) trade-off
of the fixed-pump EDFA into the link design. The results in
[1] were obtained by a fully numerical optimization, which
limits the understanding of the underlying general concepts.

In this paper, we use a novel semi-analytical approach
to both shed light into the results of [1], and extend them
to cope with today’s submarine links where at all spans the
WDM signal PSD, the EDFAs, and their (fixed) gain shaping
filters (GSF) are nominally identical. Luckily, these latter
links are simpler to analyze, and we present them first. Then
we attack the link in [1] and derive results quite close to
those in [1], thus both confirming their results and validating
our novel method.

The first key enabler of our approach is the use of the
classical Saleh EDFA model [8]–[10] extended to include
self-saturation by amplified spontaneous emission (ASE)
[11]. The Saleh model without ASE self-saturation [8] was
also used in [1] to provide the starting conditions for the
global optimization search. The reader may review the EDFA
model in Appendix 1, whose exposition is tailored to the
developments in the main text.

The second and fundamental enabler of our approach is
a strategy that allows us to break the complex capacity op-
timization problem into a set of simpler problems amenable
to an analytical solution. Here is the idea. As in [1], our
goal is to maximize the single-mode fiber capacity at a
given per-EDFA pump power Pp. For each Pp, our original
approach is based on assuming knowledge of the inversion
x1 at the first EDFA (the “state-variable” [10] of EDFA
1 and thus of the entire link) and analytically finding the
capacity-achieving WDM distribution and the capacity value
at x1. The dependence on all physical link parameters is
summarized by the sole state variable x1. We finally scan
the whole x1 inversion range and numerically obtain the
maximum link capacity. Once maximum capacity versus Pp
is available, it is possible to carry out optimizations for
power-constrained submarine SDM systems [1].
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Figure 1. (a) M -span amplified line with span attenuation A > 1 and end-
span amplification. At each span k, an EDFA with inversion xk is followed
by a GSF, for a total gain at frequency fj of Gj(xk) = Aχj(xk), where
χj ≤ 1 is the span droop. In CPSD mode, the GSF and thus χj are
tailored such that the span input flux Qj equals the span output flux at
each frequency. (b) block diagram of a span. δQj = Fj∆f is the ASE
equivalent EDFA-input flux at frequency fj over bandwidth ∆f . (c) span
block-diagram equivalent to (b), obtained by “factoring out” the attenuation,
i.e., moving the A multiplier upstream of the addition operator.

At the low per-EDFA pump powers envisaged for sub-
marine SDM, only ASE matters and nonlinear effects can
be disregarded [1], [12]. The single-mode fiber is thus
a wavelength-parallel additive Gaussian noise channel. If
we had a signal power constraint and the received noise
power did not depend on the WDM allocation, the capacity-
achieving distribution would be the well-known classical
water-filling (CW) [13]. Alas, EDFA gain and noise do
depend on input power, and the constraint is here on the
per-EDFA pump power. For the links considered in [1] we
will find an x1-dependent quasi-optimal input distribution
that we call the gain-shaped water-filling (GW) since the
sum of signal and noise is not flat as in CW, but shaped as
the inverse EDFA gain. For more realistic submarine links
with constant PSD at the input/output of each EDFA, which
we label constant-PSD (CPSD) links, we manage to get
instead a recursive algorithm yielding the optimal WDM
PSD and thus capacity. Our treatment of the CPSD links
is an extension of the generalized droop model [14] to the
wavelength-dependent amplifier gain. This paper is an ex-
tension of the conference paper [15], which first introduced
the GW allocation for CG links. The rest of the paper is
organized as follows: Section II introduces the link model.
Section III analyzes the CPSD link. Section IV analyzes the
CG link. Finally Section V concludes the paper.

II. SINGLE-MODE FIBER LINK MODEL

As depicted in Fig. 1(a), we consider the transmission
of an WDM signal with along a link of M end-amplified
single-mode fiber spans. The span attenuation is A > 1. Each
end-span amplifier consists of an EDFA followed by a Gain-
Shaping Filter (GSF) which may either flatten or properly
shape the amplifier gain over the amplifier bandwidth.

As described in Appendix 1, the useful bandwidth Bk
of the k-th gain-shaped amplifier in the link is defined as
the frequency size of the set Bk = {fj : Gj(xk) ≥ A}, i.e.,
the frequency range over which the EDFA gain exceeds or
equals the attenuation. In this study, the amplifier bandwidth
is quantized in multiples of the bin size ∆f , so that Bk =

Nc(xk)∆f , where Nc(xk) is the number of non-overlapping
slots covering Bk. WDM channels may be allocated in all
or part of the Nc bins within the bandwidth.

The EDFA length `, the absorption α and emission g∗

parameters (see Appendix 1), and the pump power Pp are
the same at all EDFAs. As in [14], Fig. 1(b) shows the
power-transfer block diagram of the generic span k, where
δQj(xk) is the ASE equivalent EDFA-input flux (ph/s) and
Gj(xk) = Aχj(xk) is the shaped-amplifier power gain
(EDFA+GSF: Gj = GjGSF,j) at all bins j centered at
frequency fj and of width ∆f , belonging to the set Bk,
with χj(xk) ≤ 1 the (span) droop [14]. The droop is thus
the net span-k power gain at bin j. The shaped total gain is
assumed to be ideally zero out of band. Fig. 1(c) shows a
more convenient representation of the span block diagram,
where the span loss is “factored out” [14]. δQjA is the
equivalent span-input ASE noise generated at the end-span
EDFA.

We will study the following two link types:
1) Constant Power Spectral Density (CPSD) link: at all

spans k and frequencies fj in the bandwidth, the shaped-
amplifier gain Gj(xk) = Aχj has a span-independent,
frequency-dependent droop χj ≤ 1 adjusted such that the
span-output photon flux Qj (or equivalently the power Pj)
at fj equals the span-input (i.e., the transmitted (TX))
flux. Hence the whole M -span line attenuates the input
WDM channel at fj by χMj . Such a stabilization of the
photon flux profile is achieved by suitable GSFs. Hence
the signal+cumulated-ASE PSD at the input/output of every
EDFA is preserved. Since all EDFAs have the same pump,
input PSD, and physical parameters, they all work at the
same inversion x, with identical (frequency-dependent) gain
and noise figure. Of course, CPSD implies a constant total
output power (COP) at each amplifier, as in [14], but COP
does not necessarily imply CPSD. CPSD operation requires
an input-PSD-dependent GSF, identical at all amplifiers. We
will show numerically that for typical submarine links the
combined EDFA+GSF amplifier for CPSD operation, over
the range where WDM channels are allocated, is very close
to a perfectly flat filter with gain equal to A (to within a
tiny fraction of a dB), and has infinite attenuation where no
power is allocated.

