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Abstract

A theory for analyzing the radiative and reactive energies for pulse radiators in free space is presented. With the proposed

definition of reactive energies and radiative energies, power balance at arbitrarily chosen observation surfaces are established,

which intuitively shows that the Poynting vector contains not only the power flux density associated with the radiative energies,

but also the influence of the fluctuation of the reactive energies dragging by the sources. A new vector is defined for the radiative

power flux density. The radiative energies passing through observation surfaces enclosing the radiator are accurately calculated.

Numerical results verifies that the proposed radiative flux density is more proper for expressing the radiative power flux density

than the Poynting vector.
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Abstract—A theory for analyzing the radiative and reactive energies for pulse radiators in free space is presented. 

With the proposed definition of reactive energies and radiative energies, power balance at arbitrarily chosen 
observation surfaces are established, which intuitively shows that the Poynting vector contains not only the power 
flux density associated with the radiative energies, but also the influence of the fluctuation of the reactive energies 
dragging by the sources. A new vector is defined for the radiative power flux density. The radiative energies passing 
through observation surfaces enclosing the radiator are accurately calculated. Numerical results verifies that the 
proposed radiative flux density is more proper for expressing the radiative power flux density than the Poynting 
vector.  

Index Terms—Reactive energy, electric energy density, magnetic energy density, radiative energy, Poynting vector 

I. INTRODUCTION 

The electromagnetic radiation problems have been intensively investigated for more than a hundred years. It is a little 
bit strange that there is still no widely accepted formulation for evaluating the stored reactive energies and Q factors of 
radiators[1]-[14]. The main difficulty may come from the fact that there is no clear definition in macroscopic 
electromagnetic theory for the reactive electromagnetic energy. It is commonly known in classical charged particle theory 
that the fields associated with charged particles can be divided into self fields and radiative fields[15][16]. The self fields 
include the Coulomb fields and the velocity fields, carrying self energies, also referred to as Schott energy in some 
literatures [17]-[18][19]. The radiative fields are generated by acceleration of charged particles, emitting radiative energies 
to the surrounding space. The self fields/energies are considered to be attached to the charged particles, or simply speaking, 
they show up with the charged particles and disappear with the charged particles. On the contrary, after being radiated by 
the charged particles, the radiative fields/energies will depart from the sources and propagate to the remote infinity. They 
exist even after their generating sources disappeared and can couple with other sources they encountered in their journey. 
Although it is natural to consider that the reactive energies in macroscopic electromagnetics is similar to the self energies 
or the Schott energy, no successful attempt has been found or well accepted to handle the reactive energies in this manner. 
No expression for reactive energies is established in macroscopic electromagnetics that can be derived rigorously from the 
self fields of charged particles. 

Poynting vector is widely considered as the electromagnetic power flux density[20]. Poynting Theorem describes the 
relationship between the Poynting vector, the varying rate of the electromagnetic energy densities, and the work rate done 
by the exciting source. It provides an intuitive description of the propagation of electromagnetic energy. However, 
interpreting the Poynting vector as the electromagnetic power flux density has always been controversial [21]-[40], and 
some researchers have pointed out that Poynting Theorem may have not been used in the correct way in some 
situations[41][42]. However, most of these opinions have been ignored because of the great success of the wide application 
of Poynting Theorem and Poynting vector.    

It is known that the Poynting Theorem is not convenient to use for evaluating the reactive energies stored by radiators 
in an open space [5][13], which has been investigated for decades. For harmonic fields, the total electromagnetic energy 

obtained by integrating the conventional energy densities of  0.5 D E and  0.5 B H over the whole space is infinite 

because the conventionally defined electric and magnetic energy densities generally account for the total fields consisting 
of the radiative fields and the reactive fields. The radiative energy occupies the whole space and is infinitely large [14]. 
Some researchers suggested that those fields associated with the propagating waves should not contribute to the stored 
reactive energies, and the results can become finite by subtracting from the energy density an additional term associated 
with the radiation power. However, it is not easy to give a general definition for the term because the propagation patterns 
are quite different for different radiators [1][5].  

Practically, if we check the classical charged particle theory, the Larmor’s formula for the radiative power of an 
accelerated charged particle can be derived from the corresponding Poynting vector with contribution from the radiative 
fields only[15]-[17][42]. 

Based on these observations, the macroscopic electro- magnetic radiation issue is revisited and a new energy/power 
balance equation at a certain instant time is proposed, which gives an intuitive and reasonable suggestion that Poynting 
vector is not the radiative power flux density. 

It is not the aim of this paper to provide a rigorous proof to support that the reactive energies in the macroscopic 
electromagnetics are exactly the self energies or the Schott energy in the classical charged particles. Instead, a definition 
for reactive electromagnetic energies is proposed based on the hypothesis that the reactive energies in the macroscopic 
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electromagnetics bear the same characteristics as the self energies: (1) they are attached to the sources, appear/disappear 
with the sources simultaneously; (2) the definition is in consistent with the static energies associated with Coulomb fields; 
(3) the reactive energies do not propagate like radiative energies, but their fluctuation may propagate at the light velocity 
in free space just like the radiative fields. A theory is proposed based on these considerations, in which the radiative energies 
and the reactive energies can be separated. As a consequence, the Poynting vector is divided into two vectors. One vector 
accounts for the radiative power flux density and the other vector accounts for the fluctuation of the reactive energies. It 
has to mention that the theory is nonrelativistic and based on macroscopic Maxwell theory. The proposed theory enjoys 
success in interpreting the radiation process of a Hertzian dipole, providing results exactly in agreement with those obtained 
using the well-established Chu’s circuit model for the dipole. The theory is also supported by numerical examples. 

II.  FORMULATIONS FOR REACTIVE AND RADIATIVE ENERGIES 

In the proposed theory, the reactive electric and magnetic energy of a radiator are defined with 

       1
, , ,

2s sV V
W t t t d w t d        r r r r r   (1) 

       1
, , ,

2s s
J JV V

W t t t d w t d       A r J r r r r   (2) 

where the scalar potential   and vector potential A  evaluated at the observation point r  and the instant of time t  are 
defined in their usual way, 

   
0

,
,

4sV

t
t d

R





 

 
r

r r   (3) 

   
0

,
,

4sV

t
t d

R



 

 
J r

A r r  (4) 

In the above equations,  , t  r and  , t J r are the charge density and current density at source point sVr  and 

retarded time t t R c   , in which c is the light velocity and R  r r  is the distance. 0  and 0  are respectively 

the permittivity and permeability in free space. The potentials have to satisfy the Lorentz Gauge, and their reference zero 
points are at the infinity. 

The reactive electromagnetic energy is the sum of the reactive electric energy and the reactive magnetic energy, 

  1 1

2 2s
react V

W t d     
  A J r   (5) 

It can be readily checked that the reactive energies defined in (3), (4) and (5) are attached to their sources, i.e., they 
show up together with their sources and disappear with their sources. For static electromagnetic fields, they are exactly the 
stored electro- magnetic energies associated with the source. Notice that no other definition for energies in the macroscopic 
electro- magnetic theory bears this property.  

