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Abstract

This article presents development of an innovative approach to identify spectrally significant wavelength bands, for a given

environment, to tune hyperspectral sensor acquisition before UAV borne surveys. As several programmable hyperspectral

sensors are now available, it is often a challenge to consider the suitable wavelengths of interest. Researchers often conduct a

thorough field survey to identify the composition of target endmembers in an area to identify suitable wavelengths before UAV

survey, which is difficult and cumbersome. Otherwise, the selection of wavelengths by trial-and-error is error-prone.

To our knowledge, this is the first time a technique for optimal hyperspectral band (or feature) selection has been proposed to pre-

tune UAV-hyperspectral sensors before the survey. A metaheuristic evolutionary workflow using Particle Swarm Optimisation

was used for this. The method is easy in the field and efficient to identify optimal bands before UAV-hyperspectral surveys.
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Abstract— Identification of optimal spectral bands often 

involves the collection of in-field spectral signatures followed by 

thorough analysis. Such rigorous field sampling exercises are 

tedious, cumbersome, and often impractical on challenging 

terrain. Which is a limiting factor for programmable UAV-

hyperspectral systems requiring a pre-selection of optimal bands 

in mapping new environments with unknow target classes. An 

innovative workflow has been designed and implemented to 

simplify the process of in-field spectral sampling and realtime 

analysis for identification of optimal spectral wavelengths. The 

band selection optimisation workflow used particle swarm 

optimisation with minimum estimated abundance covariance 

(PSO-MEAC) for identification of a set of bands most appropriate 

for UAV-hyperspectral imaging. The criterion function, MEAC 

greatly simplifies the in-field spectral data acquisition process by 

requiring a target class signatures and no extensive training 

samples per class.  The metaheuristic method was tested on an 

experimental site with diversity in vegetation species and 

communities. The identified optimal set of bands were found to 

suitably capture the spectral variation between target vegetation 

species and communities. The approach streamlines the pre-

tuning of wavelengths in programmable hyperspectral sensors in 

mapping applications. This additionally, reduces the total flight 

time in UAV-hyperspectral imaging as obtaining information for 

an optimal subset of wavelengths is more efficient, requires less 

data storage and computation resource in post-processing the 

captured data.  

 
Index Terms—Evolutionary computation, Heuristic algorithms, 

Unmanned aerial vehicles, Vegetation mapping, Upland swamps. 

 

I. INTRODUCTION 

yperspectral technology is a potential tool for remote 

detection of targets and monitoring. A hyperspectral 

sensor measures reflected electromagnetic radiation from the 

target into a large number of spectral narrowbands. The 

inherent objective in target classification and assessment using 

hyperspectral data is to utilize its high spectral resolution [1]. 

However, large dimensionality of hyperspectral data is often 
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attributed to the Hughes phenomenon, the curse of 

dimensionality [2]. The problem is a combined consequence of 

the high correlation among the adjacent bands and the inability 

of the algorithm being applied to process the high dimensional 

data. The problem is paramount in spectrally complex 

environments such as wetlands and swamps with a large 

diversity of species to be monitored [1, 3, 4]. While a common 

remote sensing data processing solution involves the 

application of dimensionality reduction techniques or selection 

of suitable narrowbands in a post-acquisition step; a hardware-

based solution involves the use of programmable hyperspectral 

sensors as a pre-acquisition step. Programmable hyperspectral 

sensors typically involve a snapshot based scanning 

mechanism, unlike general point or line scanning type systems 

which are non-programable and acquire a continuous spectrum 

over the operable wavelength region. Several such 

programmable hyperspectral sensors have been developed in 

recent times, which are increasingly being used in UAV based 

remote sensing applications [5-7]. A hardware based method 

such as Fabry-Pérot Interferometer (FPI) technology acquires 

reflected electromagnetic radiation into pre-selected optimal 

narrowbands which is programmed by changing the air gap 

between the tuneable mirrors [8]. This method has the 

additional benefit of efficient mapping of the environment 

through the selection of only the spectral features of interest, 

which is particularly crucial in high-resolution mapping using 

unmanned aerial vehicles (UAVs) with limited flight duration. 