The CPSD case is studied first since all EDFAs are
identical and more analytical insight is possible. CPSD
links with a flat input PSD are a typical choice in today’s
submarine systems, hence of great practical importance.

2) Constant Gain (CG) link:
This is the case considered in ref. [1]. It is less realistic

for submarine systems, but better approximates the operation
of COP terrestrial links. Here at all spans k and frequency
bins in the bandwidth range Bk the span droop is unity:
χj(xk) = 1, hence the shaped-amplifier gain G is per-
fectly flat and exactly equals the span attenuation A at all
frequencies of the amplifier bandwidth. This implies that
amplifier+fiber is a unit-gain block, so that the whole line
has unit gain, the transmitted WDM power profile (i.e., the
TX signal PSD) flows unchanged down the line, while ASE
adds to it and increases down the line, so that the EDFAs
inversion decreases down the line for constant-pump EDFAs.
Thus the (mostly fixed and thus cheap) GSFs need to be all
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different, a serious practical drawback. The next sections
detail the analysis in the two cases.

III. CPSD LINK

In this case every EDFA in the line has the same input
pump flux Qp (i.e., same power Pp) and the same input
signal fluxes {Qj/A}Nc

j=1, thus (per Saleh equation (26), see
Appendix 1) the same inversion x, hence the same EDFA
gain profile Gj(x) at all frequencies fj = c/λj (c = speed
of light, λj the j-th wavelength) and the same frequency-
dependent GSF power transfer function:

GSF,j(x) =

{
Gj(x)−1Aχj ∀fj ∈ B
0 else.

(1)

The overall amplifier gain profile is Gj , Gj(x)GSF,j(x).
With these ideal GSFs there is no need of adjustable gain
equalizers regularly spaced along the link, which instead
real links have.

As in [14], the droop χj at each frequency bin j is found
by imposing that the flux Qj (power Pj) entering the generic
span shown in Fig. 1(b), or its equivalent form Fig. 1(c), be
equal to the flux/power out of the gain-shaped amplifier:

(Qj + δQjA)χj = Qj (2)

where (see Appendix 1) the equivalent EDFA-input ASE flux
at fj is δQj = Fj∆f , where Fj is the EDFA noise figure
at the j-th frequency bin fj . Thus we find [14]:

χj =
(
1 + SNR−1

1j

)−1
(3)

where
SNR1j ,

Qj/A

Fj∆f
(4)

is the total signal to injected noise ratio at fj at each EDFA
input. Note from (2) that when SNR1j � 1 then χj → 1;
conversely, when SNR1j � 1 then χj → 0.

The received (RX) signal flux after M spans at fj is
QSIG,RXj = Qjχ

M
j , while the RX ASE flux is

QASE,RXj = AδQj [χ
M
j + ...+ χ1

j ] = Qj(1− χMj ) (5)

where we used (3). The SNR at fj is thus, using (5),(3):

SNRRXj = ((1 + SNR−1
1j )M − 1)−1 (6)

which is the generalized droop (GD) formula [14] at the
j-th frequency, and we note that every input flux vector
Q = {Qj}Nc

j=1 is associated with a droop vector χ =

{χj(Qj)}Nc
j=1 that ensures the CPSD behavior of the link,

as per (2).
The quantity we wish to maximize for this WDM-parallel

additive Gaussian noise channel with our signal flux (or
power) allocation is the achievable information rate (AIR)
per 2-polarization spatial mode at the fixed (Qp, x) [1]:

AIR(Qp, x,Q) =

Nc∑
j=1

2∆f log2(1 + ΓSNRRXj ) (7)

with an implementation penalty 0 < Γ < 1 known as SNR
gap to capacity1. As in [1], in all calculations we will assume
Γ = 0.79 (-1dB).

1When Γ = 1, AIR coincides with capacity.

A. AIR optimization

Our strategy is to fix the value of the (common) inversion
x, and among all input flux vectors Q compatible with x
(or feasible) we look for the one that maximizes AIR. The
set of feasible flux vectors (which are those that solve Saleh
equation for the given x and pump Qp) is a convex simplex,
with bounded maximum power. Luckily, in this case the
optimum can be found analytically as follows.

We wish to maximize with respect to (w.r.t.) the unknown
vector Q the function AIR(Qp, x,Q) in (7), subject to the
positivity constraints for Q and Saleh feasibility constraint:

Nc∑
j=1

Qj
A

(Gj(x)− 1) = K(x,Qp) (8)

where K, given by eq. (27) in Appendix 1, is the useful
pump flux.

Before delving into the optimization, let’s consider first
the AIR of some popular sub-optimal CPSD flux allocations.
In the analysis, it is useful to decompose the flux vector as
Q = Qs, where the scalar total flux is Q ,

∑Nc

j=1Qj ,
and the split vector is s = {sj}Nc

j=1 with sj , Qj/Q ≥ 0.
The split vector is thus a probability mass function (PMF).
For any split, the total feasible flux Q is found from Saleh
equation (8),(27) as:

Q =
AK(Qp, x)∑Nc

j=1 sj(Gj(x)− 1)
(9)

and is itself a function of the split vector.
1) Constant-SNR allocation (CSNR) : CSNR has been for

a long time the standard WDM allocation in submarine links
[16]. Let’s first search for the TX flux vector that makes the
received SNRRXj in (6) equal at all channels j. It should
make the ratio SNR1j ∝ Qj

δQj
equal for all j, i.e., Qj ,

Qsj ∝ Fj . Since s is a PMF, we then must have for all
j = 1, ..., Nc

sj =
Fj∑Nc

k=1 Fk
. (10)

Hence using (9), for all j = 1, ..., Nc the CSNR feasible
fluxes are explicitly:

Qj =
AK(x,Qp)Fj(x)∑Nc

i=1 Fi(x)(Gi(x)− 1)
(11)

which means the WDM signal and the ASE have the same
frequency/wavelength power profile. Since SNR1j is iden-
tical for all j, from (3),(4),(11) the droops at all fj are all
equal to:

χ = (1 +
∆f

∑Nc

j=1 Fj(Gj(x)− 1)

K(x,Qp)
)−1 (12)

which means that the CSNR allocation produces a perfectly
flat droop (=net span gain). The equalized RX SNR is then:
SNRRX = (χ−M−1)−1, which is the standard wavelength-
independent GD formula [14]. The CSNR AIR is finally
obtained from (7).
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Figure 2. Normalized g(χ) vs. single span SNR1 (dB scale) for some
values of gap Γ and spans M .