For time varying fields, the reactive electric energy and the reactive magnetic energy may become negative because of 
the retardation. For example, the direction of the vector potential may be negative to that of the current, which is sometimes 
encountered in loop current sources. However, the total reactive energies for bounded sources have to be positive if we 
choose the infinity as the zero reference points for the potentials. Therefore, in this theory the reactive electromagnetic 
energy is defined combining the two reactive energies together and treated as a whole.  

The Poynting Theorem correctly describes the relationship between the work rate done by the source, the total 
electromagnetic energy in region a sV V  containing the source, and the total electromagnetic power flux crossing the 

boundary aS  of the region,  

1 1
ˆ

2 2s a aV V S
d d dS

t

               E J r D E B H r S n   (6) 

where the Poynting vector  S E H  is conventionally regarded as the power flux density, like in the antenna society.   
From Maxwell equation, we can derive equations, 

 

 

1 1 1 1

2 2 2 2
1 1 1 1

2 2 2 2

t

t

          
          
 

A
D E D D

D
B H A J A A H

  (7) 

Substituting (7) into (6) and reorganizing it gives 
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 1 1 1 1 1
ˆ

2 2 2 2 2s a aV V S
d d dS

t t t t
                                 

D A
E J r A J A D r E H A H D n   (8) 

The integrand of the first term in the RHS can be interpreted as the total energy stored in aV , which consists of the 

reactive energy and the radiative energy. Since the first two terms are defined as the reactive energies, it is natural to 
interpret the other two terms as the radiative energies temporally existing in the volume. We define explicitly the radiative 
energy in aV  as  

 1 1
,

2 2a a
rad radV V

W d w t d
t t

           
D A

A D r r r    (9) 

in which the radiative energy density is defined by,  

  1 1
,

2 2radw t
t t

 
 

 
D A

r A D    (10) 

Integrating the LHS of (6) gives the total work done by the source  

     , ,
s

t

exc V
W t d d  


      E r J r r   (11) 

The integrand of the second term in the RHS of (8) is a flux density.  We introduce a new vector for it, 

1 1

2 2rad t
         

S E H H A D   (12) 

(8) can then be rewritten in a compact form,   

ˆ
a

exc react rad
radS

W W W
dS

t t t

  
   

    S n   (13) 

In the LHS of (13), the increasing rate of the reactive energy is subtracted from the total work rate by the source. By 
equating to it, the right-hand side of (13) can naturally be interpreted as the radiative energies. The first term of the RHS 
represents the increasing rate of the radiative energy in the volume, the second term represents the radiative flux. Hence, it is 
reasonable to interpret the vector radS  as the radiative power flux density. Integrating it on the observation surface aS   

yields the total power crossing the surface at an instant of time t, 

  ˆ
a

Srad radS
P t dS  S n   (14) 

Define a new vector,   

1 1

2 2react t
       

S H A D  (15) 

 The Poynting vector can then be divided into two parts, 

rad react S S S   (16) 

reactS  is dependent on the fields and the potentials. It is not a real power transportation by the propagating waves, but rather 

reflects the influence of the fluctuation of the reactive energies. For time varying sources, their reactive energies may be 
dragged back and forth by the motion of sources, causing a pseudo power flux crossing the observation surface aS  ,  as 

was observed in [42]. Judging from the expressions for the retarded potentials, it can be conformed that the fluctuation of the 
reactive energies also propagates at the light velocity in free space.  

It is straightforward to prove that[44]  

   ˆ ˆlim lim
a a

radS Sr rav av

dS dS
 

   S n S n     (17) 

At remote infinity, the Poynting vector approximately equals the radiative power flux density. 

III. RADIATION OF PULSE SOURCES 

Assume that there is a symmetrical source in a sphere with radius sr  in time period of 0 t T  .  All radiative fields 

are spherical waves due to the symmetry. For 0 t T  , on the one hand, the source will induce self fields and emit radiative 
fields. On the other hand, they will interact with the surrounding fields generated by them at retarded time t  , similar to 
charged particles. The interaction with fields may possibly turn the radiator into an absorber at some instant of time. The 
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radiative fields exist in the sphere radV , which expands with the propagation of the radiative waves. At t T  , the radius of 

radV  is  sr cT .  

For  t T , the reactive energy disappears simultaneously with the source. The region contains the radiative fields 
becomes a spherical shell with thickness of sr . Denote the boundary of the region occupied by the radiative fields as radS . 

It has an outer and an inner boundary when t T , as shown in Fig.1.  
If we put the observation surface aS  in the region outside of radS , then the surface integral in (13) is zero. Integrating 

both sides of  (13) from -∞ to t yields  

     rad exc reactW t W t W t    (18) 

Since the pulse source exist only during 0 t T  ,  the reactive energy is zero for 0t    and t T .  The total 
radiative energy is a constant, equal to the total work done by the source, 

   
0

,    for 
a

T

rad excV
W t d d W T t T      E J r   (19) 

 

(a)                                          (b) 

Fig.1 Region occupied by radiative fields. (a) 0 t T   , (b) t T . 

Now consider a fixed observation surface aS  containing the source region sV .  The total radiative energy crossing the 

observation surface can be calculated by integrating the radiative power crossing it, 

 max

min

ˆ
a a

t

rad rad rad exct S V
W dSdt w d W T     S n r   (20) 

where min mint R c  , max maxt R c  , minR  and maxR  are respectively the smallest and largest distance between the 

source and the observation surface. As indicated in (20), the radiative energy can be directly calculated in two ways. One is 
to determine the region radV  occupied by the radiative fields at time t, and perform a volume integration with (10). The other 

is to choose a fixed observation surface, and accumulate the radiative power crossing it. The first method may be not efficient 
as it is quite difficult to accurately determine the radiative region of ordinary radiators. For the second method, some analytical 
expressions can be used to accurately and efficiently calculate the radiative fields on observation surfaces with regular shapes, 
such as spherical or cuboidal surfaces[43]. 

For point sources like Hertzian dipoles, their stored reactive energies are finite only after excluding a small sphere aV  

containing them. In this case, the reactive energies cannot be directly calculated using (5). However, they can be calculated 
using the fields and potentials according to the following relationships derived from Maxwell equations [44],  

1 1 1 1
ˆ

2 2 2 2s aV V V S
d d dS

t
 

 

                
A

r D E D r D n    (21) 

1 1 1 1
ˆ

2 2 2 2s aV V V S
d d dS

t 

                   
D

A J r B H A r H A n   (22) 

For electromagnetic pulse sources, the surface integrals are zeros since we can always put the observation surface outside 
the region containing the fields. For harmonic waves, it can be proved that the surface integral at S  in (21) approaches 

zero, while that in (22) may be a nonzero but finite value[14]. 
For pulse radiators, the surface integral in (13) could be eliminated by choosing the observation surface outside the 

region radV . Therefore, the radiative power of the source can be evaluated in the source region, 

  1 1

2 2s

rad
rad V

W
P t d

t t


                 
 E J A J r   (23) 

 radP t  describes the radiative power emitted by the source at the real time t. For pulse sources, it has nonzero values only 

in the time period  0 t T  . The variable  SradP t  defined in (14) is the power passing the observation surface aS  .  
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It has nonzero values over period  min maxt t t   , which varies with the choice of the observation surface. Apparently, 

they are not expected to be equal. Only their integrals over the corresponding time duration are equal.  