The technology is relatively recent compared to pushboom 

hyperspectral sensors, and existing works involving the FPI 

have used either – (1) a set of bands for generating vegetation 

indices (VIs), herein referred to as indices based [7, 9, 10], or 

(2) set of bands identified through rigorous experimental 

testing, herein referred to as knowledge based [11, 12] criterion 

of narrowband selection. Indices based criteria for band 

selection has the potential to assess the condition and/or 

estimate the yield of the vegetation [7, 9], however, they are not 

principally suited for multi-target classification since the 

spectral variation of the target endmembers present within the 
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scene is subjective Furthermore, the efficacy of indices based 

narrowband selection approach for vegetation quality or 

condition assessment is also subject to the characteristic 

reflectance of the target and the traditional list of indices does 

not always ensure the best results for different vegetation 

communities or species. Knowledge based approach requires a 

thorough understanding of the spectral variability among the 

targets present over the area, which is usually attained through 

intensive in-situ sampling and is not always realizable over 

difficult terrain or in scenarios requiring urgent mapping. It is 

therefore important to adopt a data driven methodology for 

programmable hyperspectral sensors to estimate appropriate 

narrow bands for scene classification or assessment. Minet et 

al. [13] proposed an approach to adaptively maximize the 

contrast between the targets by employing a Genetic Algorithm 

(GA) based optimisation of positions and linewidths of a 

limited number of filters in FPI for military applications. 

However, this method is unsuitable for thematic applications of 

remote sensing. 

Different data driven strategies were proposed for the 

selection of optimal bands for traditional remote sensing 

applications.  A method of sub-optimal search strategy utilizing 

constrained local extremes in a discrete binary space to select 

hyper-dimensional features was presented in [14]. 

Becker et al. [3] used a 2nd derivative approximation to identify 

the spectral location of inflection. A band selection method 

using correlation among bands based on Mutual Information 

(MI) and deterministic annealing optimization was also 

employed [15]. Becker et al. [4] proposed a classification based 

assessment of three optimal spectral band selection techniques 

(derivative, magnitude, fixed interval and derivative 

histogram), using spectral angle mapper (SAM) as a classifier. 

A GA based wrapper method using support vector machine 

(SVM) was proposed for the classification of hyperspectral 

images [16].   A double parallel feedforward neural network 

based on radial basis function was used for dimensionality 

reduction [17].  A principal component analysis for identifying 

optimal bands to discriminate wetland plant species was 

presented [1].  A semi-supervised band clustering approach for 

dimensionality reduction was developed  [18]. A particle 

swarm optimisation (PSO) based dimensionality reduction 

approach to improve support vector machine (SVM) based 

classification was suggested by [19]. Li et al. [20] and 

Pal et al. [21] presented a hybrid band selection strategy based 

on GA-SVM wrapper to search optimal bands subsets.  A 

method of band selection based on spectral shape similarity 

analysis was put forward in [22]. Su et al. [23] implemented 

1PSO and 2PSO with minimum estimated abundance 

covariance (MEAC) [24] among other techniques for 

evaluation of optimal bands. Ghamisi et al. [25] presented a 

feature selection approach based on hybridization of a GA and 

PSO with SVM classifier as a fitness function. However, all 

these existing optimal band identification studies involving 

data driven methods were used on traditional hyperspectral 

datasets after the acquisition, and are yet to be used with a 

hardware-based solution to pre-tune hyperspectral sensors to 

acquire the optimal bands. 