2) Constant-input-power allocation (CIP) : CIP is an-
other practical allocation often used in submarine links due
to the simplicity by which one can tailor and monitor the
needed GSFs that keep a nominally flat WDM spectrum
along the line (a special case of CPSD). In the CIP case the
input WDM powers (not the fluxes!) are all equal. The power
vector is P = Pc1 with Pc the per-channel TX power, and
1 the vector of all ones. So the fluxes are Qj = Pc/h/fj ,
the total flux is Q = Pc

h

∑Nc

j′=1
1
fj′

, and the split vector thus
has entries

sj =
Qj
Q
≡ 1/fj∑Nc

j′=1 1/fj′
. (13)

Given the above splits, the total flux Q is again given by
(9). Hence for all j = 1, ..., Nc the CIP fluxes are explicitly

Qj =
AK(x,Qp)

1
fj∑Nc

i=1
1
fi

(Gi(x)− 1)
(14)

which correctly yield a constant per-channel power Pc =
hfjQj . Since SNR1j is j-dependent, then from (3) the
droop is also j-dependent:

χj =
1

1 + SNR−1
1j

≡ Pc
Pc +A∆fFjhfj

(15)

The first equality shows that the non-flatness of the span
gain χj is negligible whenever SNR1j � 1 for all j. The
second equality shows that the χj profile is the inverse of
that of ASE power. The CIP received SNR and AIR are
finally computed as usual per (6), (7).

3) Optimal allocation (OPT): We now tackle the AIR-
maximizing signal allocation. We form the Lagrangian:
L(Q) = AIR(Q)− λ

∑Nc(x)
j=1 Qj(Gj(x)− 1), where λ > 0

is the Lagrange multiplier and AIR is given by (7), and then
set the derivative w.r.t. all Qk, k = 1, ..., Nc, equal to zero.
After some algebra we get: ∂AIR

∂Qk
= 2∆f

ln(2)
ΓM
Qk

g(χk), where
we defined the key function

g(χ) ,
χM

1− χM
1− χ

1− χM (1− Γ)
> 0 (16)

which goes to 1
MΓ as χ→ 1. Fig. 2 shows the normalized

g(χ)MΓ versus the single-span ASE-corrupted SNR1 ≡
(χ−1 − 1)−1 in dB scale for some values of parameters M
and Γ.

Now, setting ∂L
∂Qk

= 0 yields:

Qk(Gk − 1) = θg(χk) (17)

where θ , 2∆fΓM
λ ln(2) . The unknown parameter θ is found by

summing the solution (17) over all k and plugging into
Saleh’s constraint: AK(x,Qp) ≡

∑Nc

k=1Qk(Gk − 1) =

θ
∑Nc

k=1 g(χk), yielding θ =
AK(x,Qp)∑Nc

j=1 g(χj)
. Plugging back

into (17) we finally get the optimal (OPT) fluxes for all
k = 1, ..., Nc as:

Qk =
AK(x,Qp)

Gk − 1

g(χk)∑Nc

j=1 g(χj)
(18)

which is one of the main results of this paper. It is a set of
Nc coupled nonlinear equations in the unknown flux vector
Q. The positivity constraint on the {Qk} is automatically
guaranteed by the form of the solution. To solve (18) for the
unknowns Q, the following recursion at epoch i = 1, 2, ....
(based on the assumption that (18) is a contraction map)
always worked for us:

Q
(i)
k =

AK(x,Qp)

Gk − 1

g(χk(Q(i−1)))∑Nc

j=1 g(χj(Q
(i−1)))

where our starting guess Q(0) was the CIP solution (14)
at the same (Qp, x) values. What kind of flux profile vs.
frequency do we obtain from (18)? If for simplicity we
assume OPT flux is allocated only over the Nb bins where
g(χ) is above 1/10 of its maximum, and the {g(χk)} on
such bins are all equal, then from (18) the OPT fluxes
are Qk ∼= AK(x,Qp)/Nb

Gk−1 for k = 1, .., Nb. Hence the OPT
allocation has a frequency profile as the inverse EDFA gain,
as in the GW allocation that we will tackle later. Although
we have no analytical proof, in numerical experiments
the above solution is always unique and corresponds to a
maximum.

B. CPSD link: numerical results

We analyze a CPSD link, with the same parameters as in
[1]: M = 287 spans with attenuation A = 9.5dB, in the
typical range of submarine links.

For an EDFA length ` = 6.27m, and pump powers
Pp = [15 ÷ 180]mW, Fig. 3(a) shows AIR vs. x for three
different power allocation policies: OPT (solid), CIP (dash-
dotted), CSNR (dashed). We observe that AIR versus x
grows identically for all three policies up to a maximum at
inversion xo roughly equal to ∼= 0.63 at all pumps ≥ 30mW.
Beyond the maximum the OPT policy has larger and larger
AIR w.r.t. the other policies (which behave almost the same).
Reason of the existence of an optimum inversion is the
bandwidth-SNR trade-off at play for the AIR (7) when
increasing inversion. To highlight this trade-off, Fig. 3(b)
shows both bandwidth B and RX SNR (averaged over the
WDM channels) versus inversion x. Bandwidth vs. x is seen
to increase monotonically independently of the allocation, as
discussed in Appendix 1. The optimal xo turns out to be very
close to the “knee” of the B vs. x curve (circle in Fig. 3(b)).
As explained in Appendix 1, such a “knee” occurs when the
EDFA gain trough at 1538nm is tangent from above to the
A(dB) horizontal line.
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Figure 3. (a) AIR (Tb/s) vs. x. Allocations: solid: OPT; dash-dot: CIP;
dash: CSNR. Pump powers Pp = [15 ÷ 180] mW. Channel bandwidth
∆f=50GHz. (b) Corresponding bandwidth and WDM-average SNR versus
inversion x.CPSD link, M = 287, A = 9.5dB, EDFA length ` = 6.27m.

