
P
os
te
d
on

3
M
ar

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
40
74
46
9.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Fully Decentralized Application Model by Peer to Peer Smart

Contract of Blockchain

Hong Su 1, Bing Guo 2, Junyu Lu 2, and Xinhua Suo 2

1Sichuan University
2Affiliation not available

October 30, 2023

Abstract

Currently, the P2P method is that its software runs on a P2P hardware environment. However, the software is not a P2P

one. It is difficult to match the scenarios in which the users’ requirements change often. Meanwhile, if the software is out of

service, all participants are affected. Thus, in this paper, we propose the fully decentralized application model, in which a P2P

software runs in a P2P hardware environment. It is based on the blockchain, as a blockchain provides a secured P2P hardware

environment. We focus on its P2P software (the P2P smart contract). A P2P smart contract is formed by smart contracts from

its participants instead of a third party. It allows each participant to specify its requirement in a turning-complete way and the

failure of one smart contract does not affect other smart contracts. We first describe the requirement of the P2P smart contract

and the dependence among them. Then, we propose different ways to pair associated smart contracts. At last, we verify the

proposed P2P smart contract model, and it shows more flexibility and robustness than the centralized software method.

1

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Fully Decentralized Application Model by Peer to
Peer Smart Contract of Blockchain

Hong Su, Bing Guo, Fellow, IEEE, Junyu Lu, and Xinhua Suo

Abstract—Currently, the P2P method is that its software runs
on a P2P hardware environment. However, the software is not
a P2P one. It is difficult to match the scenarios in which the
users’ requirements change often. Meanwhile, if the software is
out of service, all participants are affected. Thus, in this paper, we
propose the fully decentralized application model, in which a P2P
software runs in a P2P hardware environment. It is based on the
blockchain, as a blockchain provides a secured P2P hardware
environment. We focus on its P2P software (the P2P smart
contract). A P2P smart contract is formed by smart contracts
from its participants instead of a third party. It allows each
participant to specify its requirement in a turning-complete way
and the failure of one smart contract does not affect other smart
contracts. We first describe the requirement of the P2P smart
contract and the dependence among them. Then, we propose
different ways to pair associated smart contracts. At last, we
verify the proposed P2P smart contract model, and it shows more
flexibility and robustness than the centralized software method.

Index Terms—fully decentralized, peer to peer software, P2P
software topic, blockchain application model.

I. INTRODUCTION

FOR an application, its hardware and software may come
from a third party or from its peers. It is called the

centralized hardware(software) if the hardware (software) is
from a third party, or it is called the peer-to-peer (or P2P) one
if the software (hardware) is from its peers. Currently, the P2P
technology refers to a P2P hardware way[1], which focuses on
the distributed hardware, such as the grid computation.

There lacks the P2P software. For the centralized software,
participants send parameters to invoke its interface. However,
it is difficult to express a complex logic with parameters. In the
P2P way, an application is composed of software “segments”
from its participants, and there is no centralized software.
The P2P software reduces the requirement of a third party
to provide software, and it brings more flexibility as users can
express their logic in a turning-complete way.

Then, there are three kinds of application models consid-
ering whether the software and hardware are P2P or not:
the centralized model, the half decentralized model, and the
fully decentralized model. Figure 1 shows those models. A
centralized model is that both software and hardware are in a
centralized way.

The half decentralized model is that either its software or
its hardware is in the P2P way. It has two subtypes, type 1

H. Su, B. Guo, J. Lu, and X. Suo are with the Department of Computer
Science, Sichuan University, Chengdu, Sichuan, 610041.

(the software is in the P2P way) and type 2 (the hardware
is in the P2P way). Type 2 is the currently used way, which
can accumulate the computing resources to finish a relatively
big task. The blockchain is in such a way; while different
from other P2P methods: a blockchain provides a secure
and trusted environment, and even it adopts the consensus
algorithm to resolve the conflicts. In this paper, we adopt
the blockchain as the P2P hardware environment of the fully
decentralized model. We focus on the blockchain software
(the smart contract). However, the smart contract is still a
centralized method instead of a P2P one, referring to Figure 2.
The reason is that the smart contract comes from a third party
instead of from its participants. We call this kind of smart
contract the centralized smart contract.

Fig. 1. Different application patterns.

There are some disadvantages of a centralized smart con-
tract. (1) A centralized smart contract is a common contract
among different participants. Participants have to use the “cen-
tralized” smart contract to interact with others. However, users
often have their special requirements, which lead to different
contracts for different users. The centralized way is difficult to
match this requirement. (2) A centralized software only allows
users to provide parameters, which is not turning-complete. If
users are allowed to provide its logic, it is more flexible to
express their requirements. (3) It is not conventional for the
cross-chain interoperation as a centralized smart contract is
different to be deployed on different blockchains.

To overcome the disadvantages of centralized smart con-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

User 1

User 2

User 3

smart contract

User 4

User 5

Fig. 2. Different participants cooperates through a centralized smart contract.

tracts, the P2P smart contract is introduced, which allows
participants to have specific logic to customize the activities.
Figure 3 shows an example of a P2P software. The advantages
of P2P smart contracts are as follows.

(1) It promotes the contract among participants, as it allows
each one to have its terms in the contract. In the centralized
way, the cooperation logic is set by a party, and other par-
ticipants have to obey it. Take a selling contract for example,
which should stand for the willingness of both the seller and
the customer. In the centralized way, the contract is provided
by one side, which may have unfavorable terms for another
side. However, in the P2P way, each participant can express
its logic to form a final contract.

(2) It is more flexible for the personalized service. The
service for each participant can be different and specific by
the P2P software model. Suppose there is a company in which
different employees have different payment methods. Their
payment is automatically done when the conditions match.
Then it needs the P2P smart contract, which provides the
personalized payment service for different employees.