IV. RADIATION OF HARMONIC SOURCES 

For harmonic fields with time convention of j te  , the radiation is assumed to last from   to  , so the radiative 

energy is infinitely large. The Poynting theorem can be applied to describe the balance between the averaged powers and the 

varying rate of energies, 

1 1 1 1
ˆ2

2 4 4 2s a aV V S
d j d dS                 E J r B H E D r E H n   (24) 

From which the average radiative power at infinity can be evaluated with source distributions, 

  1 1
ˆRe Re

2 2 s
rad av S V

P dS d


            
    E H n E J r   (25) 

However, the evaluation of the reactive energies in conventional formulations requires to subtract the radiative energy 
from the total energy. Since both the energies are unbounded values, all those formulations based on energy subtraction 
are not quite satisfactory so far.   

With the theory proposed here, the power balance can be evaluated within any domain enclosed by an observation surface 

aS  enclosing the source region sV  ,  

*1 1 1 1 1
ˆ2

4 4 2 4 4s s aV V S
d j d j dS                              

  E J r A J r E H H A D n   (26) 

The averaged radiative power crossing the observation surface can be obtained using the radiative power flux vector radS   

or the source distributions, 

       1 1 1
ˆRe Re

2 4 2a s
rad av S V

P j dS d                          
 E H H A D n E r J r r   (27) 

Note that the observation surface is not required to approach infinity for evaluating the radiative power with the radiative 
power flux density vector. It can be checked that the result is in consistent with that obtained using the Poynting vector, as 
has been shown in [14] that 

1 1
ˆRe 0

4 4S
j dS 



        
  

 H A D n   (28) 

The average reactive energy can be calculated with the source-potential products,  

  * *1 1
Re

4 4s
react av V

W d       
  

 A J r   (29) 

Alternatively, making use of (21) and (22), the averaged reactive energy can be calculated using the fields and the vector 
potentials,  

  * * *1 1 1
Re

4 4 2react av V
W j



         
  

 E D B H A D   (30) 

In this section, the same symbols are used for the corresponding phasors for the sake of convenience.  

V. HERTZIAN DIPOLE 

A Hertzian dipole locating at the origin is analyzed to show the energy/power balance relationship. The moment of the 
dipole is assumed to be cosql t , the scalar potential and the vector potential of which can be readily derived from a 

Hertzian potential     4 cosql r t kr     [44][45],  

  0 ˆˆsin cos sin
4

ql
t kr

r


  


   A r θ   (31) 

   2
0

1
cos cos sin

4

ql k
t kr t kr

rr
   


      

  (32) 

from which the fields are found to be 

       
2

2 2 2 2
0

1 1 1 1ˆˆ2cos cos sin sin 1 cos sin
4

k ql
t kr t kr t kr t kr

r kr krk r k r
     


                      

E r θ   (33) 
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   1
ˆsin sin cos

4

kql
t kr t kr

r kr

   


       
H φ   (34) 

 The total reactive energies at the instant of time t stored in the whole space outside a small sphere with radius a can 
be derived from the fields and potentials using (21) and (22). The integrations in (22) are performed to get 

     0 0

1 1 1 1
cos 2 sin 2 lim sin 2

2 2aV V r
d t ka t ka t kr

t ka ka
    

  

                  
D

B H A r   (35) 

 0

1
ˆ lim sin 2

2S r
dS t kr 

 

     
  H A n   (36) 

where    2

0 0 24ql k    . Combing (35) and (36) gives the stored reactive magnetic energy 

     0

1 1
cos 2 sin 2mW t t ka t ka

ka ka
         

  (37) 

The reactive electric energy can be calculated in a similar way,  

     0 3 3 3 3 2 2

1 1 1 1 2
cos 2 sin 2eW t t ka t ka

ka kak a k a k a
              

  (38) 

Note that the surface integral in (21) is zero. 
The radiative power evaluated at the surface of the small sphere is  

  0ˆ 2
a

rad radS
P t dS    S n   (39) 

It is a constant value independent of the radius of the sphere. The total power crossing any concentric spherical surface is 
the same. 

For comparison, the surface integral of the Poynting vector on the spherical surface aS  is  

     0 3 3 2 2

2 1 2
ˆ 2 1 sin 2 1 cos 2

a
pv S

P t dS t ka t ka
ka k a k a

                      
 S n   (40) 

which varies with the radius of the surface. As expected, the time average of  pvP t  equals that of  radP t . The time 

averaged energies are listed below,  

 

 

0

0 3 3

1

1 1

m av

e av

W
ka

W
kak a





      


      

 (41) 

The Q factor of the dipole is then calculated to be 

 
  3 3

2 1 1e av

rad av

W
Q

P kak a


     (42) 

which is exactly in agreement with the result shown in [46].  

The well-established equivalent circuit model proposed by Chu [47] for Hertzian dipole is shown in Fig.2. Assuming 
that the current in the radiation resistor at the interface of r a  is  0 cosRi I t ka  , the energies stored in the 

capacitor and the inductor can be derived to be 

   
 

 
 

 

2
0

3 3 2

2
20

1 1 1 1 1
cos 2 sin 2

2

1
sin

2

C

L

I
W t ka t ka

ka kaka ka ka

I
W t ka

ka

 





   
         

     
     

 

  (43) 

 
Fig.2 Equivalent circuit model for Hertzian dipole radiation. 

If we choose 2
0 02I  , it can be checked that    C eW t W t , and    L mW t W t .  This exact agreement gives a 

good support to the proposed theory. 

C a c

L a c

1R 
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VI. SHORT PULSE RADIATORS 

Two simple but typical radiators are analyzed to further support the theory. The first one is a short pulse source 
on a square patch. The second example is a solenoidal loop current. Their initial and final reactive energies are 
set to be zero.  

In the examples, two spherical surfaces are chosen as observation surface, with their centers coinciding with that of the 
source. They are labeled as sphere-1 and sphere-2, with radius of 0.2m and 10m, respectively. The radiative energies 

 radW t  passing through sphere-1, 2 are calculated with the second method.  pvW t   is the integration of the Poynting 

vector power passing through the observation surfaces,  

     
0 0 1,2

ˆ,
t t

pv Spv sphere
W t P d d d   


      S r n r   (44) 

A. Short pulse square patch radiator  

The surface source resides on a square plate consisting of two connected triangles Tr    sharing a common edge with 
length of 0.2m, as shown in Fig 3(a).  

   

(a)                                        (b) 
Fig. 3 Two sources. (a) Square patch source. (b) Solenoidal loop current. 