SNR instead has normally a decreasing behavior versus x.
Reason is that, at fixed pump, increasing x implies more gain
and thus smaller feasible WDM signals, which implies (nor-
mally) a decreasing SNR, even though noise figure (hence
ASE) also decreases as x increases. We see that the SNR
curves for CIP and CSNR allocations are monotonically
decreasing and almost coincident at all x, while the OPT
SNR coincides with that of the other allocations up to and
a little beyond x0 (which justifies the common AIR growth
for all policies at small x), and then OPT starts to have a
much larger SNR than the sub-optimal policies, and thus
much larger AIR.

The key observation from 3(a) is that at submarine-typical
span loss (e.g. A = 9.5dB) and working at the optimal
inversion, where SNR is still “sufficiently” large, the OPT
AIR is almost the same as that of the other policies, a
fact already known for high-SNR channels where classical
waterfilling is optimal [17]. The consequence is that, if pump
is large enough and the line inversion is optimally chosen,
there is little scope for allocation optimization, and the most
practical allocation should be selected [7].

For the CIP allocation, Fig. 4 reports the same AIR values
as in Fig. 3(a), but now plotted vs. the total input power
NcPc for flat CIP allocation, which depends on inversion as
per eq. (14). This figure is reminiscent of similar curves with
Kerr nonlinearity [19, Fig. 10], although here the maximum
is due to the above-described SNR-bandwidth trade-off.
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At the optimal inversion xo = 0.63 and at pump Pp =
60mW, Fig. 5(a) plots both the EDFA gain (blue solid) and
the EDFA+GSF gain (symbols, whose details are given in
the inset) versus wavelength for OPT (’o’), CIP (’+’), CSNR
(’*’). We see that the equalized gain profiles vs. wavelength
(hence the net span gain (i.e., droop) profiles) for the three
allocation policies differ by less than 0.006 dB. The only
truly flat one is that of CSNR, and the χk profile of CIP is
the inverse of the ASE power, as already noted in (12),(15).
All three droop profiles are thus practically flat and the GSF
has essentially the profile of the inverse EDFA gain, as per
(1). Given the manufacturing tolerances of the order of a
fraction of dB, it is not possible to precisely engineer the
three (ideally different) GSFs for the three policies, which
is the main reason of the insertion of extra flattening filters
placed after a block of spans, whose main task is to restore
the TX input PSD.

Fig. 5(b) plots the PSD at each EDFA input versus
wavelength for the OPT, CSNR, and CIP allocations. We
note that the input PSD for CSNR has the same wavelength
profile as the ASE noise, the CIP allocation is flat, while
the OPT PSD is shaped as the inverse of the EDFA gain, as
noted below (18).

Finally, for M = 287 spans and A = 9.5dB, Fig. 6 shows
(crosses) the x-maximized AIR of the CPSD link with OPT
allocation versus pump power. Here the EDFA length ` was
optimized at each pump, as explained in the next section.
The remaining curves, to be derived later, refer to the CG
link in [1]. The figure anticipates the slight AIR superiority
(at equal EDFA pump) of the optimized CPSD link over the
CG link, mostly visible at the lowest pumps below 50mW,
i.e., those of most interest for SDM submarine links [18].

1) Optimal inversion and EDFA length: Now the question
is: what is the optimal EDFA inversion-length pair (xo, `o)?

We already observed that, at large-enough pump and
at typical submarine span attenuations, maximum AIR is
normally achieved at an optimal inversion close to the knee
of the B vs. x curve, where the gain trough at λT =1538 nm
is tangent from above to the attenuation line and bandwidth
is a compact interval. Let αT , gT be the absorption and
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Figure 7. CPSD chain with OPT allocation, M = 287, A = 9.5dB,
Pp = 100mW (a) AIR vs. inversion x at various EDFA lengths `. (b)
(solid) `o versus xo for theoretical curve (19). Optimal pairs (`o, xo) at
top of every AIR(x) curve in (a) are reported as circles in (b). Insets show
the corresponding EDFA gain vs. wavelength.

emission coefficients at λT . Imposing G(λT ) = A and using
(Appendix 1): GT = exp(`((αT + g∗T )x − αT )) yields the
following relation between xo, `o:

`o =
lnA

(gT + αT )xo − αT
(19)

Fig. 7(a) shows AIR vs. inversion x at various EDFA
lengths `, where we see that ` = 5.41m yields the largest top
AIR (hence the value 6.27m reported in [1] and used above
is close to optimum). Fig. 7(b) reports as circles the optimal
pairs (xo, `) from each ` in left figure, and shows in the
insets the corresponding EDFA gain vs. wavelength. Solid
line is the theoretical curve (19). The three circles right on
top of theory are for lengths ` = [4.41, 5.41, 6.41]m which
show a cuspid at the top of the AIR vs x curve and have
tangency of the gain trough at 1538nm with the attenuation
line. The two edge circles refer to lengths ` = [3.41, 7.41]m
at which tangency is not exact, so that circles are slightly
off theory and the cuspid is not visible in the AIR curve.

From the bottom inset in Fig. 7(b) we find that the
gain averaged over wavelengths is G = [10.3, 10.6, 11.7]
at lengths ` = [4.41, 5.41, 6.41]m. Hence among the
lengths that cause trough tangency, we see that the
AIR-maximizing length ` = 5.41m (blue) is not exactly
(but close to) the one with the smallest G, i.e., the one
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closest to A, hence the one that minimizes the photon
flux wasted by the GSF, i.e., the most pump-photon efficient.

We next look at the performance of a M =63-span link
with a typical terrestrial attenuation A = 20dB, which
corresponds to roughly a link of half the length of the 287-
span link with 9.5 dB attenuation.

As in Fig. 3(a), Fig. 8 shows AIR (Tb/s) vs. x at various
pumps, but now for A = 20dB and the sub-figures refer to
two different EDFA lengths ` = 6.27m and ` = 9.27m. We
see that compared to the A = 9.5dB case, at A = 20dB
a wider gap between OPT and the other allocations is
obtained even at the optimal inversion, especially at the
lowest pumps. At EDFA ` = 9.27m the gap is minimum
since that length is optimal. At ` = 6.27m the inversion
needs to be sharply increased right into the range where
OPT is much more efficient than the other allocations, and
the gap is thus maximum.