(3) It has more robustness. If a P2P smart contract fails,
smart contracts from other participants still work. It is like the
way that a big smart contract is divided into small parts. Then
when one part of the smart contract is out of service, other
parts can still work. Comparatively, if a big software is out of
service, all its functions are not available.

When both the software and the hardware are in P2P
methods, it is the fully decentralized model.

In this paper, we propose the fully decentralized application
pattern and focus on the P2P software (the P2P smart contract).
Contributions of this paper are as follows.

(1) The fully decentralized application pattern is proposed.
The P2P smart contract method allows participants to specify
their own logic by different smart contracts. It provides more
flexibility and stronger robustness. The implementation is
based on the blockchain, which helps to provide a secured
P2P hardware environment. Together with the P2P software

method, it forms a fully decentralized application pattern.
(2) We proposed the method to use dependence among P2P

smart contracts to analyze their relationship. The relationship
is how one P2P smart contract matches the requirement of
another one.

(3) We proposed three ways to find cooperative smart con-
tracts. The first one is to find cooperative smart contracts from
all unmatched smart contracts. The second one is to group
smart contracts first, and then it tries to find the paired one in
a group. This way reduces the number of smart contracts to
compare. The third one is to pair a smart contract by a specific
sender or an address.

The rest of this paper is organized as follows. Section II
describes the peer to peer (P2P) smart contract model. Section
III describes the verification results. Section IV describes
previous works, and section V concludes this paper.

II. PEER TO PEER SMART CONTRACT MODEL

In this section, we introduce the peer to peer smart contract
that allows each participant to express its logics. A participant
first launches a proposal, and then interested participants send
their codes to join.

This section includes (1) the introduction to the smart
contract, (2) the relationship among P2P smart contracts, and
(3) how to choose cooperative smart contracts to form a related
application (also called topics)

A. Peer to Peer Smart Contract

A peer-to-peer smart contract is a smart contract whose
logic is not fixed by a centralized smart contract but composed
of smart contracts from each participant. It is also abbreviated
as the P2P smart contract. The currently used smart contract,
which is based on a centralized smart contract, is called the
centralized smart contract. Note a blockchain application may
compose of several smart contracts, while they are from a
single agency instead of from its participants, and we also
call this kind of smart contract the centralized smart contract.

Figure 4 shows an interaction process by P2P smart con-
tracts. In the beginning, a participant sends a smart contract
to express its requirement. This smart contract is called the
proposal smart contract. If other participants decide to join,
they send their own smart contracts, which are called the
participant smart contracts. A typical P2P smart contract
interaction process can be divided into three steps.

(1) The proposal stage. A user sends out a proposal smart
contract for new cooperation.

(2) The interaction stage. Other participants see the proposal
and decide to join or not. If someone wants to join, it sends
a participant smart contract. The smart contract contains the
status that matches the requirement of the proposal smart
contract. At the same time, this smart contract can also contain
its requirement for other participants’ smart contracts.

(3) The topic formation stage. When all related smart
contracts match, cooperation is formed. We say those smart
contracts form a topic, which is used to divide different
cooperative groups of P2P smart contracts. Topics is discussed
further in section II-B.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

cooperate

Fig. 3. P2P smart contracts. Different smart contracts can cooperate to complete different tasks. Each participant sends its smart contract to join a task.

Topics

Topic 1

Topic 2

InteractionPropose

...

...

join

propose

propose

join
join

join

join

Fig. 4. The interaction process of P2P smart contract. There are three steps in this process. In the first step, a participant proposes cooperation by a smart
contract. In the second step, other participants join this cooperation by its smart contract. In the third step, when related smart contracts match, a cooperation
(or a topic) forms. There are two topics in the figure, topic 1 and topic 2.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

1) Cooperation Requirement: P2P smart contracts cooper-
ate to finish different tasks. However, a task does not allow
any smart contract to join. A smart contract should match the
condition of the proposed smart contract. Then the proposed
smart contract first gives its requirement to select candidate
smart contracts for cooperation. A participant P2P smart
contract gives its data (or status) to show that it wants to
cooperate with other smart contracts.

The candidate smart contract should match the requirement
of the proposal smart contract. Now, we formally describe the
relationship among P2P smart contracts.

Definition 1: A P2P smart contract (sc) requires status
of other P2P smart contracts. Those required status is the
requirement set of smart contract sc, as in (1).

Rsc = {r1, r2, . . . , rn}, ri ∈ Rsc (1)

, where ri is a required status for other smart contract by
smart contract sc.

Definition 2: A P2P smart contract (sc) provides its own
status to other P2P smart contracts. The status provided to
other smart contracts is the data set of smart contract sc, as
in (2).

Dsc = {d1, d2, . . . , dn}, di ∈ Dsc (2)

, where di is the data that smart contract sc provides to others.

A smart contract (sct) should match the condition of another
smart contract scp if they form a cooperative group, as in (3).

Rsct ⊂ Dscp (3)

Then a P2P smart contract has two corresponding fields,
the requirement field that is used to choose a candidate smart
contract (requirement set) and the status field that is given to
match the requirement of other smart contracts (data set), as
shown in Figure 5.

Fig. 5. P2P smart contract data structure.

The requirement field has a challenge. If a smart contract
matches the requirement, will it be as expected during the
whole topics process? We can see that a smart contract sets
its status to match the requirement of others when validation
and changes it back when real execution. In this way, other
participants are cheated.

Thus, the status of a smart contract should match two
requirements to avoid this kind of cheating.

(1) The status field should be verifiable. If it cannot be
validated, a participant can easily fake any value in this field.

(2) The status field should ensure the correct behavior at a
later time. To analyze the issue, we use the notation of Dt

s

to mean the status D provided by smart contract s at time t.

The status change from D to D′ at a later time t+ δ should
be restricted. Both the later state D′ and its change condition
C should be limited and known by related participants, as in
(4).

