
P
os
te
d
on

8
A
u
g
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
40
74
46
9.
v
2
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Fully Decentralized Model by P2P Smart Contract To Achieve

High Availability in IoT

Hong Su 1,1, Bing Guo 2, Junyu Lu 2, and Xinhua Suo 2

1Sichuan University
2Affiliation not available

November 8, 2023

Abstract

In recent years, the number of IoT devices has increased substantially. One of the main concerns is the interaction with

high availability. While peer-to-peer (P2P) technology has been used to achieve high availability by software running in P2P

hardware, a single software still acts as the center for the interaction. If the software has bugs or is out of service, all devices

are affected. Aiming at this issue, this paper proposes a fully decentralized model as a high-availability solution, in which P2P

software runs on a P2P hardware environment. P2P software is a set of independent software from respective participants

(IoT devices) that can work cooperatively without centralized software. We use blockchain as a P2P platform because it

has P2P nodes and a trustless environment, so the P2P software in this paper is P2P smart contracts. To pair cooperative

smart contracts, each P2P smart contract has requirements on other smart contracts. If several smart contracts matches the

requirements mutually, they are treated as a work group (a topic), and then they process each other’s requests within that

group. When a single smart contract fails, the paired P2P software can be re-selected, resulting in high availability. Simulation

results show that the proposed model can effectively eliminate the impact of the failure of any single smart contract.

1



IEEE LATEX VERSION, VOL. X, NO. X, X X 1

Fully Decentralized Model by P2P Smart Contract
To Achieve High Availability in IoT

Hong Su∗, Bing Guo†, Junyu Lu†, Xinhua Suo† ∗School of Computer Science, Chengdu University of
Information Technology, Chengdu, China †College of Computer Science, Sichuan University, Chengdu, China

Abstract—In recent years, the number of IoT devices has in-
creased substantially. One of the main concerns is the interaction
with high availability. While peer-to-peer (P2P) technology has
been used to achieve high availability by software running in
P2P hardware, a single software still acts as the center for the
interaction. If the software has bugs or is out of service, all
devices are affected. Aiming at this issue, this paper proposes
a fully decentralized model as a high-availability solution, in
which P2P software runs on a P2P hardware environment.
P2P software is a set of independent software from respective
participants (IoT devices) that can work cooperatively without
centralized software. We use blockchain as a P2P platform
because it has P2P nodes and a trustless environment, so the P2P
software in this paper is P2P smart contracts. To pair cooperative
smart contracts, each P2P smart contract has requirements on
other smart contracts. If several smart contracts matches the
requirements mutually, they are treated as a work group (a topic),
and then they process each other’s requests within that group.
When a single smart contract fails, the paired P2P software can
be re-selected, resulting in high availability. Simulation results
show that the proposed model can effectively eliminate the impact
of the failure of any single smart contract.

Index Terms—Fully decentralized, peer to peer software, P2P
software topic, blockchain application model.

I. INTRODUCTION

THE number of IoT devices has increased dramatically
over the past few decades. Forbes reports that the number

of IoT devices will increase to 500 billion by 2030 [1].
Meanwhile, the types of devices are also increasing to adapt
to more and more IoT scenarios. IoT devices need to interact
with other devices, which is usually done by intermediary
systems. High availability of intermediate systems is one of
the major concerns, as its failure may affect a large number
of IoT devices.

High availability refers to the degree to which a system
can provide service when some hardware or software is out
of service. The P2P method is often used to achieve high
availability [2] [3]. In this method, the same copies of software
run on the hardware of each peer, aiming to provide service if
the hardware of some peers fails. However, only the hardware
is in P2P mode; the software is still a single software that acts
as the center for the interaction of participants.

There are some disadvantages of the currently used P2P
method. If the software has bugs (such as an unwanted infinite
loop or an exit due to a null pointer), the instances on each
peer have the same bug because they are created from the

same binary code. This makes it difficult to serve IoT devices
after the error occurs.

To overcome the above disadvantages, we propose P2P
software composed of peer (e.g., an IoT device) softwares.
Each P2P software can work independently, and no one acts as
the central software; related P2P softwares work cooperatively
to provide interactive services between IoT devices. We use
blockchain as a P2P platform because it has P2P nodes and
a trustless environment [4] [5], which allows us to focus only
on P2P software. Then the P2P software in this paper is P2P
smart contracts, because the software on the blockchain is
smart contracts [6] [7].

P2P smart contracts bring greater robustness [8]. The soft-
ware of each peer [9] runs independently, and the software
failure of some peers does not affect the software of other
peers. That is other peers’ smart contracts can still work when
a P2P smart contract fails. It is like the way a smart contract is
divided into small parts. When one part of the smart contract
goes out of service, other parts can still work. By contrast, if
the whole software goes out of service, all its functions cannot
be used.