In this study, for the first time, we have devised an in-field 

data driven approach to pre-tune a snapshot type UAV-

hyperspectral sensor for remote sensing applications. The 

method employed PSO with minimum estimated abundance 

covariance (MEAC) similar to [23], previously used in a post-

processing stage for waveband selection after hyperspectral 

dataset acquisition. The major benefits are: (1) it is an efficient 

approach to identify the optimal bands in-field before the 

survey operation, (2) it does not require a lot of spectral samples 

per class, which is particularly an issue over difficult terrain to 

establish a spectral library, and (3) the system works perfectly 

when the number of observed samples is less than the total 

number of potential hyperspectral bands to select from, which 

is an important issue with other dimensionality reduction 

methods such as principal component analysis (PCA). The rest 

of the paper is arranged as follows. Section II describes the 

experimental framework of the operation in a test environment. 

Furthermore, we describe the theoretical background of PSO-

MEAC approach to the elements of the proposed application. 

In Section III, the depicted PSO-MEAC method has been used 

to present the optimal band selection results and discussion on 

the experimental site. In addition, the performance of the data 

driven PSO-MEAC approach has been evaluated against the 

traditional indices based approach for feature selection and 

mapping. And finally, the concluding remarks are provided in 

Section IV.  

II. MATERIALS AND METHODS 

This section details the study area, ground based 

hyperspectral sensing system, data processing for collected 

hyperspectral data, workflow for identifying optimal bands in 

the field, and method for UAV-hyperspectral surveying and 

assessment. 

A. Experiment area 

The test site is an upland swamp area within the temperate 

highland peat swamp on sandstone (THPSS) in Woronora 

plateau of New South Wales, Australia. The area is located in 

Wollongong, southwest of the city of Sydney, Australia. The 

focus was laid over spectrally diverse vegetation communities 

in critically endangered ecosystems distributed in the Blue 

Mountains, Lithgow, Southern Highlands and Bombala regions 

in New South Wales, Australia [26]. The NSW National Parks 

and Wildlife Service (NPWS) classifies the upland swamps 

complexes into five major vegetation communities – Banksia 

Thicket, Cyperoid Heath, Fringing Eucalypt Woodland, 

Restioid Heath, and Sedgeland [27]. The site has occasional 

thick vegetation cover and steep gradient which are 

inaccessible. 

B. Hyperspectral set-up for ground based sampling 

The spectral measurement of the target classes in the 

environment was measured with the visible-infrared snapshot 

hyperspectral (FPI) sensor (Rikola, Senop Optronics, 

Kangasala, Finland) with separate a data acquisition computer. 

In this mode of operation, the sensor acquires the maximum 

number of wavelength bands possible, i.e. 380 bands at 1 nm 



spectral steps between 500 nm and 880 nm. With a focal length 

of 9 mm and field-of-view (FOV) of 36.5×36.5 degrees, the 

sensor acquires 1010×1010 spatial channels in the snapshot 

imaging mode. In contrast, in the standalone on-board UAV-

based data acquisition mode the sensor records a set of 15 

programmed wavelength bands in 1010×1010 pixel format, i.e. 

up to a total of 16 Mpixel storage per hypercube. The sensor 

also acquires solar irradiance measurement using irradiance 

sensor for radiometric calibration and positional measurement 

using global positioning system (GPS) for geometric correction 

(Fig. 1). All sensors were installed on a handheld mount for 

hyperspectral imaging. An Android mobile phone was also 

installed on the sensor mount and paired to the data acquisition 

computer with a WiFi link to provide a realtime view of the 

scene, which was useful to bring the target vegetation in focus 

before the collection of hyperspectral data (Fig. 1(a)). 

Additionally, a realtime feed of goniometric measurements (roll 

and pitch) from the mobile phone’s accelerometer was relayed 

to the screen of the data acquisition computer to monitor the 

planimetric setting of the captured hypercubes using the FPI 

sensor (Fig. 1(b)).  