Assume that the surface current density can be expressed with the product of a spatial function and a temporal function, 
     ,s t I tJ r f r , with 

 
,

,

Tr

Tr

 

 

   
 

r r r
f r

r r r
  (45) 

The surface charge density has to observe the charge conservation law, namely, 0s s s t     J  , hence, 

       , ,
t t

s s s st d I d    
 

       r J r f r   (46) 

Expressing the surface charge density as      ,s t q t  r r ,   

   

   
s

t
q t I d 



   


  

r f r
  (47) 

Consider a smooth pulse source that exists in the duration 0 t T   . To ensure a null initial and final state reactive energy, 
we choose,  

   2
1 cos ,0

0,else

t t T
q t

     


  (48) 

and 92 10   , 1nsT  . The excitation energy  excW t , the radiative energy  radW t  and the reactive energy 

 reactW t  associated with the source are shown in Fig. 4(a). The excitation energy is completely transformed to the radiative 

energy at t T  since the initial and final reactive energy are zero.  The energies passing through sphere-1 are shown in 
Fig. 4(b).  The smallest and the largest distance between the source and sphere-1 are respectively 0.1m and 0.3m. 
Therefore, the radiative fields start to cross sphere-1 at about 0.33ns and end passing at about 2ns. The total radiative energy 
passed spherer-1 till t=2ns accurately equals the total excitation energy.  Although in this case  pvW t at t=2ns is also of 

the same level, it does not coincide with  radW t at other instant of time. The radiative fields pass sphere-2 in a similar 

manner as shown in Fig. 4(c). Due to the triangular mesh errors in the calculation, the time window for the radiative fields 
to pass sphere-2 is about 32.5ns<t<34.5ns, slightly different from that of an ideal spherical surface.  
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The excitation power, radiative power and the time varying rate of the reactive energy are shown in Fig. 5(a). It can be 
seen that in period 10 t t   , the excitation source contributes to the radiative power and the increment of the reactive 

energy; when 1 2t t t  , the reactive energy begins to decrease. The radiative power is caused by the excitation and the 

decreasing of the reactive energy; while in period 2t t T  , the reactive energy gradually decreases to zero. A part of the 

reactive energy is transformed to the radiative power, while the left part is absorbed by the sources, causing a negative 
excitation power.  

As pointed out previously, the sources may couple with the surrounding fields and may have two consequences: change 
the reactive energy and/or excite additional radiative fields. In classical charged particle theory, it is known that the 
decreasing of the Schott energy, which is responsible for self energy, may cause radiation. An intuitive example is the 
system consisting of two massless particles with equal but opposite charges. In the first stage, the two particles are dragged 
away acceleratively from each other by an external force. The reactive energy of the system will increase and radiative 
fields will appear. In the second stage, remove the external force and let the two particles return to the initial state 
completely by the electromagnetic force between them. The reactive energy will decrease to the initial level, and in the 
meantime the system also will excite radiative fields due to the acceleration by their mutual force, accompanying with the 
decreasing of the self energy. 

The Poynting vector consists of the radiative power flux density and the fluctuation power density. Their surface 
integrations of the three vectors on sphere-2 are shown in Fig. 5(b), where the fluctuation power is,  

    ˆ,
a

Sreact reactS
P t t d   S r n r . 

The radiative power  SradP t varies smoothly and remains positive. The fluctuation power  SreactP t oscillates and can 

be negative, which clearly reflects the vibration of the reactive energy. Owing to its influence, the Poynting vector power 

 SpvP t  also shows ripples in its curve. 

 

(a) 

 

(b) 
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(c) 
Fig.4 The energies of the square patch sources. (a) The total excitation energy, reactive energy and the radiative energy evaluated in the source region. 

(b) The radiative energy crossing sphere-1. (c) Radiative energy crossing sphere-2. 

 

(a) 

 

(b) 
Fig.5 The powers of the square patch sources. (a) The excitation power, radiative power and the varying rate of the reactive energy evaluated in the 

source region.  (b) The radiative power, fluctuation power and the Poynting power crossing sphere-2. 

B. Loop radiator with solenoidal current 

The solenoidal surface current on a ring is also described by      ,s t I tJ r f r , as shown in Fig.3(b). Here, 

  ˆ1.0f r   (49) 

The inner and outer radius of the ring is 0.08m and 0.1m, respectively. The temporal function is a modulated Gaussian 
pulse, 

 
2

sin ,      0

0,                  else

e t t T
I t

    


  (50) 
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with 102 10   ,  2 5 0.5t T T   , 1nsT  .  

The excitation energy, radiative energy and the energy evaluated with Poynting vector are shown in Fig. 6(a). The 
reactive energy includes the contribution from the current alone. It oscillates with the source and admits negative values 
periodically. In the proposed theory, it is acceptable because the reactive energy is dependent on the potentials, which are 
values relative to their reference zero points. Note that the Schott energy in the charged particle theory may also possibly 
be negative [19][48]. 

In this example, 0s s st     J . The charge density corresponds to the loop current is a static one and has no 

influence on the radiation fields. On the other hand, we have s sJ v .  The charge density cannot be uniquely 

determined since the velocity is unknown. However, the static charge s  must satisfy 
max

1s s c c  J  so as that 

the velocity of the charges is less than the light velocity at every instant of time. The static electric energy associated with 

the charge density is calculated to be 101.12 10 JeW   , larger than the minimum reactive magnetic energy 

( 113.1 10 J   ). 
The energies passing through sphere-1 are shown in Fig. 6(b).  The smallest and the largest distance between the source 

and sphere-1 are again respectively 0.1m and 0.3m. The total passed radiative energy at t=2ns is exactly of the same level 
as that evaluated at the source region.   

The excitation power, radiative power and the time varying rate of the reactive energy are shown in Fig. 7(a). The 
reactive energy seems to perform like a bump, assisting the pulsed excitation to generate a smooth radiation.   

The powers crossing sphere-2 are shown in Fig.7(b). The radiative power  SradP t varies smoothly and remains positive. 

The Poynting power contains ripples coming from the fluctuation power  SreactP t . 

 

(a) 

 

(b) 
Fig.6 The energies of the loop current. (a) The total excitation energy, reactive energy and the radiative energy evaluated in the source region. (b) The 

radiative energy crossing sphere-1. 
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(a) 

 

(b) 
Fig.7 The powers of the loop current. (a) The excitation power, radiative power and the varying rate of the reactive energy evaluated in the source 

region.  (b) The radiative power, fluctuation power and the Poynting power crossing sphere-2. 

VII. CONCLUSIONS 

By reorganizing the power balance equation involved in electromagnetic radiation problems, a new vector for radiative 
power flux density is introduced. The proposed theory clearly reveals that the Poynting vector includes not only the radiative 
power flux density but also the influence of the fluctuation of the reactive energy. The theory is directly based on the 
macroscopic Maxwell equation and is non relativistic at its present formulation. Effort is making to get its correct relativistic 
counterpart. 

It is true that the ideas discussed in this paper is slightly different from the traditional ones. The first is concerning with 
the Poynting vector. The proposed theory does not question the correctness of the Poynting Theorem, but argues that the 
interpretation of the Poynting vector and the way to apply the Poynting Theorem may be not satisfactory. The proposed 
theory can at least provide a better insight to the radiation problem. The second issue is about the reactive energy. The 
proposed definition can indeed provide a better interpretation to the radiation problem. At some instant of time, the 
excitation power evaluated in the source region may become negative and the radiator turns to an absorber. This is 
acceptable as we can address the radiator as a one-port device, and the reflected power may be larger than the input power 
at some times.  

Although the issues discussed here is in free space, there seems to have no obvious barrier to prevent extending it to 
media environment in our future work. 
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 
Abstract—A theory for analyzing the radiative and reactive 

energies for pulse radiators in free space is presented. With the 
proposed definition of reactive energies and radiative energies, 
power balance at arbitrarily chosen observation surfaces are 
established, which intuitively shows that the Poynting vector 
contains not only the power flux density associated with the 
radiative energies, but also the influence of the fluctuation of the 
reactive energies dragging by the sources. A new vector is defined 
for the radiative power flux density. The radiative energies passing 
through observation surfaces enclosing the radiator are accurately 
calculated. Numerical results verifies that the proposed radiative 
flux density is more proper for expressing the radiative power flux 
density than the Poynting vector.  
 