When both software and hardware are P2P, it is a fully
decentralized model. In this paper, we propose the fully
decentralized application model and focus on P2P software
(P2P smart contracts). The contributions of this paper are as
follows.

(1) We propose a fully decentralized application model.
The P2P smart contract method allows participants to specify
their own logic through different smart contracts. It provides
greater robustness and flexibility than centralized software.
The implementation of the model is based on blockchain,
which provides a secure P2P environment. Together with the
P2P software approach, a completely decentralized application
model is formed.

(2) We propose P2P software. P2P software is software from
all peers, and related P2P software composes application sce-
narios. We use the dependencies between P2P smart contracts
to analyze the relationship between them. This relationship
is how one P2P smart contract matches the requirements of
another P2P smart contract.

(3) We propose two methods for finding cooperative smart
contracts. The first is to find cooperative smart contracts from
all unmatched smart contracts. The second is to group smart
contracts first, and then try to find the paired one in a group,
which reduces the number of smart contracts to compare.

The rest of this paper is organized as follows. Section II
describes the peer-to-peer (P2P) smart contract model. Section



IEEE LATEX VERSION, VOL. X, NO. X, X X 2

III describes the verification results and Section IV concludes
the paper.

II. PEER TO PEER SMART CONTRACT MODEL

A. Peer to Peer Smart Contract
A peer-to-peer smart contract application consists of smart

contracts (peer-to-peer smart contracts) from each participant,
where no single smart contract acts as a centralized contract
for others. Peer-to-peer smart contracts are also referred to as
P2P smart contracts. The currently used smart contracts are
called centralized smart contracts.

Figure 1 shows the interaction process of a P2P smart
contract application. In the beginning, a device sends a smart
contract expressing its request for cooperation. This smart
contract is called a proposal smart contract. If other devices
decide to join, they send their own smart contracts, called
participant smart contracts.

A typical P2P smart contract interaction process can be
divided into three steps.

(1) Proposal stage. A device issues a proposed smart con-
tract for a new cooperation.

(2) Interaction stage. Other devices see the proposal and
decide whether to join. If a device wants to join, it sends
a participant smart contract. The smart contract contains the
status that meets the requirements of the proposed smart
contract. At the same time, the smart contract can also contain
its requirements for other participants’ smart contracts.

(3) Topic formation stage. Cooperation is formed when
the requirements of all smart contracts match. We say that
these smart contracts form a topic, which is used to divide
different cooperative groups of P2P smart contracts. Topics
are discussed further in the II-B section.

1) Cooperation Requirements: P2P smart contracts coop-
erate to accomplish different tasks. However, tasks do not
unconditionally allow any smart contracts to join. The smart
contract should match the conditions of the proposed smart
contract. Therefore, the proposed smart contract first gives the
requirement to select candidate smart contracts for coopera-
tion. A participant P2P smart contract provides its data (or
state) to indicate that it wants to cooperate with the smart
contract.

Candidate smart contracts should meet the requirements of
the proposed smart contract.

A P2P smart contract has two corresponding fields, a
requirement field (requirement set) for selecting candidate
smart contracts and a status field (data set) for matching the
requirements of other smart contracts.

Requirement of Status. There is a challenge to the state
requirements of other smart contracts. If the current state
of the smart contract meets the requirements, does it meet
expectations throughout the whole topics process? That is, a
smart contract can set its state upon verification to match the
requirements of others, and change the state back upon actual
execution. In this way, other participants are deceived.

Therefore, the status of the smart contract should meet two
requirements to avoid this cheating.

(1) The status field should be verifiable. A participant can
easily fake any value in this field if it cannot be verified.

(2) The status field should ensure that future behavior is
also correct. To analyze this problem, we use the notation of
Dt

s to represent the state D provided by the smart contract s
at time t. The state change from D to D′ at a later time t+ δ
should be restricted. The following status D′ and its change
condition C should be known to the relevant participants.

We introduce some conditions that satisfy the above require-
ments.

(a) Conditions that cannot be changed. The sender of a smart
contract [10] is such a condition, which comes from a specific
account and cannot be changed. Therefore, one smart contract
may require another smart contract to be from a specific
account. Take a company as an example. An employee’s leave
request should be approved from a specific address (that of the
Human Resources Department or its manager).

(b) Conditions that should be changed under certain con-
straints. An example of fulfilling requirement (b) is when
digital assets are frozen. The sender of the smart contract locks
its assets into a smart contract (this asset is called frozen asset
[11] [12]). The sender cannot transfer the asset back because
the asset owner has changed. The transfer of frozen assets has
clear conditions (in the smart contract): transferring the asset
to the receiver when the conditions match [13], or returning
the asset to the sender when there is no matching condition
within a certain period of time [14].