The simplistic design of a handheld hyperspectral imaging 

system was important to carry around in regions over dense 

shrub-type vegetation cover (Fig. 1(c)). The hyperspectral data 

was acquired with a downward nadir orientation over the shrub 

type swamp vegetation. The data was acquired at a distance of 

approximately 0.5 m from the top of the canopy (Fig. 1(c)). In 

this study, the FPI sensor was used as the tool for in-field 

spectral acquisition to demonstrate an independent form of 

operation. Nevertheless, the field spectral measurements could 

also be obtained from other spectroradiometers such as ASD 

FieldSpec3 (Analytical Spectral Devices, Boulder, Colorado, 

USA). However, special care should be taken to establish 

proper radiometric calibration to remove inter-sensor response 

mismatch, which is addressed by using the same FPI sensor for 

both in-field spectral data collection for identifying the optimal 

bands and later UAV-hyperspectral data acquisition. 

Hyperspectral measurements were collected for a total of 

three target vegetation classes, covering eight upland swamp 

species, including Grass tree (Xanthorrhoea resinosa), Pouched 

coral fern (Gleichenia dicarpa) and Sedgeland complex 

(Empodisma minus, Gymnoschoenus sphaerocephalus, 

Lepidosperma limicola, Lepidosperma neesii, Leptocarpus 

tenax and Schoenus brevifolius). In addition, spectral 

measurements were also collected for background vegetation, 

containing a mixture of other species which were present in 

small patches, and not selected in this study. Finally, a 

background bare-earth spectrum was also collected. To obtain 

a proper un-mixed spectrum for a single species, field sampling 

was performed over a region of interest with local homogeneity. 

C. In-field ground based hyperspectral data processing 

Vegetation in an upland swamp environment is highly 

diverse and species can exist in homogenous and heterogeneous 

patches. Data collected through the portable handheld FPI 

system caused minor spectral misalignments due to 

unavoidable handheld movement of the sensor and due to slight 

movement of the canopy due to wind. This happens as the data 

in the FPI sensor is acquired in a snapshot bandwise manner 

with a small delay and sensor movement [28]. The 

hyperspectral bands were aligned using a previously developed 

band alignment workflow described in [28]. The data was first 

flat-field corrected using dark current removal and white 

calibration panel, then was converted to the reflectance 

measurements using previously computed calibration 

coefficients with integrating sphere [7]. A band averaged 

hyperspectral signal was calculated from the hypercube and 

used in the optimal band identification workflow. The spectrum 

was further treated using Savizky-Golay [29] smoothing filter 

with a polynomial order of 3 and a frame length of 17 to remove 

spectral noise. A PSO with MEAC as criterion function was 

employed to identify the suitable bands in the field, the details 

of the theory of operation is detailed in section II-D. The entire 

process of spectral signature retrieval and PSO-MEAC 

workflow for suitable band identification was implemented as 

MATLAB routines, and a graphical user interface (GUI) was 

designed for user friendly and seamless operation in the field. 

D. Optimal band identification using PSO-MEAC 

Particle swarm optimization (PSO) was originally attributed 

to simulate the social behaviour (movement and interaction) of 

the organisms (particles) in a flock of birds flock or pool of 

fishes [30]. It has however been used as a robust metaheuristic 

computational method to improve the selection of candidate 

solution for an optimisation problem. The optimisation operates 

iteratively over a swarm of candidate solutions with a criterion 

function as a given measure of quality. In our approach, the 

selected set of bands are called particles, and a recursive update 

of the bands is called a velocity. Considering the particle 

position 𝑥𝑖𝑑 denotes the selected band subset of size 𝑘, and 

velocity 𝑣𝑖𝑑 the update for the selected band the detailed 

particle update can be expressed by [30], as in equation (1). 

 
Fig. 1.  Designed setup for ground based hyperspectral data acquisition using 

Fabry-Pérot Interferometer sensor (Rikola, Senop Optronics, Kangasala, 

Finland), irradiance sensor, global position system and android phone as 

goniometer on a portable handheld sensor mount: (a) top-side view, (b) 

bottom-side view, and (c) in-field hyperspectral data acquisition with a data 

acquisition computer. 