Index Terms—Reactive energy, electric energy density, magnetic 
energy density, radiative energy, Poynting vector 

I. INTRODUCTION 

HE ELECTROMAGNETIC radiation problems have been 
intensively investigated for more than a hundred years. It is 

a little bit strange that there is still no widely accepted 
formulation for evaluating the stored reactive energies and Q 
factors of radiators[1]-[14]. The main difficulty may come from 
the fact that there is no clear definition in macroscopic 
electromagnetic theory for the reactive electromagnetic energy. 
It is commonly known in classical charged particle theory that 
the fields associated with charged particles can be divided into 
self fields and radiative fields[15][16]. The self fields include 
the Coulomb fields and the velocity fields, carrying self 
energies, also referred to as Schott energy in some literatures 
[17]-[18][19]. The radiative fields are generated by acceleration 
of charged particles, emitting radiative energies to the 
surrounding space. The self fields/energies are considered to be 
attached to the charged particles, or simply speaking, they show 
up with the charged particles and disappear with the charged 
particles. On the contrary, after being radiated by the charged 
particles, the radiative fields/energies will depart from the 
sources and propagate to the remote infinity. They exist even 
after their generating sources disappeared and can couple with 
other sources they encountered in their journey. Although it is 
natural to consider that the reactive energies in macroscopic 
electromagnetics is similar to the self energies or the Schott 
energy, no successful attempt has been found or well accepted 
to handle the reactive energies in this manner. No expression 
for reactive energies is established in macroscopic 
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electromagnetics that can be derived rigorously from the self 
fields of charged particles. 

Poynting vector is widely considered as the electromagnetic 
power flux density[20]. Poynting Theorem describes the 
relationship between the Poynting vector, the varying rate of the 
electromagnetic energy densities, and the work rate done by the 
exciting source. It provides an intuitive description of the 
propagation of electromagnetic energy. However, interpreting 
the Poynting vector as the electromagnetic power flux density 
has always been controversial [21]-[40], and some researchers 
have pointed out that Poynting Theorem may have not been 
used in the correct way in some situations[41][42]. However, 
most of these opinions have been ignored because of the great 
success of the wide application of Poynting Theorem and 
Poynting vector.    

It is known that the Poynting Theorem is not convenient to 
use for evaluating the reactive energies stored by radiators in an 
open space [5][13], which has been investigated for decades. 
For harmonic fields, the total electromagnetic energy obtained 

by integrating the conventional energy densities of  0.5 D E

and  0.5 B H over the whole space is infinite because the 

conventionally defined electric and magnetic energy densities 
generally account for the total fields consisting of the radiative 
fields and the reactive fields. The radiative energy occupies the 
whole space and is infinitely large [14]. Some researchers 
suggested that those fields associated with the propagating 
waves should not contribute to the stored reactive energies, and 
the results can become finite by subtracting from the energy 
density an additional term associated with the radiation power. 
However, it is not easy to give a general definition for the term 
because the propagation patterns are quite different for different 
radiators [1][5].  

Practically, if we check the classical charged particle theory, 
the Larmor’s formula for the radiative power of an accelerated 
charged particle can be derived from the corresponding 
Poynting vector with contribution from the radiative fields 
only[15]-[17][42]. 

Based on these observations, the macroscopic electro- 
magnetic radiation issue is revisited and a new energy/power 
balance equation at a certain instant time is proposed, which 
gives an intuitive and reasonable suggestion that Poynting 
vector is not the radiative power flux density. 

It is not the aim of this paper to provide a rigorous proof to 
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support that the reactive energies in the macroscopic 
electromagnetics are exactly the self energies or the Schott 
energy in the classical charged particles. Instead, a definition 
for reactive electromagnetic energies is proposed based on the 
hypothesis that the reactive energies in the macroscopic 
electromagnetics bear the same characteristics as the self 
energies: (1) they are attached to the sources, appear/disappear 
with the sources simultaneously; (2) the definition is in 
consistent with the static energies associated with Coulomb 
fields; (3) the reactive energies do not propagate like radiative 
energies, but their fluctuation may propagate at the light 
velocity in free space just like the radiative fields. A theory is 
proposed based on these considerations, in which the radiative 
energies and the reactive energies can be separated. As a 
consequence, the Poynting vector is divided into two vectors. 
One vector accounts for the radiative power flux density and the 
other vector accounts for the fluctuation of the reactive energies. 
It has to mention that the theory is nonrelativistic and based on 
macroscopic Maxwell theory. The proposed theory enjoys 
success in interpreting the radiation process of a Hertzian dipole, 
providing results exactly in agreement with those obtained 
using the well-established Chu’s circuit model for the dipole. 
The theory is also supported by numerical examples. 

II.  FORMULATIONS FOR REACTIVE AND RADIATIVE ENERGIES 

In the proposed theory, the reactive electric and magnetic 
energy of a radiator are defined with 

        1
, , ,

2s sV V
W t t t d w t d        r r r r r   (1) 

        1
, , ,

2s s
J JV V

W t t t d w t d       A r J r r r r   (2) 

where the scalar potential   and vector potential A  evaluated 
at the observation point r  and the instant of time t  are defined 
in their usual way, 

    
0

,
,

4sV

t
t d

R





 

 
r

r r   (3) 

    
0

,
,

4sV

t
t d

R



 

 
J r

A r r   (4) 

In the above equations,  , t  r and  , t J r are the charge 

density and current density at source point sVr  and retarded 

time t t R c   , in which c is the light velocity and 

R  r r  is the distance. 0  and 0  are respectively the 

permittivity and permeability in free space. The potentials have 
to satisfy the Lorentz Gauge, and their reference zero points are 
at the infinity. 

The reactive electromagnetic energy is the sum of the 
reactive electric energy and the reactive magnetic energy, 

   1 1

2 2s
react V

W t d     
  A J r   (5) 

It can be readily checked that the reactive energies defined in 
(3), (4) and (5) are attached to their sources, i.e., they show up 
together with their sources and disappear with their sources. For 
static electromagnetic fields, they are exactly the stored electro- 

magnetic energies associated with the source. Notice that no 
other definition for energies in the macroscopic electro- 
magnetic theory bears this property.  

For time varying fields, the reactive electric energy and the 
reactive magnetic energy may become negative because of the 
retardation. For example, the direction of the vector potential 
may be negative to that of the current, which is sometimes 
encountered in loop current sources. However, the total reactive 
energies for bounded sources have to be positive if we choose 
the infinity as the zero reference points for the potentials. 
Therefore, in this theory the reactive electromagnetic energy is 
defined combining the two reactive energies together and 
treated as a whole.  

The Poynting Theorem correctly describes the relationship 
between the work rate done by the source, the total 
electromagnetic energy in region a sV V  containing the 

source, and the total electromagnetic power flux crossing the 
boundary aS  of the region,  

 
1 1

ˆ
2 2s a aV V S

d d dS
t

               E J r D E B H r S n   (6) 

where the Poynting vector  S E H  is conventionally 
regarded as the power flux density, like in the antenna society.   