Dt
s C−−−→D

′t+δ
s , |C| and |D′| are limited (4)

We introduce some typical conditions.
(a) Conditions that cannot be changed. The sender of a smart

contract is such a condition, which is from a specific account
and cannot be changed. Then, one smart contract may require
that another smart contract should be from a specific account.
Take a company for example. The leave request from an
employee should be approved from a specific address (either
from the address of HR or its manager).

(b) Conditions that should be changed under specific restric-
tion as in (5).

status′.change(status, restrait) (5)

The frozen digital asset is such a condition. The sender of a
smart contract locks its asset to a smart contract, and the asset
is called the frozen asset. The sender cannot transfer this asset
back as the owner of the asset has been changed. The transfer
of the frozen asset is under clear conditions (restrictions): it is
transferred to a peer when the transfer condition matches or
the asset is returned to the sender when there are no matching
peers within a certain time.

2) Dependence among P2P Smart Contract: A P2P smart
contract has three steps during the cooperation with other
smart contracts, the step to wait for its requirement (stw),
the step to prepare its state to match the requirement of other
smart contracts (sts), and other execution steps (stoe). We can
combine the smart contract name with those components to
stand for each component. Such as f.stw is the waiting step
of f .

If one smart contract (SCb) waits the status of another smart
contract (SCa), we say SCb depends on SCa, notated as
SCb.stw.dep(SCa.sts) or simply SCb.dep(SCa). Figure 6
shows one example.

Fig. 6. The relationship among different P2P smart contract.

There are two types of smart contract dependence, direct de-
pendence and indirect dependence considering whether there
are intermediate smart contracts or not. Direct dependence
means one smart contract waits for the state of another smart
contract directly, as shown in the left part of Figure 7. Indirect
dependence means one smart contract depends on one or more
intermediate smart contracts that further depends on the target
smart contract, as in the right part of Figure 7.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

We use the notation of DEP (f) to mean the set of all direct
dependent smart contracts of smart contract f , and the notation
of DEPind(f) to mean the set of all indirect dependent smart
contracts of smart contract f . The dependence in Figure 7 is
shown in (6) and (7) separately.

fa ∈ DEP (fb) (6)

fa ∈ DEPind(fb) (7)

Fig. 7. Different types of dependence, direct dependence and indirect
dependence. In the left part, SCb directly depends on SCa; in the right
part, SCb depends on SCa indirectly as there is other P2P smart contract
between them.

The dependence may be mutual. Mutual dependent smart
contracts are smart contracts that depend on each other,
SCb ∈ DEP (SCa) and SCa ∈ DEP (SCb). For example,
in a blockchain exchange among two users UA and UB. UA
gives its assets to UB when UB gives its assets to UA and
vice versa.

Dependent smart contracts form a graph. The nodes stand
for associated smart contracts. The edge is from a smart con-
tract to its dependent smart contract. If we ignore the direction
of a direct edge, we get an indirect edge. Corresponding, we
use notation of path as the directed path and upath as the
indirect path, as in (8) and (9).

path(SCa, SCb) (8)

upath(SCa, SCb) (9)

Examples are shown in Figure 8, in which there are different
kinds of paths. For example, in part ‘a’, there is a direct path
from SCa to SCb, path(SCa, SCb) and an indirect path
upath(SCb, SCa). In part ‘d’, SCa depends on SCb and
SCb depends on SCa, those dependencies form a circle. In
part ‘e’, the dependence forms a bigger dependence circle.

Fig. 8. Different dependence paths.

B. Topics

Different P2P smart contracts may be related or not, which
depends on whether they match the requirement of other smart
contracts or not. We introduce a new concept, topic, to describe
the group of cooperative P2P smart contracts. Suppose there
are a set of smart contracts SC as in the following.

SC = {sc1, sc2, ..., scn}, sci ∈ SC (10)

If smart contract set SC matches the following conditions,
we call it a topic.

∀sci ∈ SC,
DEP (sci) 6= ∅, DEP (sci) ⊆ SC

(11)

∀sci, scj ∈ SC,∃upath(sci, scj) (12)

(1) Condition (11) shows that each smart contract has its
own dependent smart contracts and all its dependent smart
contracts are within the smart contract set SC. This indicates
that smart contracts in a topic form a completely dependent
relationship, and they do not depend on the external smart
contracts.

(2) Condition (12) shows that any two smart contracts has
dependence. Otherwise, there may be two or more unrelated
smart contracts in a topic.

1) Topic Identification: The topic identification is the pro-
cedure that miners judge which topic a smart contract belongs
to. There are different ways to do this. One simple method is
to compare the target smart contract with all unmatched smart
contracts. And this kind of way is called the all matching
method.

The complexity of this method is n (the number of un-
matched smart contracts), as in (13). The reason is that it
needs to do the comparison within all smart contracts until
the matched one is found. If there is a huge amount of smart
contracts, it is a big work to judge whether a smart contract
matches the condition of another smart contract or not.

Θ = n (13)

Then we introduce other two methods to reduce the work
of topic identification, the group matching method, and the
address matching method.

The group matching method. Smart contracts are first di-
vided into different groups, and then the target smart contract
is compared within its group. The comparison is much smaller

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

than that of the all matching method. To identify different
groups, each smart contract has a group identifier flag. The
group identifier is set in the proposal smart contract. Other
interested smart contracts specify the same identifier to join.

The complexity of this algorithm is a constant number k,
as in (14).

Θ = k (14)

We give a brief proof for the complexity as follows.
Assumptions.
(1) We suppose that users cooperate with their specific aims

instead of the number of unmatched smart contracts. Then the
group size is not related to the number of unmatched smart
contracts, n. The group size is decided by the user aim, and
it is usually not too much, we assume there exists an average
cooperative number k.