𝑣𝑖𝑑 = 𝜔 × 𝑣𝑖𝑑 + 𝑐1 × 𝑟1 × (𝑝𝑖𝑑 − 𝑥𝑖𝑑)

+ 𝑐2 × 𝑟2 × (𝑝𝑔𝑑 − 𝑥𝑖𝑑) 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑 

(1) 

where, 𝑝𝑖𝑑 is the historically best local solution, 𝑝𝑔𝑑  is 

historically the best global solution among all the particles, 𝑐1 

and 𝑐2 control the contributions from local and global solutions 

respectively, 𝑟1  and 𝑟2  are independent random variables 

between 0 and 1, and 𝜔 is the inertia weight to improve the 

convergence performance.  

New velocity and position (𝑣𝑖𝑑 and 𝑥𝑖𝑑 on the left-hand side 

of equation (1)) for the particles are updated based on the 

existing parameters and cost criterion at every iteration (Fig. 2). 

The iteration process is aimed to minimise the underlined 

criterion function.  

In a traditional supervised classification situation where 

representative class signatures are known through exhaustive 

field surveying the band-selection process can be greatly 

simplified. However, in an aerial survey to determine suitable 

wavelength bands for programmable UAV-hyperspectral 

system such an exhaustive exercise is tedious, cumbersome, 

and not always possible. Therefore, MEAC was used as a 

criterion function in PSO as it requires only class signatures and 

no training samples. Efficacy of this technique has been 

previously evaluated against other existing optimisation 

methods by Su et al. [23] for feature selection on traditional 

hyperspectral datasets (airborne and satellite). 

Assuming there are p classes present over an area for which 

the samples were collected, the endmember matrix can be 

written as 𝑆 = [𝑠1, 𝑠2, … , 𝑠𝑝]. According to Yang et al. [19], 

with linear mixing of the endmembers, the pixel r can be 

expressed, as in equation (2): 

𝑟 = 𝑆⍺ + 𝑛 (2) 

where, ⍺ = (𝑎1, 𝑎2, … , 𝑎𝑝)𝑇is the abundance vector and n is 

the uncorrelated noise with 𝐸(𝑛) = 0 and 𝐶𝑜𝑣(𝑛) = 𝜎2𝐼 (I is 

an identity matrix).  

Usually, the actual number of classes (p) is greater than the 

known class signatures, i.e. 𝑞 < 𝑝. Hence, the uncorrelated 

noise will have 𝐶𝑜𝑣(𝑛) = 𝜎2Σ, where Σ is the noise covariance 

matrix. Therefore, the abundance vector becomes the weighted 

least square solution, as in equation (3): 

⍺̂ = (𝑆𝑇Σ−1𝑆)−1𝑆𝑇Σ−1r (3) 

with first order moment as 𝐸(�̂�) = 𝛼 and second order 

moment as 𝐶𝑜𝑣(�̂�) = 𝜎2(𝑆𝑇Σ−1𝑆)−1. 

The analysis demonstrates that when all the classes are 

known the remaining noise can be modelled as independent 

Gaussian noise. For this application when meeting such 

sampling criteria was difficult and there were unknown classes 

present, noise whitening should be first applied. Yang et al. [19] 

and Su et al. [23] performed the optimal band selection on 

traditional hyperspectral datasets, and used all the pixels for the 

background noise (Σ) estimation. In this case, the background 

pixels noise was calculated using background class spectra and 

bare-earth spectra collected through ground-based sampling. 

The background and noise covariance is denoted as Σ𝑏+𝑛, this 

estimate was used in this study. The estimate of the unknown 

class pixels is based on the likelihood of the unknown class (or 

the class of no interest) being present around the sampled class 

of interest. In scenes with all endmembers are of know class (or 

the target class of interest) noise estimation Σ𝑏+𝑛 is not 

required, which is an unlikely condition in a spectrally complex 

swamp environment [7]. 

 The identified optimal bands should let minimal deviation of 

⍺̂ from actual 𝛼 [23]. With the partially known classes, the 

criterion function is equivalent to minimising the trace of the 

covariance, as in equation (4): 

arg min
Φ𝑆

{𝑡𝑟𝑎𝑐𝑒[(𝑆𝑇Σ𝑏+𝑛
−1𝑆)−1]} (4) 

where Φ𝑆 is the selected band subset. The resulting band 

selection algorithm is referred to as MEAC method [23]. 