From Maxwell equation, we can derive equations, 

 
 

 

1 1 1 1

2 2 2 2
1 1 1 1

2 2 2 2

t

t

          
          
 

A
D E D D

D
B H A J A A H

  (7) 

Substituting (7) into (6) and reorganizing it gives 

 

 

1 1 1 1

2 2 2 2

1
ˆ

2

s

a

a

V

V

S

d

d
t t t

dS
t





 

              
        







E J r

D A
A J A D r

E H A H D n

  (8) 

The integrand of the first term in the RHS can be interpreted 
as the total energy stored in aV , which consists of the reactive 

energy and the radiative energy. Since the first two terms are 
defined as the reactive energies, it is natural to interpret the 
other two terms as the radiative energies temporally existing in 
the volume. We define explicitly the radiative energy in aV  as  

  1 1
,

2 2a a
rad radV V

W d w t d
t t

           
D A

A D r r r    (9) 

in which the radiative energy density is defined by,  

   1 1
,

2 2radw t
t t

 
 

 
D A

r A D    (10) 

Integrating the LHS of (6) gives the total work done by the 
source  

      , ,
s

t

exc V
W t d d  


      E r J r r   (11) 

The integrand of the second term in the RHS of (8) is a flux 
density.  We introduce a new vector for it, 

 
1 1

2 2rad t
         

S E H H A D   (12) 
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(8) can then be rewritten in a compact form,   

 ˆ
a

exc react rad
radS

W W W
dS

t t t

  
   

    S n   (13) 

In the LHS of (13), the increasing rate of the reactive energy is 
subtracted from the total work rate by the source. By equating to 
it, the right-hand side of (13) can naturally be interpreted as the 
radiative energies. The first term of the RHS represents the 
increasing rate of the radiative energy in the volume, the second 
term represents the radiative flux. Hence, it is reasonable to 
interpret the vector radS  as the radiative power flux density. 

Integrating it on the observation surface aS   yields the total 

power crossing the surface at an instant of time t, 

   ˆ
a

Srad radS
P t dS  S n   (14) 

Define a new vector,   

 
1 1

2 2react t
       

S H A D   (15) 

 The Poynting vector can then be divided into two parts, 
 rad react S S S   (16) 

reactS  is dependent on the fields and the potentials. It is not a real 

power transportation by the propagating waves, but rather 
reflects the influence of the fluctuation of the reactive energies. 
For time varying sources, their reactive energies may be dragged 
back and forth by the motion of sources, causing a pseudo power 
flux crossing the observation surface aS  ,  as was observed in 

[42]. Judging from the expressions for the retarded potentials, it 
can be conformed that the fluctuation of the reactive energies also 
propagates at the light velocity in free space.  

It is straightforward to prove that[44]  
 lim 0, lim limreact rad

r r r  
 S S S   (17) 

At remote infinity, the Poynting vector approximately 
equals the radiative power flux density. 

III. RADIATION OF PULSE SOURCES 

Assume that there is a symmetrical source in a sphere with 
radius sr  in time period of 0 t T  .  All radiative fields are 

spherical waves due to the symmetry. For 0 t T  , on the one 
hand, the source will induce self fields and emit radiative fields. 
On the other hand, they will interact with the surrounding fields 
generated by them at retarded time t  , similar to charged 
particles. The interaction with fields may possibly turn the 
radiator into an absorber at some instant of time. The radiative 
fields exist in the sphere radV , which expands with the 

propagation of the radiative waves. At t T  , the radius of radV  

is  sr cT .  

For  t T , the reactive energy disappears simultaneously 
with the source. The region contains the radiative fields becomes 
a spherical shell with thickness of sr . Denote the boundary of the 

region occupied by the radiative fields as radS . It has an outer and 

an inner boundary when t T , as shown in Fig.1.  
If we put the observation surface aS  in the region outside of 

radS , then the surface integral in (13) is zero. Integrating both 

sides of  (13) from -∞ to t yields  

      rad exc reactW t W t W t    (18) 

Since the pulse source exist only during 0 t T  ,  the 
reactive energy is zero for 0t    and t T .  The total radiative 
energy is a constant, equal to the total work done by the source, 

    
0

,    for 
a

T

rad excV
W t d d W T t T      E J r   (19) 

 
(a)                                          (b) 

Fig.1 Region occupied by radiative fields. (a) 0 t T   , (b) t T . 

Now consider a fixed observation surface aS  containing the 

source region sV .  The total radiative energy crossing the 

observation surface can be calculated by integrating the radiative 
power crossing it, 

  max

min

ˆ
a a

t

rad rad rad exct S V
W dSdt w d W T     S n r   (20) 

where min mint R c  , max maxt R c  , minR  and maxR  are 

respectively the smallest and largest distance between the source 
and the observation surface. As indicated in (20), the radiative 
energy can be directly calculated in two ways. One is to 
determine the region radV  occupied by the radiative fields at time 

t, and perform a volume integration with (10). The other is to 
choose a fixed observation surface, and accumulate the radiative 
power crossing it. The first method may be not efficient as it is 
quite difficult to accurately determine the radiative region of 
ordinary radiators. For the second method, some analytical 
expressions can be used to accurately and efficiently calculate the 
radiative fields on observation surfaces with regular shapes, such 
as spherical or cuboidal surfaces[43]. 

For point sources like Hertzian dipoles, their stored reactive 
energies are finite only after excluding a small sphere aV  

containing them. In this case, the reactive energies cannot be 
directly calculated using (5). However, they can be calculated 
using the fields and potentials according to the following 
relationships derived from Maxwell equations [44],  

 

1 1 1

2 2 2

1
ˆ

2

s aV V V

S

d d
t

dS











      
   
 

 



A
r D E D r

D n




  (21) 

 

1 1 1

2 2 2

1
ˆ

2

s aV V V

S

d d
t

dS







        
    
 

 



D
A J r B H A r

H A n
  (22) 

For electromagnetic pulse sources, the surface integrals are 
zeros since we can always put the observation surface outside 
the region containing the fields. For harmonic waves, it can be 
proved that the surface integral at S  in (21) approaches zero, 

while that in (22) may be a nonzero but finite value[14]. 
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For pulse radiators, the surface integral in (13) could be 
eliminated by choosing the observation surface outside the 
region radV . Therefore, the radiative power of the source can be 

evaluated in the source region, 

   1 1

2 2s

rad
rad V

W
P t d

t t


                 
 E J A J r  (23) 

 radP t  describes the radiative power emitted by the source at 

the real time t. For pulse sources, it has nonzero values only in 
the time period  0 t T  . The variable  SradP t  defined in 

(14) is the power passing the observation surface aS  .  It has 

nonzero values over period  min maxt t t   , which varies with 

the choice of the observation surface. Apparently, they are not 
expected to be equal. Only their integrals over the 
corresponding time duration are equal.  

IV. RADIATION OF HARMONIC SOURCES 

For harmonic fields with time convention of j te  , the radiation 
is assumed to last from   to  , so the radiative energy is 
infinitely large. The Poynting theorem can be applied to describe 
the balance between the averaged powers and the varying rate of 
energies, 

1 1 1
2

2 4 4

1
ˆ

2

s a

a

V V

S

d j d

dS

  



         

  

 



E J r B H E D r

E H n
  (24) 

From which the average radiative power at infinity can be 
evaluated with source distributions, 

  1 1
ˆRe Re

2 2 s
rad av S V

P dS d


            
    E H n E J r   (25) 

However, the evaluation of the reactive energies in 
conventional formulations requires to subtract the radiative 
energy from the total energy. Since both the energies are 
unbounded values, all those formulations based on energy 
subtraction are not quite satisfactory so far.   