2) Optimal span length: To straddle a certain total dis-
tance, we can either use a few widely spaced high-pump
amplifiers, or many narrowly-spaced low-pump amplifiers,
and the question is: what is the best number of amplifiers
to minimize the required total line pump power? For con-
creteness, we analyze again our 14350 = 7 · 41 · 5 · 5 · 2
km CPSD link and look for the best among the following
6 combinations: 1) M=287*2=574 spans of 25km each
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Figure 9. AIR vs. total link pump power MPp (per single-mode fiber) at
optimized EDFA ` for CPSD 14350km link with shown span lengths. OPT
allocation (but CSNR/CIP yield about same AIR). On the shown power
range nonlinearity is negligible [1].

(A = 5.4dB); 2) M=41*5*2=410 spans of 35km each (A =
7.0dB); 3) M=7*50=350 spans of 41km each (A = 8.0dB);
4) M=287 spans of 50km each (already shown, A = 9.5
dB); 5) M=41*5=205 spans of length 35*2=70km each
(A = 12.8dB); 6) M=7*25=175 spans of length 41*2=82km
each (A = 14.78dB).

Using our reduced-complexity extended-Saleh EDFA
model, instead of the full EDFA model used in [1], the search
is much faster.

Fig. 9 shows the largest AIR (Tb/s) (obtained through
EDFA length optimization) versus total link pump power
MPp (W) for the 6 above CPSD systems (as shown in
[1], nonlinearities are negligible below ∼ 287 · 100mW
. 30 W, i.e. over the shown total pump range). AIR is
shown for OPT allocation, but is almost identical for both
CSNR and CIP allocations. We see that the AIR curve
initially improves as the span length decreases (because
ASE decreases), but after an optimum span length the AIR
curves worsen again because too many amplifiers consume
too much of the available total pump power. The 50km/span
link (A = 9.5dB) yields the largest AIR per pump watt
and is thus the most energy-efficient, with the 41km being
just slightly inferior (this is consistent with results in [1]).
Clearly, not only power efficiency but also cost must be
considered in the final link design [3], [12].

IV. CONSTANT-GAIN (CG) LINK

We next attack the more difficult case considered in
[1]. Here the EDFA+GFF amplifier has a flat gain that
exactly equals the attenuation over all channels in the
bandwidth set B, hence the flattened amplifier (signal) gain
is constant at all amplifiers in the link (CG operation).
Thus the net span gain (i.e., the droop) is unity at all
channels. Hence every span has the equivalent block diagram
in Fig. 1(c) with χ = 1. Thus in the CG scenario the
RX signal flux after M spans at the j-th frequency bin is
QSIG,RXj = Qj , the same as the transmitted one, while the
RX ASE flux is QASE,RXj = A

∑M
k=1 Fj(xk)∆f , so the

ASE flux increases down the line. Thus EDFAs down the
line see increasing input fluxes at the same pump, hence
their inversions decrease: x1 > x2 > ... > xM . Since
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bandwidth is monotonically increasing with inversion, then
the EDFA bandwidth decreases down the line and thus the
bandwidth of the whole line is set by that of the last EDFA:
B = Nc(xM )∆f .

Now, the inversions down the line are a function of the
chosen input signal fluxes {Qj} and of the inversion x1 of
the first EDFA (which is taken as a known quantity). TX
fluxes Q = {Qj}Nc

j=1 must be feasible for the given pump
Qp and inversion x1, i.e., they must satisfy Saleh equation
(8) at the first EDFA. The inversions xk of the subsequent
EDFAs are recursively found from the known x1 and the Q
vector by solving the Saleh equation at the k-th EDFA, for
all k = 2, 3, ...,M . Fluxes Q depend on the flux allocation
strategy, as detailed later.

The RX SNR QSIG,RXj /QASE,RXj at frequency j is

SNRRXj =
Qj

A
∑M
k=1 Fj(xk)∆f

(20)

and the AIR per (2-polar.) spatial mode at fixed Qp and
inversion x ≡ x1 of the first EDFA is still given by eq.
(7), where Nc ≡ Nc(xM ). The flux vector Q to be used in
each EDFA Saleh equations is specified depending on the
allocation strategy, as detailed next.

A. Gain-shaped Waterfilling allocation (GW)

Define the inversion vector as x = {x1, x2, ..., xM}, and
from (20) define the noise vector as

Nj(x) ,
A

Γ

M∑
k=1

Fj(xk)∆f (21)

for j = 1, ..., Nc(xM ). Then the optimal Q maximizes the
AIR

AIR(Qp, x1, Q) =

Nc(xM )∑
j=1

2∆f log2(1 +
Qj
Nj

) (22)

subject to the Saleh constraint (8) at the first EDFA. The
problem differs from that of CPSD links in two respects:

1) we have an SNR where the noise flux Nj depends on
the inversions only. Alas, the inversions in turn depend on
Q through Saleh balance equation at each EDFA;

2) the total link bandwidth B(xM ) and hence Nc(xM )
are not independent of the actual fluxes Q as it was in the
CPSD case.

Finding the exact AIR-maximizing Q (as we did in the
CPSD case) is ruled out, since the feedback dependence of
the inversions {x2, ..., xM} and Nc(xM ) on the fluxes Q is
too complicated to be analytically treated. However, if we
ignore the dependence of the inversions on Q, we can find
a simple analytical solution as described next, which turns
out to be “quasi-optimal”.

When the inversion vector x is fixed, and so is Nc(xM ),
Appendix 2 derives the optimal fluxes Q , Q

GW
(x) that

maximize AIR (22) subject to constraint (8), whose entries
j = 1, .., Nc are

Qj = max(0,
θ

Gj − 1
−Nj) (23)

Figure 10. Example of GW signal power allocation for CG link with M =
287 spans, A = 9.5dB, EDFA length ` = 6.27m, pump Pp = 60mW, and
inversion x1 = 0.75. Dark shaded: noise power hfjNj (mW), eq. (21).
Solid: water-level hfjθ/(Gj(x1) − 1). GW signal power Sj = hfjQj

(light shaded) is allocated between the noise level and the water-level solid
curve. For CW instead the water-level is the flat dashed line.

Algorithm 1 Iterative CG link algorithm

Start from the uniform guess x(0) = {x1, x1, ..., x1} where
all EDFAs have the same (known) inversion as EDFA-1;
Then repeat at all epochs n until convergence:
1) update GW as: Q(n) = Q

GW
(x(n−1)), as per eq. (29).