The optimizer returns suitably identified set of wavelength 

bands with the least cost-criterion (equation (4)), upon 

successful completion of the PSO-MEAC algorithmic iterations 

(Fig. 2.). 

E. UAV-hyperspectral survey and assessment 

Post identification of the set of optimal bands through the 

data driven PSO-MEAC approach, the FPI hyperspectral 

sensor was programmed to acquire the suitable narrow 

wavelength bands. A UAV-hyperspectral mission was made in 

a pre-planned waypoint acquisition mode with >85% of 

forwards and >75% lateral overlap from a flying altitude of 

50 m. The sensor exposure time was set at 10 ms per band to 

provide good radiometric image quality for the existing 

illumination conditions. In addition to the data driven PSO-

MEAC tuned mode, another aerial survey was made with an 

 
Fig. 2.  Method for PSO-MEAC system. 



indices based [7] wavelength selection approach, using the 

same UAV flight characteristic and sensor exposure 

configuration. A band stabilization workflow was adopted to 

co-register spatial shifts between bands in hypercubes, from 

both the aerial acquisition modes [28]. Further, the regular 

radiometric, mosaicking and geometric correction procedure 

for hypercubes were carried out [7]. The UAV-hyperspectral 

orthomosaics achieved a high spatial resolution of 2 cm in 

ground sampling distance. 

A supervised support vector machine (SVM) classifier was 

used to classify the hyperspectral datasets into constituent 

classes. The SVM is an efficient kernel based machine learning 

classifier suitable for high-dimensional feature spaces, which is 

well used in classifying hyperspectral datasets (ref). The 

classification was performed as an evaluation step to compare 

the efficacy of wavelengths identified through data driven 

PSO-MEAC and indices based approaches. As the fundamental 

objective in this study was to simply evaluate the two methods, 

and not to achieve superior accuracies in classification, 

involving complex classification algorithms were deemed 

needless. A standard parameter setting using a radial basis 

function with a kernel gamma function of 0.167, penalty 

parameter of 100 and pyramid level of 5 was used for the SVM 

classification. The overall and individual class classification 

accuracies were computed using the ground truth training 

samples. 

A total of 120 ground truth measurements were collected for 

shrub-type swamp vegetation through a rigorous field survey 

and 120 ground truth polygons were identified through visual 

interpretation of high-resolution hyperspectral data. The 

sampled ground-based (120) and image-based (120) polygons 

were randomly divided into 1:1 mutually exclusive set of 

training and test samples, i.e. 60 ground and 60 image-based 

polygons for each training and test group. The ground truth 

training set was used to train the SVM classifier and the test 

samples were used to compute the overall accuracy (OA), 

kappa (κ) and confusion matrix to evaluate the classification 

accuracies. The spectral data from training and test sample 

polygons was obtained from the UAV-hyperspectral datasets in 

corresponding data driven PSO-MEAC and indices based 

modes. 

III. RESULTS AND DISCUSSION 

This section details the results and discussion of optimal band 

selection using data driven PSO-MEAC workflow, and its 

evaluation against the indices based approach. 

A. Optimal band identification using PSO-MEAC 

The PSO based optimal band identification workflow 

determines a list of suitable bands according to the MEAC cost 

criterion. The PSO-MEAC workflow was executed with a 

population size of 100, the inertial weight of 0.98 and maximum 

iteration of 500. A total of 15 bands, i.e. 𝑘 = 15, were 

identified, based on the maximum band capacity of the FPI 

sensor for on-board UAV data acquisition mode in un-binned 

setting (1010×1010 pixels).  