With the theory proposed here, the power balance can be 
evaluated within any domain enclosed by an observation surface 

aS  enclosing the source region sV  ,  

 

*1 1
2

4 4

1 1 1
ˆ

2 4 4

s s

a

V V

S

d j d

j dS

 

 

 

  

       
 

           

 



E J r A J r

E H H A D n
  (26) 

The averaged radiative power crossing the observation surface 
can be obtained using the radiative power flux vector radS   or the 

source distributions, 

   

   

1 1
ˆRe

2 4

1
Re

2

a

s

rad av S

V

P j dS

d

   



           
      
 





E H H A D n

E r J r r


 (27) 

Note that the observation surface is not required to approach 
infinity for evaluating the radiative power with the radiative 
power flux density vector. It can be checked that the result is in 

consistent with that obtained using the Poynting vector, as has 
been shown in [14] that 

 
1 1

ˆRe 0
4 4S

j dS 


        
  

 H A D n   (28) 

The average reactive energy can be calculated with the source-
potential products,  

   * *1 1
Re

4 4s
react av V

W d       
  

 A J r   (29) 

Alternatively, making use of (21) and (22), the averaged 
reactive energy can be calculated using the fields and the vector 
potentials,  

   * * *1 1 1
Re

4 4 2react av V
W j



         
  

 E D B H A D  (30) 

In this section, the same symbols are used for the 
corresponding phasors for the sake of convenience.  

V. HERTZIAN DIPOLE 

A Hertzian dipole locating at the origin is analyzed to show 
the energy/power balance relationship. The moment of the 
dipole is assumed to be cosql t , the scalar potential and the 

vector potential of which can be readily derived from a Hertzian 
potential     4 cosql r t kr     [44][45],  

    0 ˆˆsin cos sin
4

ql
t kr

r


  


   A r θ   (31) 

    2
0

1
cos cos sin

4

ql k
t kr t kr

rr
   


      

  (32) 

from which the fields are found to be 

    

   

2

0

2 2

2 2

4

1 1
ˆ2cos cos sin

1 1ˆ sin 1 cos sin

k ql

r

t kr t kr
krk r

t kr t kr
krk r



  

  

 

        
 

             

E

r

θ

 (33) 

    1
ˆsin sin cos

4

kql
t kr t kr

r kr

   


       
H φ   (34) 

 The total reactive energies at the instant of time t stored in 
the whole space outside a small sphere with radius a can be 
derived from the fields and potentials using (21) and (22). The 
integrations in (22) are performed to get 

    

 

0

0

1 1

2 2

1 1
cos 2 sin 2

limsin 2

aV V

r

d
t

t ka t ka
ka ka

t kr

  

 

 



       
      

 


D

B H A r

  (35) 

  0

1
ˆ lim sin 2

2S r
dS t kr 

 

     
  H A n   (36) 

where    2

0 0 24ql k    . Combing (35) and (36) gives 

the stored reactive magnetic energy 
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      0

1 1
cos 2 sin 2mW t t ka t ka

ka ka
         

  (37) 

The reactive electric energy can be calculated in a similar 
way,  

  
 

 

3 3 3 3

0

2 2

1 1 1 1
cos 2

2
sin 2

e

t ka
ka kak a k a

W t

t ka
k a






         
 
   

 (38) 

Note that the surface integral in (21) is zero. 
The radiative power evaluated at the surface of the small 

sphere is  

   0
ˆ 2

a
rad radS

P t dS    S n   (39) 

It is a constant value independent of the radius of the sphere. 
The total power crossing any concentric spherical surface is the 
same. 

For comparison, the surface integral of the Poynting vector 
on the spherical surface aS  is  

 

 

 

 

3 3

0

2 2

ˆ

2 1
1 sin 2

2
2

1 cos 2

a
pv S

P t dS

t ka
ka k a

t ka
k a






 

        
      

  

 S n

  (40) 

which varies with the radius of the surface. As expected, the 
time average of  pvP t  equals that of  radP t . The time 

averaged energies are listed below,  

 

 

 

0

0 3 3

1

1 1

m av

e av

W
ka

W
kak a





      


      

  (41) 

The Q factor of the dipole is then calculated to be 

 
 

  3 3

2 1 1e av

rad av

W
Q

P kak a


     (42) 

which is exactly in agreement with the result shown in [46].  

The well-established equivalent circuit model proposed by 
Chu [47] for Hertzian dipole is shown in Fig.2. Assuming that 
the current in the radiation resistor at the interface of r a  is 

 0 cosRi I t ka  , the energies stored in the capacitor and 

the inductor can be derived to be 

 

   
 

 
 

 

3 32
0

2

2
20

1 1 1 1
cos 2

2 1
sin 2

1
sin

2

C

L

t ka
ka kaI ka ka

W

t ka
ka

I
W t ka

ka









   
      

      
       


      

 (43) 

 
Fig.2 Equivalent circuit model for Hertzian dipole radiation. 

If we choose 2
0 02I  , it can be checked that 

   C eW t W t , and    L mW t W t .  This exact agreement 

gives a good support to the proposed theory. 

VI. SHORT PULSE RADIATORS 

Two simple but typical radiators are analyzed to further 
support the theory. The first one is a short pulse source on a 
square patch. The second example is a solenoidal loop current. 
Their initial and final reactive energies are set to be zero.  

In the examples, two spherical surfaces are chosen as 
observation surface, with their centers coinciding with that of 
the source. They are labeled as sphere-1 and sphere-2, with 
radius of 0.2m and 10m, respectively. The radiative energies 

 radW t  passing through sphere-1, 2 are calculated with the 

second method.  pvW t   is the integration of the Poynting 

vector power passing through the observation surfaces,  

      
0 0 1,2

ˆ,
t t

pv Spv sphere
W t P d d d   


      S r n r   (44) 

A. Short pulse square patch radiator  

The surface source resides on a square plate consisting of two 
connected triangles Tr    sharing a common edge with length of 
0.2m, as shown in Fig 3(a).  

   
(a)                                        (b) 

Fig. 3 Two sources. (a) Square patch source. (b) Solenoidal loop current. 