2) update the entries x(n)
k , k = 2, ..,M of the new vector

x(n) by sequentially solving the Saleh equation at each
EDFA k:

Nc(x
(n−1)
M )∑
j=1

(
Q

(n)
j

A
+

k−1∑
l=1

Fj(x
(n)
l )∆f

)
(Gj(x

(n)
k )− 1)

= K(Qp, x
(n)
k ). (24)

where θ/(Gj − 1) is the inverse-gain-shaped water-level,
and theta a parameter to be found from Saleh equation at
EDFA 1 (30). We call this flux allocation the (inverse-)Gain-
shaped waterfilling (GW), in analogy to the well-known
classical water-filling (CW) where the water-level is flat.
Fig. 10 gives an example of both GW and classical
water-filling (CW) signal power allocations for a CG line,
M = 287 span, A = 9.5dB, and EDFAs with length
` = 6.27m and pump Pp = 60mW, working at inversion
x1 = 0.75. The solid curve is the non-flat water-level
hfjθ/(Gj(x1) − 1), the dark shaded level corresponds to
the noise power hfNj (mW), and the GW signal power
Sj = hfjQj (light shaded) is allocated between the noise
level and the water-level curve, as per (23). For CW instead
the water-level is the flat dashed line.

The inversion x is next iteratively found by algorithm 1.
By exhaustive search over the feasible input simplex, we
verified that the sub-optimal GW practically coincides with
the optimal allocation at all but the largest inversions. GW
will be validated also by comparison with the results in [1].
In Appendix 2 we also consider the classical water-filling
allocation (CW) with a flat water level. The inversions vector
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x in the CW case is found by the same iterative algorithm
as above, when updating Q(n) = Q

CW
(x(n−1)) by using

CW fluxes (31).
For CG links, we next outline the two sub-optimal flux-

allocation strategies CSNR and CIP already considered in
the CPSD case.

B. CSNR allocation

To equalize the SNR (20), the ratio Qj∑M
k=1 Fj(xk)

must

be equal for all j, i.e., Qj ≡ θsj ∝
∑M
k=1 Fj(xk) using

the power split sj , Qj/θ (θ is here the total TX signal
flux2) and since s is a PMF we then must have for all
j = 1, ..., Nc(xM )

sj(x) =

∑M
k=1 Fj(xk)∑Nc(xM )

j=1

∑M
k=1 Fj(xk)

(25)

which explicitly depends on the inversion vector x. These
are the splits used in EDFA-1 Saleh equation (8) that allow
us to get the total flux θ from (9). So we now have the
CSNR flux vector Q

CSNR
(x) for given x. The inversions

vector x is found by the same iterative algorithm as above,
when updating Q(n) = Q

CSNR
(x(n−1)) . At convergence,

we get the SNRRX from (20) and the AIR from (7).

C. CIP allocation

As in the CPSD case, the CIP split vector entries {sj} are
obtained from (13) and they do not depend on inversions x.
With these, the total flux θ is obtained from (9) and only
depends on the known x1. So we have directly the CIP flux
vector Q

CIP
(x1). The rest of the inversions vector x is

found by just one run of step 2 of the standard iterative
algorithm. We finally get the SNRRX from (20) and the
AIR from (7).

D. CG link: numerical results

Very similar numerical results to those obtained for the
CPSD links are obtained for CG links, and we next present
them. However note that the shaping filters in the CG link
need to be matched to the corresponding inversion and are
thus all different. We present it for sanity checks with the
seminal work in [1].

Fig. 11(a) shows the achievable information rate AIR
(Tb/s) (solid: GW; dash-dot: CW; dash: CSNR; dot: CIP)
versus inversion x at various pump powers from 15 to
180mW. We see that all allocation policies yield essentially
the same AIR (differences below 2%) up to a little beyond
the optimal inversion x1, which occurs close to the “knee”
of the corresponding B vs. x1 curve, cfr. Fig. 13(b). The
global AIR vs x1 behavior is quite similar to that of the
corresponding CPSD link, shown in Fig. 11(b) (same curves
as Fig. 3(a) with added GW curve).

We note that the CPSD link has always a slightly larger
AIR than the CG link at same pump, and the differences
become more noticeable at lower pumps. Also note that
for the CPSD link we added the GW allocation (solid) as

2θ plays here the role of a flux vector parameter, exactly as it was for
the GW and CW allocations.
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Figure 11. AIR (Tb/s) versus inversion x1 at various pump powers for (a)
CG link and (b) CPSD link, with M = 287, A = 9.5dB, ` = 6.27m.
Solid-o: CPSD-OPT; Solid: GW; dash-dot: CW; dashed: CSNR; dot: CIP).

described in Appendix 4, and GW turns out to be coincident
with the optimal allocation (solid with circles) up to large
inversions.

For a global comparison between optimized CPSD and
CG links, please refer to Fig. 6, which shows (circles) the x1-
maximized AIR of the CG link with GW allocation versus
pump power. Here the EDFA length ` was optimized at each
pump and for each allocation. The solid lines are the AIR
results for the same link from [1, Fig.4(a)], both without
(red) and with nonlinear effects (blue), which shows that at
Pp below 100mW nonlinear effects are negligible [1]. With
only ASE, we see that our GW AIR is practically coinciding
with the optimal values found in [1].

For the same link, Fig. 12 shows the signal powers at every
EDFA input at various pumps and at the optimal inversions,
where symbols are our CG GW values and solid curves are
the results in [1, Fig. 2a]. We see that we are able to get
similar curves. Note that our bandwidth calculation considers
all bins with EDFA gain above attenuation, without any
smoothing of the bandwidth edge bins, while the work in [1],
in order to perform particle swarm maximization, introduces
artificial smoothing, which is evident at the bandwidth edges
in Fig. 12.