The selected combination of bands gets re-configured at 

every iteration to minimise the cost function (Fig. 2). A new 

combination of bands is designated optimal if the combination 

achieves best (or minimum) cost. To analyse the performance 

of the in-field optimal band identification and sensor tuning 

using the PSO-MEAC approach, a set of internally computed 

parameters (criterion cost and index of runs) were logged at 

every iteration (Fig. 3). The PSO-MEAC approach determines 

the suitable combination of bands (or band-index) using the cost 

criterion (equation 4).  The reduction of the best cost value 

signifies the learning curve for the optimisation workflow 

(Fig. 3(a)). At every iteration, the cost associated with the 

previous band-index is compared with the new band-index. A 

record of these parameters reveals the process of convergence 

to the desired solution by the implemented metaheuristic 

workflow. A measure of final cost and plot of identified optimal 

band combination is also produced. It can be seen that using the 

PSO-MEAC method, better (i.e. smaller) values of cost 

criterion can be achieved. Each iteration may produce slightly 

different band combinations according to the cost criterion, as 

shown by the plot of the index of runs in Fig. 3(b). The final 

best cost of the PSO-MEAC was -7.7×10-9. At this stage the 

identified band index was 56, 88, 101, 119, 151, 172, 211, 217, 

251, 284, 303, 326, 341, 360 and 380 (Fig. 3(c)). The 

corresponding FPI wavelengths were 555.33, 587.21, 600.34, 

618.21, 650.39, 671.02, 710.12, 716.11, 750.19, 783.46, 

802.35, 825.28, 840.15, 859.53 and 880.43 nm with respective 

FWHM of 9.81, 10.62, 9.88, 12.17, 10.78, 11.77, 9.78, 9.61, 

 
Fig. 3.  Optimal band selection: (a) variation of cost criterion with the PSO-MEAC iteration, (b) bands selected over each iteration, and (c) plot of identified 

optimal bands overlayed on the class spectra. 



9.58, 10.60, 10.56, 10.49, 13.69, 13.12 and 13.27 nm.  

The PSO-MEAC workflow uses a complex high-

dimensional search strategy producing several intermediate 

local and global combination of bands, so the final solution may 

not be the same with every execution. Previous 

implementations of PSO-MEAC [23] focused on minimising 

the number of bands in optimal configurations, which is 

suitable for dimensionality reduction techniques in traditional 

airborne or satellite hyperspectral imaging, with a complete set 

of bands already acquired. In the proposed method, the number 

of bands to be identified is predefined by the user, which is 

important to use the FPI sensor to its fullest potential (i.e. 

hypercube band capacity at desired spectral binning) to acquire 

the maximum possible information in the optimal 

configuration. To evaluate the computational complexity, the 

PSO-MEAC workflow was programmed in MATLAB and 

implemented as a graphical user interface module to run on a 

portable field data acquisition computer with 1.5 GHz 

processor and 512 MB memory. The module took roughly 4 to 

5 minutes for every 500 iterations with the selected number of 

class samples. This demonstrates the operational efficiency of 

the system despite having a complex search hierarchy and is 

usable to pre-tune the programmable FPI sensor in a UAV-

hyperspectral survey for optimised wavelength selection. 

Acquisition and identification of optimal bands using 

characteristic spectral signatures of individual swamp species 

have been traditionally performed using a measure of 

separability of the spectrum at respective wavelength bands. In 

this study, the employed PSO-MEAC based search strategy 

automatically analyses and identifies wavelength bands based 

on maximum separability of the reflectance using the MEAC 

cost criterion function.  Collected field spectra for each shrub 

type vegetation species is shown in Fig. 3(c), and the identified 

wavelength band positions are shown using a set of 

superimposed vertical lines. The employed approach has been 

implemented using a GUI based interface on a portable data 

acquisition computer, which enables rapid analysis of spectral 

signatures and identification of suitable wavelength bands. The 

developed technique and tools were found to be efficient in a 

field environment during surveying.  