(2) The position distribution (p), of which a smart contract
and its paired smart contract appear in a group, is linear. Then
its value in a group with size k is shown in (15).

p = 1/k (15)

(3) Suppose the target smart contract is SCt, which is at
the position of ot. Suppose the paired smart contract is SCp,
which is at the position of op.

Proof.
The matching algorithm tries to find SCp by comparison

with all existing smart contracts in sequence (i.e. from 1, 2,
3, ... to n).

Case 1: ot >= op, it means that SCt occurs earlier than
SCp. As SCp does not appear, SCt compare with all the ot
smart contracts. The number of comparison is ot.

Case 2: ot < op, it means that SCp occurs earlier than SCt.
In this case SCp is found, and the number of comparison is
op.

Case 1 and case 2 occur with the same probability, and then
the comparison count, ncomp, is as in (16).

ncomp = 1/2ot + 1/2op (16)

In the assumption, ot and op are linearly distributed in any
position of the group (with the probability, p). The average
number of comparison, ncomp, is (17).

ncomp = 1 ∗ p+ 2 ∗ p+ ...+ k ∗ p
= (k + 1) ∗ k ∗ (2p)

= 2k + 2
(17)

Then the complexity is a constant k.

The address matching method is that a smart contract
specifies the address of its paired smart contract. As the target
smart contract is directly pointed out, it can be found by the
address. The complexity of this algorithm is 1, as in (18).

Θ = 1 (18)

C. Topics Choice - Transaction Order Based Selection

There may be several candidates to compete for a topic. For
example, a user (user UA) wants to exchange its asset, and it
specifies the requirement to exchange. Two users (user UB
and UC) want to exchange with UA, and each sends a P2P
smart contract. Suppose both UB and UC match the condition
of UA. Then there is an issue with how to select one.

In this paper, we adopt the method that regards the time
at which smart contracts appear, the earlier the best. Other
methods include the reward method which considers the
reward given to the miner, as it reflects the willingness to
join a topic.

As the sending time of a smart contract is difficult to get in
some blockchains, the appearance order of a smart contract is
more convenient, and then we use the smart contract order to
measure the time. We begin with related definitions.

Definition 3: Smart Contract Order. All related smart
contracts are sorted by the order that they are put to the
blockchain. The order is first decided by the block index; if
two smart contracts are in the same block, it is decided by the
order in that block. In a topic, we number each smart contract
from 1, which stands for the order of a smart contract. For
different topics, we directly compare by this rule.

We use order(s, t) to mean the order of smart contract s
in topic t.

Definition 4: Different Smart Contract among Topics (DSC).
If a smart contract sc belongs to one candidate topic tpa and
does not belong to another candidate topic tpb, we call sc is
a different smart contract among topics tpa and tpb. It helps
to describe the difference among topics.

We use d(tp1, tp2, i) to mean the ith different smart contract
in topic tp1 between topic tp1 and tp2, and d(tp2, tp1, i) to
stand for that in topic tp2. Some examples are as follows.

tp1 = sc1, sc2, sc3, tp2 = sc1, sc4, sc5
d(tp1, tp2, 1) = sc2, d(tp2, tp1, 1) = sc4
d(tp1, tp2, 2) = sc3, d(tp1, tp2, 2) = sc5

This notation can be simplified. If the comparative candidate
topics are clear, we can only mention the first topic. Such as
to use d(tp1, i) for d(tp1, tp2, i) when the target topics are tp1
and tp2.

With this notation, we now describe different transaction
order based tactics.

1) First DSC Tactic: First DSC is the first different smart
contract between two candidate topics. For topic tp1 and tp2,
the first DSC of tp1 is d(tp1, tp2, 1) or d(tp1, 1).

The first DSC tactic is that if there are several candidate
tactics, we choose the topic tpc whose first DSC has the
minimum order. This tactic is as in (19). Algorithm 1 is the
pseudocode to choose the first DSC between two topics.

tpc = min(d(ti, 1)) (19)

Algorithm 1 can apply to several topics cases. It is an
iterative process among a binary tree as those comparisons
are in pairs. Such as for four candidate topics tp1, tp2, tp3,
tp4, we can choose the target topic as in algorithm 2 and the
comparison tree is in Figure 9.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Algorithm 1 To choose the topic with the first DSC between
two topics.
Require: t1 and t2 are two candidate topics
Ensure: the chosen topic between t1 and t2

1: Topic chooseCompletion(Topic t1, Topic t2)
2: if order(d(t1,1) <d(t2,i) then
3: return t1
4: end if
5: if order(d(t1,1) >d(t2,i) then
6: return t2
7: end if
8: //error case as different smart contracts has different orders
9: return ERROR

Algorithm 2 To choose the topic with the first DSC among
four topics.
Require: t1, t2, t3, t4 are two candidate topics
Ensure: the chosen topic among them

1: Topic chooseCompletion(Topic t1, Topic t2, Topic t3,
Topic t4)

2: t11 = chooseCompletion(t1, t2)
3: t12 = chooseCompletion(t3, t4)
4: return chooseCompletion(t11, t12);

2) Average DSC tactic: However, the above tactic only
considers the first DSC. In some cases, we should consider
the order of all smart contracts. Then we introduce, the
average order (aotpi) of topic tpi, as (21).

aotpi = 1/n

n∑
1

orderscij (20)

, where n is the number of smart contracts in topic tpi; scij
is a smart contract of tpi.

Then we choose the topic tpc with the minimum average
order value.

tpc = min(aotpi) (21)

3) Last Smart Contract Tactic: If we want to choose a
topic that complete earliest, we choose the one that complete
earliest. It is also equal to that its last smart contract complete
earliest. We use sclast to stands for the last smart contract. As
sclast is the last smart contract, it has the maximum order in
a topic tp, as in (22).

sclast = max(ordersci), sci ∈ tp (22)

Similarly, we choose the topic tpc with the minimum order
of sclast, as in (23).

tpc = min(ordersclast
) (23)

Fig. 9. Iteration tree to choose a topic among four topics, tp1, tp2, tp3, and
tp4. tp11 is the chosen topic between tp1 and tp2; and tp12 is that between
tp3 and tp4. tp0 is the finally chosen topic.