V. SUMMARY AND CONCLUSIONS

We started our exploration of this topic when trying
to reproduce the fully-numerical CG link results in the
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Figure 12. WDM signal power at input of each EDFA versus wavelength
at various pump powers and at optimal inversions. Symbols: our CG-GW
model. Solid: results from [1, Fig. 2a]. Data: CG link, M = 287 ` =
6.27m, A = 9.5dB.

seminal paper [1]. Key to our novel approach was the use
of the Saleh EDFA model enriched with ASE self-saturation
(Appendix 1), and the understanding that knowledge of
the state variable of the first EDFA [10] and thus of the
entire link allows breaking the whole optimization problem
into a series of much simpler optimizations, amenable to
analytical solution. We thus discovered the GW allocation
(Appendix 2) as the quasi-optimal allocation in CG links
[15], which is a new twist in optical communications of
the classical capacity-achieving water-filling allocation in
additive Gaussian noise channels [13]. Today’s submarine
links, however, are not CG links, but rather CPSD links
with CSNR or CIP input WDM PSDs. The PSD is preserved
along the line by (nominally) identical GSFs at all EDFAs.
Their role is not exactly gain flattening, but rather PSD
enforcing. In this paper we explored variations of the CPSD
link with non-flat input PSDs. Our analytical approach to
the study of CPSD links is an extension of the GD model
[14] to the case where the amplifier channel gains are not all
equal. Using the GD model we discovered the optimal PSD,
eq. (18), that maximizes capacity (more correctly the AIR,
since we introduce a “gap to capacity” Γ), whose analytical
formulation formally does not resemble the GW allocation.
However, we proved that the GW allocation in CPSD links
provides essentially the same AIR as the optimal allocation,
up to almost the largest inversions (Cfr. Fig. 11(b)). The
same thing happens in CG links.

The main findings from this study are:
1) optimized GC and CPSD links behave roughly the

same, with a slightly larger optimal AIR for CPSD links
(Cfr Fig. 6);

2) with pumps ≥30mW and typical submarine span at-
tenuations in the order of 10dB, sensible allocations such as
the flat one (CIP) or the SNR-equalizing allocation (CSNR)
achieve AIR values to within a few percent of the optimal
AIR (Cfr Fig. 11). There is thus no point in using non-flat
allocations [7]. However, when span losses are increased to
20dB (typical of terrestrial systems), the optimal allocation
provides sizable AIR improvements, especially at lower
pumps or when EDFA length is sub-optimal (Cfr Fig. 8);

3) at submarine span losses, the optimal EDFA inversion

(for absorption and emission coefficients as in [1, Fig. 7]) is
very close to the one that makes the EDFA gain at 1538nm
equal to the span attenuation (Cfr. Fig. 7);

4) the fixed gain shaping filters to implement CPSD for
different PSD allocations differ from the inverse EDFA
gain profile by a fraction of a dB (Cfr Fig. 5). Since
it is unfeasible to implement them with such tolerances,
then periodically spaced adjustable gain/PSD equalization
is needed along the link;

5) power-efficiency optimal span attenuations are in the
range 8-9.5 dB, corresponding to span lengths 40-50km (Cfr.
Fig. 9), in agreement with [1], [3].

An interesting question is how to possibly estimate
the inversion x of a black-box commercial amplifier just
from input/output measurements, and thus reconnect that
estimate to the picture presented in this paper. Some recent
black-box EDFA models point in that direction [20], [21],
but the problem remains open.
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APPENDIX 1: SALEH EDFA MODEL

While Perin’s work [1] solved the complete EDFA rate
equations, we will use here the much faster Saleh EDFA
model [8]–[10], made more accurate by including self-
saturation by ASE as in [11].

Saleh model can be interpreted as an hydraulic system
consisting of a single tank (in the homogeneous broadening
assumption [8], [24]) that gets filled by the pump photon
flux Qp at wavelength λp (usually 980 nm or 1480 nm) and
whose contents we call the reservoir r, which physically
represents the total number of excited Erbium ions in the
doped fiber. Ions in the reservoir are ready to be converted to
signal photons. The reservoir, normalized to the total number
of ions in the doped fiber rM , is called the average inversion:
x , r/rM . The gain seen by the input WDM photon fluxes
Qinj at the various wavelengths j = 1, .., Nc exponentially
increases with the doped fiber length ` and the inversion
x as: GdBj = 10 log10(e)`((αj + g∗j )x − αj), and involves
the wavelength-dependent emission g∗j and absorption αj
coefficients (m−1) [22]. In all our calculations we used the
values reported in [1, Fig. 7], and a pump at 980 nm.

Saleh Balance equation : At equilibrium, the reservoir
(thus the inversion x) depends on the balance of fluxes
entering and exiting the tank, as expressed by the Saleh
balance equation:

Nc∑
j=1

Qinj (Gj(x)− 1) = K(x,Qp) (26)

with

K(x,Qp) , Qp − (QpGp(x) +
rM
τ
x+QF+B

ASE (x)) (27)

where the left-hand side of (26) represents the fluxes drawn
by the input WDM signals out of the tank, and the term
K represents the useful pump flux, i.e., the input pump
flux Qp minus the “leakage from the tank”, namely: i) the
unused pump flux QpGp (the pump gain is Gp < 1); ii)
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Figure 13. (a) EDFA gain versus wavelength at inversion x = [0.5 : 0.05 :
1]; (b) bandwidth B (THz) at span attenuations A = [9.5, 20]dB versus
inversion x. “Cutoff” and “knee” for A = 9.5dB are at x = [0.585, 0.63],
while for A = 20dB they are at x = [0.73, 0.81]. EDFA length ` = 6.27m.

the fluorescence r
τ , with τ the fluorescence time, iii) the

forward and backward ASE flux QF+B
ASE , which causes ASE

self-saturation, and is analytically included as [11]:

QF+B
ASE = 2

L∑
j=1

2nsp,j(Gj − 1)∆f (28)

with nsp,j =
g∗j x

(g∗j +αj)x−αj
the spontaneous emission factor

[22], and ∆f the ASE resolution bandwidth over bins
j = 1, ..., L tiling the significant wavelength range. The first
multiplier 2 gives equal strength to forward and backward
ASE, since (28) is obtained in the assumption of a spatially
uniform inversion at value x [11].

EDFA Noise Figure : The EDFA noise figure is defined
for all frequency bins j as [23] Fj = 2nsp,j

Gj−1
Gj

. The
equivalent-input (forward) ASE flux to the EDFA at λj is
Fj∆ν.