Assume that the surface current density can be expressed 
with the product of a spatial function and a temporal function, 

     ,s t I tJ r f r , with 

  
,

,

Tr

Tr

 

 

   
 

r r r
f r

r r r
  (45) 

The surface charge density has to observe the charge 
conservation law, namely, 0s s s t     J  , hence, 

        , ,
t t

s s s st d I d    
 

       r J r f r   (46) 

Expressing the surface charge density as      ,s t q t  r r ,   

  

  

  

   

 

 

o 
 

x 

y 

 

C a c

L a c

1R 
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   

   
s

t
q t I d 



   


  

r f r
  (47) 

Consider a smooth pulse source that exists in the duration 
0 t T   . To ensure a null initial and final state reactive energy, 
we choose,  

    2
1 cos ,0

0,else

t t T
q t

     


  (48) 

and 92 10   , 1nsT  . The excitation energy  excW t , the 

radiative energy  radW t  and the reactive energy  reactW t  

associated with the source are shown in Fig. 4(a). The excitation 
energy is completely transformed to the radiative energy at 
t T  since the initial and final reactive energy are zero.  The 
energies passing through sphere-1 are shown in Fig. 4(b).  The 
smallest and the largest distance between the source and sphere-
1 are respectively 0.1m and 0.3m. Therefore, the radiative fields 
start to cross sphere-1 at about 0.33ns and end passing at about 
2ns. The total radiative energy passed spherer-1 till t=2ns 
accurately equals the total excitation energy.  Although in this 
case  pvW t at t=2ns is also of the same level, it does not 

coincide with  radW t at other instant of time. The radiative 

fields pass sphere-2 in a similar manner as shown in Fig. 4(c). 
Due to the triangular mesh errors in the calculation, the time 
window for the radiative fields to pass sphere-2 is about 
32.5ns<t<34.5ns, slightly different from that of an ideal 
spherical surface.  

The excitation power, radiative power and the time varying 
rate of the reactive energy are shown in Fig. 5(a). It can be seen 
that in period 10 t t   , the excitation source contributes to the 

radiative power and the increment of the reactive energy; when 

1 2t t t  , the reactive energy begins to decrease. The radiative 

power is caused by the excitation and the decreasing of the 
reactive energy; while in period 2t t T  , the reactive energy 

gradually decreases to zero. A part of the reactive energy is 
transformed to the radiative power, while the left part is 
absorbed by the sources, causing a negative excitation power.  

As pointed out previously, the sources may couple with the 
surrounding fields and may have two consequences: change the 
reactive energy and/or excite additional radiative fields. In 
classical charged particle theory, it is known that the decreasing 
of the Schott energy, which is responsible for self energy, may 
cause radiation. An intuitive example is the system consisting 
of two massless particles with equal but opposite charges. In the 
first stage, the two particles are dragged away acceleratively 
from each other by an external force. The reactive energy of the 
system will increase and radiative fields will appear. In the 
second stage, remove the external force and let the two particles 
return to the initial state completely by the electromagnetic 
force between them. The reactive energy will decrease to the 
initial level, and in the meantime the system also will excite 
radiative fields due to the acceleration by their mutual force, 
accompanying with the decreasing of the self energy. 

The Poynting vector consists of the radiative power flux 
density and the fluctuation power density. Their surface 
integrations of the three vectors on sphere-2 are shown in Fig. 
5(b), where the fluctuation power is,  

    ˆ,
a

Sreact reactS
P t t d   S r n r . 

The radiative power  SradP t varies smoothly and remains 

positive. The fluctuation power  SreactP t oscillates and can be 

negative, which clearly reflects the vibration of the reactive 
energy. Owing to its influence, the Poynting vector power 

 SpvP t  also shows ripples in its curve. 

 
(a) 

 
(b) 

 
(c) 
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Fig.4 The energies of the square patch sources. (a) The total excitation energy, 
reactive energy and the radiative energy evaluated in the source region. (b) The 
radiative energy crossing sphere-1. (c) Radiative energy crossing sphere-2. 

 
(a) 

 
(b) 

Fig.5 The powers of the square patch sources. (a) The excitation power, 
radiative power and the varying rate of the reactive energy evaluated in the 
source region.  (b) The radiative power, fluctuation power and the Poynting 
power crossing sphere-2. 

B. Loop radiator with solenoidal current 

The solenoidal surface current on a ring is also described by 
     ,s t I tJ r f r , as shown in Fig.3(b). Here, 

   ˆ1.0f r   (49) 

The inner and outer radius of the ring is 0.08m and 0.1m, 
respectively. The temporal function is a modulated Gaussian 
pulse, 

  
2

sin ,      0

0,                  else

e t t T
I t

    


  (50) 

with 102 10   ,  2 5 0.5t T T   , 1nsT  .  

The excitation energy, radiative energy and the energy 
evaluated with Poynting vector are shown in Fig. 6(a). The 
reactive energy includes the contribution from the current alone. 
It oscillates with the source and admits negative values 
periodically. In the proposed theory, it is acceptable because the 
reactive energy is dependent on the potentials, which are values 
relative to their reference zero points. Note that the Schott 
energy in the charged particle theory may also possibly be 
negative [19][48]. 

In this example, 0s s st     J . The charge density 

corresponds to the loop current is a static one and has no 
influence on the radiation fields. On the other hand, we have 

s sJ v .  The charge density cannot be uniquely determined 

since the velocity is unknown. However, the static charge s  

must satisfy 
max

1s s c c  J  so as that the velocity of the 

charges is less than the light velocity at every instant of time. 
The static electric energy associated with the charge density is 
calculated to be 101.12 10 JeW   , larger than the minimum 

reactive magnetic energy ( 113.1 10 J   ). 
The energies passing through sphere-1 are shown in Fig. 6(b).  

The smallest and the largest distance between the source and 
sphere-1 are again respectively 0.1m and 0.3m. The total passed 
radiative energy at t=2ns is exactly of the same level as that 
evaluated at the source region.   

The excitation power, radiative power and the time varying 
rate of the reactive energy are shown in Fig. 7(a). The reactive 
energy seems to perform like a bump, assisting the pulsed 
excitation to generate a smooth radiation.   

The powers crossing sphere-2 are shown in Fig.7(b). The 

radiative power  SradP t varies smoothly and remains positive. 

The Poynting power contains ripples coming from the 
fluctuation power  SreactP t . 

 
(a) 

 
(b) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

8 

Fig.6 The energies of the loop current. (a) The total excitation energy, reactive 
energy and the radiative energy evaluated in the source region. (b) The radiative 
energy crossing sphere-1. 

VII. CONCLUSIONS 

By reorganizing the power balance equation involved in 
electromagnetic radiation problems, a new vector for radiative 
power flux density is introduced. The proposed theory clearly 
reveals that the Poynting vector includes not only the radiative 
power flux density but also the influence of the fluctuation of the 
reactive energy. The theory is directly based on the macroscopic 
Maxwell equation and is non relativistic at its present 
formulation. Effort is making to get its correct relativistic 
counterpart. 

It is true that the ideas discussed in this paper is slightly 
different from the traditional ones. The first is concerning with 
the Poynting vector. The proposed theory does not question the 
correctness of the Poynting Theorem, but argues that the 
interpretation of the Poynting vector and the way to apply the 
Poynting Theorem may be not satisfactory. The proposed 
theory can at least provide a better insight to the radiation 
problem. The second issue is about the reactive energy. The 
proposed definition can indeed provide a better interpretation to 
the radiation problem. At some instant of time, the excitation 
power evaluated in the source region may become negative and 
the radiator turns to an absorber. This is acceptable as we can 
address the radiator as a one-port device, and the reflected 
power may be larger than the input power at some times.  

Although the issues discussed here is in free space, there 
seems to have no obvious barrier to prevent extending it to 
media environment in our future work. 

 

(a) 

 
(b) 

Fig.7 The powers of the loop current. (a) The excitation power, radiative power 
and the varying rate of the reactive energy evaluated in the source region.  (b) 
The radiative power, fluctuation power and the Poynting power crossing 
sphere-2. 
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