B. Classification 

The comparative evaluation between the data driven PSO-

MEAC and indices based wavelength tuning approaches were 

performed using an SVM classifier. Two dedicated sets of 

datasets (data driven PSO-MEAC and indices based) were 

collected for swamp experiment site. The scene primarily 

comprised of three shrub-type vegetation classes (i.e. Grass 

tree, Pouched coral fern, and Sedgeland complex) and two tree-

type vegetation classes (i.e. Black sheoak and Eucalyptus). A 

small portion of the acquired scene contained no-vegetation 

cover and was treated as a separate ‘Bare earth’ class. 

Therefore, a total of six classes were used in the classification 

based comparative evaluation. The optimal bands identified 

using the data driven PSO-MEAC approach produced a better 

performance compared to indices based approach, with the 

SVM classifier. Combining the optimal bands identified using 

the data driven PSO-MEAC with the SVM classifier produced 

an overall accuracy of 85.16% and a kappa coefficient of 0.73, 

whereas the indices based approach produced an overall 

accuracy of 76.54% and a kappa coefficient of 0.67. The 

comparative classification maps for both indices based PSO-

MEAC and data driven approaches produced using SVM 

classifier are shown in Fig. 4.  

The producer’s and user’s accuracy for each class with the 

best classification method, data driven PSO-MEAC is shown 

in Table 1. With the exception of the Grass tree class, overall 

the accuracy for each class is satisfactory (>70%), particularly 

to differentiate between swamp type (Sedgeland complex) and 

non-swamp type (Eucalyptus) vegetation. The results also 

indicate the potential of the process to distinguish certain 

critical non-swamp type terrestrial species (Black sheoak and 

Bracken fern) within the swamp environment. Increase in the 

proportion of these terrestrial species in a swamp indicate 

changes in the swamp hydrology. No change in the proportion 

 
Fig. 4.  Classification map of swamp site vegetation classes and species 

produced using support vector machine classifier with (a) data driven (PSO-

MEAC) based optimal band identification and (b) indices based band 

selection. 

TABLE I 

UNITS FOR MAGNETIC PROPERTIES 

Class 
Producer’s accuracy 

(%) 

User’s accuracy 

(%) 

Bare earth 91.57 98.52 

Grass tree 77.00 73.54 

Black sheoak 97.33 83.20 

Bracken fern 71.43 78.44 

Eucalyptus tree 81.55 81.13 

Sedgeland complex 88.28 80.35 

 

 



of terrestrial species (or change within equilibrium limits) 

indicates the stability of hydrology and peat moisture levels. 

These results, therefore, demonstrate the usefulness of the 

method to directly map the changes induced in a swamp 

environment due to the fluctuation of groundwater level. 

IV. CONCLUSION 

Identification of optimal bands for vegetation monitoring has 

been an ongoing research problem. The issue is significant in a 

spectrally complex environment with diversity in vegetation 

species such as swamps and wetlands.  Extensive surveys and 

post-processing solutions have been recurrently used in 

different swamp type environment. In this study, an innovative 

approach was developed for in-field rapid identification of 

spectrally significant wavelength bands for a given 

environment to program tuneable hyperspectral sensor 

acquisition before UAV borne surveys. The method was 

implemented through a metaheuristic workflow based on 

particle swarm optimisation (PSO) with minimum estimated 

abundance co-variance (MEAC) as the cost selection criterion 

function. A portable in-field hyperspectral signature collection 

system was devised using the tuneable FPI hyperspectral 

sensor. The set-up improved the collection of class spectra and 

background noise spectra, which were then used to identify the 

optimal band configuration. The method identifies the optimal 

bands based on representative class spectral signatures, 

avoiding requirement of extensive in-field sampling. 

Additionally, the method works perfectly when the number of 

sample observations is less than the total number of potential 

hyperspectral bands, which is not possible with other 

dimensionality reduction methods such as PCA. The method 

was successfully tested to identify a set of optimal bands for 

maximising spectral differentiation of swamp type vegetation 

species and communities.  
In future research, the algorithm could be tuned to robustly 

incorporate vegetation trait retrieval by changing the criterion 

function. This would be valuable to the agriculture industry for 

the estimation of chlorophyll content and nitrogen use 

efficiency. 
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