Amplifier Bandwidth: In Fig. 13(a) we report the Gain
versus wavelength at various inversions, where we also show
a horizontal line at level A =9.5dB, i.e., the span attenuation
considered in [1]. The gain-flattened amplifiers in the main
text consist of an EDFA followed by an ideal gain flattening
filter that slices off all gain in excess of the span attenuation
A and blocks all wavelengths whose EDFA gain is below
A. Nc WDM signals of bandwidth ∆f and spacing ∆f
completely occupy the available amplifier bandwidth B.
Such a bandwidth (THz) is plotted in Fig. 13(b) versus

inversion x for attenuation A both 9.5 and 20dB. For
A = 9.5dB, we note that B is zero at all inversions below
the cutoff value x = 0.585 which is the largest x for which
the gain curve is fully below A (see the thick purple curve in
Fig. 13(a)). Above cutoff, B increases vs. x initially fast, and
then more slowly after a knee (at x = 0.63 for A = 9.5dB),
which from Fig. 13(a) (thick blue curve) corresponds the
smallest x for which the EDFA gain trough at 1538 nm
equals A, so that the bandwidth comes from a compact
wavelength set, instead of disjoint segments as at lower
inversions. Here is why the slope of B vs. x is large at
the knee and becomes abruptly small after the knee. The
bandwidth change dB due to a change dx can be expressed
as dB =

∑I
i=1 dfi, where dfi is the change in bandwidth

at the i- th gain intersection point fi with the attenuation
line, i = 1, .., I . By multiplying and dividing by the induced
gain change dGdBi = 10 log10(e)`(αj + g∗j )dx, we write

dB =
∑I
i=1 10 log10(e)`(αi + g∗i )/

dGdB
i

dfi
. Whenever the

derivative dGdBi /dfi is small (as at 1538nm and x = 0.63),
then dB is large. Conversely when the GdB vs. f curve is
steep at the intersection points, then dB is small, as for all
x above the knee.

APPENDIX 2: GW AND CW ALLOCATIONS

Starting from section IV-A on CG links, we now derive
the optimal fluxes {Qj} that maximize AIR (22) subject to
constraint (8). Assume we know the inversions vector x =
{x1, ..., xM}. If we neglect the positivity constraints on the
fluxes, we form the Lagrangian L =

∑Nc(xM )
j=1

2∆f
ln(2) ln(1 +

Qj

Nj(x) ) − λ
∑Nc

j=1Qj(Gj(x1) − 1), where Nc(xM ) and the
noise flux Nj(x) in (21) are fixed, and λ > 0 is the Lagrange
multiplier. We now set the derivative of the Lagrangian w.r.t.
all Qk, k = 1, ..., Nc, equal to zero:

0 ≡ ∂L

∂Qk
=

Nc∑
j=1

 2∆f

ln(2)

1
Nj

∂Qj

∂Qk

Nj+Qj

Nj

− λ∂Qj
∂Qk

(Gj − 1)

 .
Now, ∂Qj

∂Qk
= δjk is a Kronecker delta, i.e., 1 if j = k and

zero else. Thus we get: 0 = 2∆f
ln(2)

1
Nk+Qk

−λ(Gk− 1),hence
(Nk + Qk)(Gk − 1) = θ, with constant θ , 2∆f

ln(2)λ ,
and thus get the signal fluxes for all k = 1, .., Nc as:
Qk = θ

Gk−1−Nk, with a k−dependent inverse-gain-shaped
water-level θk , θ

Gk−1 equal to the sum of signal and noise
fluxes on frequency bin k. The Lagrange optimization fails
when some of the signal fluxes are negative. In this case
we must include the flux non-negativity in the constraints
and solve the resulting Karush-Kuhn-Tucker (KKT) problem
[25]. As in classical water-filling, we find that the correct
KKT solution for all k = 1, ..., Nc is [13, Sec. 9.4]:

Qk = (
θ

Gk − 1
−Nk)+ (29)

where x+ , max(x, 0). The expression for the water-level
parameter θ is found by forcing compliance with the Saleh
constraint (8) at EDFA 1:

Nc(xM )∑
k=1

(
θ

Gk − 1
−Nk)+(Gk − 1) = AK(Qp, x1). (30)
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Contrary to the classical water-filling for the parallel
additive Gaussian channel, the water-level θk , θ

Gk−1 is
now k-dependent, and water-filling is not in the powers
but in the photon fluxes. In solving the above nonlinear
equation in θ, as a starting guess we may choose the lower
bound θLB =

AK(Qp,x1)+
∑Nc

k=1Nk(Gk−1)

Nch
≤ θ that we get

in absence of (.)+.

Classical Water-filling (CW)

If instead of condition (29) we impose

Qk = (θ −Nk)+ (31)

then we obtain the classical water-filling allocation
(although using fluxes instead of power) with flat water
level θ, obtained by solving Saleh equation at EDFA 1:

Nc(xM )∑
k=1

(θ −Nk)+(Gk − 1) = AK(Qp, x1). (32)

As a starting guess we may use the lower-bound value
θLB =

AK(Qp,x1)+
∑Nc

k=1Nk(Gk−1)∑Nc
k=1(Gk−1)

.

APPENDIX 3: GW ALLOCATION IN CPSD LINK

We can also impose allocations such as GW and CW (See
Appendix 2) in the CPSD scenario. Here we explain GW.

The RX SNR at every WDM frequency fj is ΓSNRj ,
Qj/Nj , where from (7) the TX-equivalent ASE noise is

Nj(x,Qj) ≡
Qj
Γ

(
χ−Mj − 1

)
(33)

and limQj→0Nj(x,Qj) = ∞. Using this expression in
the calculations in Appendix 2 we get that the GW allo-
cated fluxes correspond to equation (29), where the “water-
level” parameter θ satisfies eq. (30). Such last equation is
nonlinear in the unknown flux vector Q. To solve for Q
, we can use the following recursion. If we have guesses
Q
i−1

and θi−1 at epoch i = 1, 2, ...., then from (29)
we update all entries k = 1, .., Nch of Q

i
as: Qk,i =

( θi−1

Gk(x)−1 − Nk(x,Qk,i−1))+, then update Nk(x,Qk,i) per

(33), and finally update θi as the solution of:
∑Nc(x)
k=1 (θi −

Nk(x,Qk,i)(Gk(x) − 1))+ = AK(Qp, x1), as per (30).
In our Matlab software we use as starting guess Q

0
the

CIP solution (11) at the same (Qp, x) values, and use as

a starting guess: θ0 =
AK(Qp,x)+

∑Np
k=1Nk(x,Qk,0)(Gk(x)−1)

Np
,

where Np ≤ Nch(x) is the number of channels where Nk
is finite.
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