III. VERIFICATION

A. Test environment

The test environment includes three parts, the blockchain
choice, the deployment of the blockchain, and the P2P smart
contract procedure.

Blockchain choice. A self-developed blockchain is used for
the simulation, as the publicly available blockchains do not
support the P2P smart contract. The consensus algorithm of
this blockchain is PoW (Proof of Work) and the difficulty is
set to the degree that the hash of a block starts with at least
6 zeros, which results in an average mining period of tens of
seconds in our verification environment.

Blockchain deployment. The blockchain is deployed in
12 virtual machines of an HP workstation (i9-9900/64GB
NECC/256GSSD+2TB SATA). The operating systems are
Ubuntu-16.04.3. The CPUs are 1, 2, or 4 virtual CPUs, and
memories are 2G or 4G. Those nodes form a P2P network
that is based on socket communication. For simplification, the
peer address is configured in its configuration file instead of
getting peers’ addresses dynamically.

P2P smart contract procedure. It contains several steps. (1)
A participant sends its P2P smart contract in a transaction; the
code of the smart contract is based64 encoded and is put in
the data field of the carrier transaction. (2) Miners first try to
validate the status part. If failed, it is not processed further.
To facilitate a user to lock its asset in the status part, the
blockchain provides the interface to lock an asset. With this
interface, the asset transfers to the receiver if its requirement
matches; otherwise, the asset is restored. (3) Miners try to find
paired P2P smart contracts according to the proposed model.
(4) If all paired smart contracts are found, stoe parts of those
smart contracts are executed.

B. Comparison between Peer to Peer Smart Contract Method
with Centralized Method

In this section, we compare the p2p smart contract method
(the p2p method) with the centralized smart contract method
(the centralized method). The aim is to verify that P2P smart
contracts express logic more feasibly and have higher error
tolerance than the centralized way.

The verification scenario is asset exchanges among different
participants, in which participants use their assets to exchange

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE I
PEER 2 PEER EXCHANGE

user requirement data exchange identifier stoe code

1 5 assets 1 asset 101 log
2 6 assets 2 asset 102 log
3 7 assets 3 asset 103 log
4 8 assets 4 asset 104 log
5 1 asset 5 asset 101 log
6 2 assets 6 asset 102 log
7 3 assets 7 asset 103 log
8 4 assets 8 asset 104 log

TABLE II
TEST CASES

name out of service(P2P) out of service(centralized)

e1 smart contract of u1 when u1 interact
e2 smart contract of u2 when u2 interact
e3 smart contract of u3 when u3 interact
e4 smart contract of u4 when u4 interact
e5 smart contract of u5 when u5 interact
e6 smart contract of u6 when u6 interact
e7 smart contract of u7 when u7 interact
e8 smart contract of u8 when u8 interact

other’s assets. The scenario can be done in either the central-
ized way or the P2P way. The exchange has two parts; part1,
how many assets it wants to give, and, part2, how many assets
it wants to get from its paired exchanger. In the centralized
way, a smart contract is used to manage the exchange process.
Participants send their parameters to express part1 and part2.
In the P2P way, participants specify the exchange by P2P smart
contracts, in which the requirement of the smart contract is
part2 and the status part is part1.

There are four paired exchanges, as in table I. The require-
ment part is what the user wants from its peer and the data
part is what the user promises to give to its peer. In the P2P
way, each exchange is identified by an identifier, the exchange
identifier in the table. The stoe code part code is very simple, it
only logs successful information when an exchange completes.

The sequence to interact with the blockchain is from user 1
to user 8. Table I shows the sequence, in which the proposal
participants (i.e. users from 1 to 4) send their exchange first
and then the paired participants (i.e. users from 5 to 8) send
their exchange. This sequence helps to see whether exchanges
affect others or not.

To make the comparison more clear, we set one of the smart
contracts out of service in each test round. In the P2P smart
contract way, we choose one of the smart contracts from user
1 to user 8 to be out of service. In the centralized way, the
centralized smart contract is out of service when one of those
users interacts with it. Then there are 8 test cases (named e1,
e2, to e8) for the P2P way and the centralized way. Table II
lists those cases.

The comparison is in three aspects, the affected assets, the
affected user, and the number of separate processing programs.
The affected assets help to understand the difference among
compared smart contract methods. The affected user and the
number of separate processing programs help to understand
the background reason.

1) Affected Assets: The affected assets are assets that have
been frozen and cannot be further processed due to the failure
of the related smart contract.

Test cases from e1 to e8 have different impacts on the
affected assets due to the moment that the smart contract is
out of service is different. The result of the affected assets is
shown in Figure 10.

From Figure 10, we know that the amount of the affected
assets in the P2P way is less than that in the centralized
way, with an average of 1.25 assets frozen in the P2P way
and an average of 5 assets frozen in the centralized way.
The reason is that an out-of-service centralized smart contract
affects other uncompleted exchanges and then frozen assets
cannot be processed further; while an out-of-service P2P smart
contract only affects the exchange of its owner. This can be
further understood from two different phases of the process.

The first phase is that the failure happens before any of
the second participants of an exchange sends its P2P smart
contract. Test cases e1 to e4 belong to this case. In the P2P
way, there is no frozen asset. In the centralized way, 3 test
cases (from e2 to e4) have the frozen asset, and the maximum
frozen asset is 6 assets in e4.

The second phase is that the failure happens when one of the
second participants of an exchange sends its smart contract.
This phase includes test cases from e5 to e8. In the P2P way,
the assets have been affected, 1 frozen asset in e5 when the
smart contract from user 5 is out of service, and 2 frozen
assets in e6. The centralized way has more affected assets
because unrelated participants are affected. We see that 10
assets are frozen in e5, and 9 assets are frozen in e6. More
details referring to table III.

e1 e2 e3 e4 e5 e6 e7 e8

test case

0

2

4

6

8

10

a
m

o
u
n
t
o
f
a
ff
e
c
t
a
s
s
e
t

. Asset frozen comparison when one smart contract is out of service.

centralized

P2P

Fig. 10. Asset frozen comparison when one smart contract is out of service.

2) Affected User: The P2P method isolates the actions of
different participants. The failure of one participant does not
affect other participants’ actions. In this section, we focus
on the affected users. The affected users are the users that
have interacted with the blockchain; while those users cannot
process further due to that its related smart contract is out of
service. The results of the number of affected user (in test
cases from e1 to e 8) are shown in Figure 11 and table IV.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0

1

e8

2

e7

a
m

o
u

n
t

o
f

u
s
e

rs
 i
n

 e
x
c
h

a
n

g
e

e6 8

3

7e5

P2P

test cases

4

6
e4

step

5

5

e3 4
3e2

2e1 1

0

1

e8

2

e7

a
m

o
u

n
t

o
f

u
s
e

rs
 i
n

 e
x
c
h

a
n

g
e

e6 8

3

7e5

centralized

test cases

4

6
e4

step

5

5

e3 4
3e2

2e1 1

Fig. 11. The number of affected user during the process. In P2P method, failure of a participant only affect its paired exchanger. In the centralized method,
all successive participants are affected when the failure of the centralized smart contract.

TABLE III
AMOUNT OF AFFECTED ASSETS

e1 e2 e3 e4 e5 e6 e7 e8

centralized 0 1 3 6 10 9 7 4
P2P 0 0 0 0 1 2 3 4

TABLE IV
AMOUNT OF AFFECTED USERS

e1 e2 e3 e4 e5 e6 e7 e8

centralized 0 1 2 3 4 3 2 1
P2P 0 0 0 0 1 1 1 1

From Figure 11, we see that there are also two obvious
stages of the affected user. The first stage is the period when
the fault occurs from user 1 to user 5 (test cases from e1
to e5). In the centralized method, the number of impacted
users accumulated from 0 to 4. Comparatively, there is no
user affected in the P2P method. Even the sender who sends
the fault smart contract is not affected, as its smart contract is
out of service.

The second phase is from the moment when the faults hap-
pen when user 6 joins (test cases from e6 to e8). The amount
of users decreases as some exchanges complete. However, for
the centralized way, when the fault smart contract happens,
other accumulated users cannot exchange successfully. Then
the number of affected users is 3, 2, 1 for e6, e7, and e8
separately. In the P2P method, there is 1 affected user, which
is the paired exchanger of the fault smart contract. Then we
get a conclusion that there are fewer affected users in the P2P
method than that in the centralized method.

3) Separate Processing Programs: Separate processing
programs are smart contracts that process user requests in-
dependently. The fault of one program does not affect the
processing of another. The difference of the affected assets and
affected users can be further understood from the difference
of separate processing programs.

There are 4 exchanges in this verification. In the centralized
ways, one smart contract process all exchange, which can be
seen that there is only one processing program. If this program
is blocked, no exchanges can continue. Comparatively, the P2P
way has 8 processing programs. And paired processing smart
contracts form an exchange.

In this verification, each smart contract logs to a file when
starting, aiming to facilitate the count of separate processing
smart contracts. The log file is cleaned at the beginning of a
test case, and we count the number after each user sends its
request either by a P2P smart contract or its parameters. The
results are shown in Figure 12. There are more separate pro-
cessing programs in the P2P method (maximum 8 programs)
than that in the centralized method (1 program). Then when
one separate processing program is out of service, there are
other separate processing programs to handle service in the
P2P way.

C. Comparison Efficiency

In this section, we try to compare the efficiency of different
matching methods. The number of candidate smart contracts is
different, which results in different comparison counts to find
a paired smart contract, i.e. different comparison efficiency.

In the verification, there are 512 smart contracts. The
all matching method and the group matching method are
compared. The all matching method can be seen as only 1
group to process 512 smart contracts. In the group matching

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

0

1

2

e8

3

e7

4

5

a
m

o
u

n
t

o
f

u
s
e

rs
 i
n

 e
x
c
h

a
n

g
e

e6 8

6

7e5

P2P

test cases

7

6
e4

8

step

5

9

e3 4
3e2

2e1 1

centralized

1
2

3
4

5
6

7
8

step
e1

e2
e3

e4
e5

e6
e7

e8

test cases

0

1

2

a
m

o
u

n
t

o
f

u
s
e

rs
 i
n

 e
x
c
h

a
n

g
e

Fig. 12. Number of separate processing programs.

TABLE V
DIFFERENT MATCHING METHODS

name number of groups

256 group 256
128 group 128

64 group 64
32 group 32
16 group 16

8 group 8
4 group 4
2 group 2

All match 1

method, we choose 8 types of groups, which results in different
numbers of smart contracts to compare. The test details are in
table V.

The order and group of smart contracts are random. (1) The
order of the target smart contract and its paired smart contract
is generated randomly. Then the target smart contracts have
the random probability to be before and after the paired smart
contract, which helps to cover both the scenario in which the
paired smart contract can be found and the scenario in which
the paired smart contract can not be found. (2) Smart contracts
are randomly assigned to one of the groups. For example,
in the 8-group method, each smart contract is generated and
assigned with one identifier of the 8 groups. It makes the size
of the group random; while some groups may be empty.

We compare candidate smart contracts one by one in its
group to check whether it is paired or not. If the paired smart
contract is in the group currently, the comparison count is
equal to the order of the paired smart contract in this group.
Otherwise, all candidate smart contracts will be compared, and
the comparison count is the number of all smart contracts. We
use a map to store the address of each group. Then when

a smart contract specifies the group number, it is a constant
time to find the corresponding group, and then we count it as
1 comparison.

We have carried out 32 test rounds for each type. Figure 13
shows the results of different matching methods (all matching
method is named 1 group).

0 5 10 15 20 25 30 35

test round

0

50

100

150

200

250

300

350

400

450

c
o
m

p
a
ri
s
o
n
 c

o
u
n
t

256_group 128_group 64_group 32_group

8_group 4_group 2_group 1_group

Fig. 13. The comparison counts for different group size.

From Figure 13, we see that the centralized way (1 group)
has the maximum number of comparisons. The reason is that
the comparison is among all unpaired smart contracts. Then
the comparison count is relatively big, with an average number
of comparisons of 207.2. Method 256 group has the minimum
number of comparisons, with an average of 2.3 comparisons.
To give a more clear tendency of the comparison count, we
show the average number of comparison count in Figure 14.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

method
0

20

40

60

80

100

120

140

160

180

200

c
o
u
n
t
o
f
c
o
m

p
a
ri
s
o
n

256_group

128_group

64_group

32_group

16_group

8_group

4_group

2_group

1_group

Fig. 14. The average comparison counts to find a paired smart contract.

From Figure 14, we see that the comparison counts decrease
when the number of groups increases. The average counts of
comparison are 2.3, 2.8, 3.9, 7.5, 11.9, 25.5, 48.5, 84.0, 207.2
for 1, 2, 4, 8, 16, 32, 64, 256 groups separately. When there
are more groups, each group has fewer P2P smart contracts to
compare averagely. Then the average number of comparisons
is less.

From the above, we see that P2P smart contracts have the
ability to form different exchange group feasibly. And it also
helps to shorten the completion time of an exchange.

1) Shortening Completion Time: Group also helps to
shorten the average completion time of an exchange. For
example, some participants may delay the interaction time
due to various reasons, and other participants have to wait
for it. The more participants are in the same group, the more
participants have to wait.

To measure the completion time of one group, we use
the average completion time, CTime. Suppose there are n
participants, CTime is defined as (24).

CTime =

n∑
i=1

etimei/n (24)

, where etimei is the time that participant i takes in the
exchange, which counts from the moment when the smart
contract of a participant is sealed into the blockchain to the
moment the exchange has completed.

Thus, etimei includes the time that its own takes and
the time to waits for other participants (for the exchange to
complete), as in (25).

etimei = timep2p + timewaiting (25)

, where timep2p is the time that the P2P smart contract takes,
and timewaiting is the time to wait for other participants.

The verification for the impact of completion time is among
16 participants. There are three kinds of exchange groups, 2u,

4u, and 8u groups. 2u means that 2 users form an exchange. 4u
and 8u mean that 4 and 8 users form an exchange separately.
We add a sleep function in the P2P smart contract to simulate
a random timep2p time (sleep linearly from 1 second to 10
seconds). And in each test round, a participant is chosen to
have a long sleep time (100 seconds), with the aim to make
other participants waiting for a long time (a long timewaiting).

The results are shown in Figure 15. From Figure 15, we see
that the exchange time increases when group size increases.
The average exchange time (CTime) is 16.0, 30.5, 54.1
seconds for groups with 2, 4, and 8 members separately.
When the exchange is only between two participants, the
delayed smart contract only affects another participant, then
the average exchange time is the least, 16.0 seconds. However,
when the group size increases, more participants in the same
topic may be influenced. Thus, the average exchange time of
8u is the most (54.1 seconds). Especially, in the 8 participants’
exchange, if the delayed participant appears in the latest, all
other 7 participants have to wait a long time.

0 5 10 15 20 25 30 35

test round

10

20

30

40

50

60

70

80

C
T

im
e
/s

e
c
o
n
d
s

2 members 4 members 8 members

Fig. 15. The completion time of different group size.

The completion time indicates that participants should join
a smaller size topic. With the P2P methods, participants
can freely choose to join the topic with the desired size.
Comparatively, in the centered smart contract, the logic is
fixed, and it is difficult to allow participants to customize their
topic size.

IV. RELATED WORK

In the early stage of P2P technology, the software runs on
the hardware of its peers, aiming to eliminate the dependency
on a centered third-party. This fascinates participants to ex-
change data resources (such as MP3) among them. There are
three major aspects of related research. One is to set up a co-
operation network. Work [5] focuses on the unstructured P2P
network for file sharing. Work [4] propose a structured index
system that provides equality and range queries. The second
aspect focuses on how to improve efficiency or scalability.
Work [2] proposes a scalable data access structure. Work [3]
proposes to improve efficiency and fairness by the method

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

of effort-based incentives. The third aspect provides common
frameworks to support the development of P2P software. Work
[6] summarizes the necessary to program the grids. Work [7]
provides a P2P-based middleware to implement the transfer
and aggravation of computing resources.

Blockchain provides a secured P2P model and a consensus
algorithm on the P2P environment to eliminate possible con-
flicts among peers. Actions on a blockchain cannot be denied
and the blockchain helps to keep the data immutability [8].
This can be seen as the second phase of the P2P cooperation.
It depends on the encrypt methods and the consensus algorithm
to enable cooperation among different participants. The con-
sensus algorithm ensures that the results are deterministic [9]
[10]. There is no third-party required to ensure the consensus.
Blockchain provides an environment for fully decentralized
applications.

The smart contract is a program on the blockchain. It allows
the users to define more complex cooperation among different
participants. Some research focus on how to improve the gas
fee in the smart contract [11]. Some research focuses on the
application of smart contracts, such as to promote resource
share [12]. Even the smart contract is applied to interact with
non-blockchain system [13].

However, the smart contract still needs a third-party soft-
ware (a smart contract) that provides a common interaction
framework among participants. This centralized smart contract
runs for all participants and there will be a big loss if the
centralized smart contract is broken. An example is the attack
for the DAO project [14]. To enhance a smart contract, there
are some ways to formally validate a smart contract before it
deployed into the blockchain [15]. However, the single fault
of a smart contract still blocks the whole application. At the
same time, all participants provide corresponding parameters
to invoke the interface of a smart contract, which is not a
turning-complete method for the participants.

V. CONCLUSION

In this paper, we address the issue of how to achieve a fully
decentralized application model, which requires both hardware
and software to run in a P2P way. The P2P application model
allows to customize different requirements of users and has
more robustness. Our solution is based on the blockchain,
as a blockchain has provided the P2P environment with the
consensus algorithm. Then we focus on the P2P software
(smart contract) in this paper. We first proposed the P2P smart
contract that has a requirement for others and the status which
provides to match other’s requirement. Then we describe how
to pair associated smart contracts to form a topic. We propose
three matching methods considering the comparison scope. At
last, we verify the P2P smart contract and compare it with the
centralized methods. Overall, we provide a fully decentralized
way to implement applications that provides more flexibility
and robustness.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their
constructive comments, which help us to improve the

quality of this paper. This work was supported in part
by the National Natural Science Foundation of China
under Grant No. 61772352; the Science and Technol-
ogy Planning Project of Sichuan Province under Grant
No. 2019YFG0400, 2018GZDZX0031, 2018GZDZX0004,
2017GZDZX0003, 2018JY0182, 19ZDYF1286.

REFERENCES

[1] Rufino J, Alam M, Almeida J, et al. Software defined P2P architecture for
reliable vehicular communications[J]. Pervasive and Mobile Computing,
2017, 42: 411-425.

[2] Aberer K, Punceva M, Hauswirth M, et al. Improving data access in p2p
systems[J]. IEEE Internet Computing, 2002, 6(1): 58-67.

[3] Rahman R, Meulpolder M, Hales D, et al. Improving efficiency and
fairness in p2p systems with effortbased incentives[C]//2010 IEEE In-
ternational Conference on Communications. IEEE, 2010: 1-5.

[4] Crainiceanu A, Linga P, Machanavajjhala A, et al. Pring: an efficient
and robust p2p range index structure[C]//Proceedings of the 2007 ACM
SIGMOD international conference on Management of data. 2007: 223-
234.

[5] Stutzbach D, Rejaie R, Sen S. Characterizing unstructured overlay topolo-
gies in modern P2P file-sharing systems[J]. IEEE/ACM Transactions on
Networking, 2008, 16(2): 267-280.

[6] Gannon D, Bramley R, Fox G, et al. Programming the grid: Distributed
software components, p2p and grid web services for scientific applica-
tions[J]. Cluster Computing, 2002, 5(3): 325-336.

[7] Shudo K, Tanaka Y, Sekiguchi S. P3: P2P-based middleware enabling
transfer and aggregation of computational resources[C]//CCGrid 2005.
IEEE International Symposium on Cluster Computing and the Grid, 2005.
IEEE, 2005, 1: 259-266.

[8] Hofmann F, Wurster S, Ron E, et al. The immutability concept of
blockchains and benefits of early standardization[C]//2017 ITU Kalei-
doscope: Challenges for a Data-Driven Society (ITU K). IEEE, 2017:
1-8.

[9] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. bit-
coin.org, 2008.

[10] Gramoli V. From blockchain consensus back to Byzantine consensus[J].
Future Generation Computer Systems, 2020, 107: 760-769.

[11] Marchesi L, Marchesi M, Destefanis G, et al. Design patterns for
gas optimization in ethereum[C]//2020 IEEE International Workshop on
Blockchain Oriented Software Engineering (IWBOSE). IEEE, 2020: 9-
15.

[12] Han D, Zhang C, Ping J, et al. Smart contract architecture for decen-
tralized energy trading and management based on blockchains[J]. Energy,
2020, 199: 117417.

[13] Su H, Guo B, Shen Y, et al. A Solution for State Conflicts of Smart
Contract in Interaction with Non-blockchain[C]//IEEE INFOCOM 2020-
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2020: 382-387.

[14] Mehar M I, Shier C L, Giambattista A, et al. Understanding a revolu-
tionary and flawed grand experiment in blockchain: the DAO attack[J].
Journal of Cases on Information Technology (JCIT), 2019, 21(1): 19-32.

[15] Magazzeni D, McBurney P, Nash W. Validation and verification of smart
contracts: A research agenda[J]. Computer, 2017, 50(9): 50-57.

PLACE
PHOTO
HERE

Hong Su Hong Su received the BS and MS de-
grees, in 2003 and 2006, respectively, from Sichuan
University, Chengdu, China. He is currently a Ph.D.
candidate in the School of Computer Science and
software Sichuan University, Chengdu, China. His
research interests include blockchain and the Internet
of Value.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

PLACE
PHOTO
HERE

Bing Guo Bing Guo is currently a professor of
Sichuan University, Ph.D. supervisor. He received
the Ph.D. from University of Electronic Science and
Technology of China in 2002. His current research
interests include green computing, personal big data,
and blockchain.

PLACE
PHOTO
HERE

Junyu Lu Junyu Lu is currently working toward
the PhD degree in computer science in Sichuan
University, Chengdu, China. He received the B.E.
degree in computer science and the M.E. degree
in computer technology from Sichuan University.
His major research interests include Mobile Cloud,
Mobile Distributed Computing and Resource Allo-
cation.

PLACE
PHOTO
HERE

Xinhua Suo Xinhua Suo is a Ph.D. candidate in
Sichuan University. His current research interests
mainly include Software architecture, Knowledge
Graph (KG), Natural Language Processing (NLP).