B. Topics
Different P2P smart contracts may be dependent [15] or not,

depending on whether they match the requirements of other
smart contracts. We introduce a new concept, topic, to describe
a set of cooperative P2P smart contracts. Suppose there is a
set of smart contracts SC.

If a smart contract set (SC) matches the following condi-
tions, we call it a topic.

(1)Each smart contract has its own dependent smart con-
tracts, and all dependent smart contracts are in the smart
contract set SC. That is, all dependent smart contracts are
in this topic, and there is no dependence on external smart
contracts.

(2)Any two smart contracts have a dependence. Otherwise,
there may be two or more unrelated smart contracts in one
topic, which can be divided into another topic.

1) Topic Identification: Topic identification is the process
by which miners determine which topic a smart contract
belongs to. There are different ways to identify a topic. An
easy way to do this is to compare the target smart contract
with all smart contracts. This method is called the all matching
method.

The complexity of this method is nO(n) (n is the number
of smart contracts). The reason is that it needs to compare
across all smart contracts until a matching contract is found. If
there are numerous smart contracts, judging whether one smart
contract matches the conditions of another smart contract is a
heavy workload.

Then, we introduce another method to reduce the workload
of topic identification, the group matching method.

Group matching method. Smart contracts are first divided
into different groups, and then the target smart contracts are



IEEE LATEX VERSION, VOL. X, NO. X, X X 3

topics

topic 1

topic 2

interaction
propose

...

...

join
(smart contract)

propose
(smart contract)

propose
(smart contract)

join
(smart contract)

join
(smart contract)

join
(smart contract)

- a P2P smart contract

- a P2P smart contract

Fig. 1. The interaction process of P2P smart contracts. This process is divided into three steps. In the first step, a device proposes cooperation through a P2P
smart contract. In the second step, other devices join the cooperation through their smart contracts. In the third step, cooperation (or a topic) is formed when
the relevant smart contracts are matched. There are two topics in the figure, topic 1 and topic 2.

compared within their groups. The workload of the method is
smaller than that of the all matching method, since the smart
contract only needs to compare within its group. To identify
different groups, each smart contract has a group identifier.
The group identifier is set in the proposal smart contract. Other
interested smart contracts specify the same identifier to join.
The complexity of the algorithm is a constant O(1).

C. Topics Choice - Transaction Order Based Selection

There may be several candidates competing for a topic. For
example, a user (User UA) wants to exchange his assets and
specifies the requirements for the exchange. Two users (users
UB and UC) both want to exchange with UA, each sending a
P2P smart contract. Assume that both UB and UC meet the
requirements of UA. There is the question of how to choose
one of them.

In this paper, the approach we take is based on when smart
contracts appear (the earlier, the better). Other methods include
the reward-based method, which considers the reward given to
miners as it reflects the willingness to join the topic.

Since the sending time of smart contracts is difficult to
obtain in some blockchains, the order of appearance of smart
contracts is more convenient. Therefore, the order of smart
contracts is used to measure the time when smart contracts
appear. We begin with the relevant definitions.

Definition 1: Smart Contract Order. All related smart con-
tracts are sorted in the order they were put into the blockchain.
The order is first determined by the block index (rule SCO1);

if two smart contracts are in the same block, it is determined
by their order in that block (rule SCO2). In a topic, we
number each smart contract starting from 1, which represents
the relative order in which the smart contracts appear. For
different topics, since it is difficult to number across topics,
we compare them according to rules SCO1 and SCO2.

We use order(s, t) to denote the order of smart contract s
in topic t.

Definition 2: Different Smart Contract between Topics
(DSC). If a smart contract sc belongs to one candidate topic
tpa and does not belong to another candidate topic tpb, we call
that sc is a different smart contracts between topic tpa and tpb.
It is used to describe the differences between candidate topics.

We use d(tp1, tp2, i) to represent ith different smart con-
tracts in topic tp1 between topics tp1 and tp2, d(tp2, tp1, i)
represents that in topic tp2. For example, if tp1 is
{sc1, sc2, sc3}, and tp2 is {sc1, sc4, sc5}, then d(tp1, tp2, 1)
is sc2, d(tp2, tp1, 1) is sc4, and d(tp1, tp2, 2) is sc3.

This notation can be simplified. If the candidate topics for
comparison are clear, we can only mention the first topic. For
example, when the target topics are tp1 and tp2, d(tp1, tp2, i)
can be simplified to d(tp1, i).

We now describe different strategies based on transaction
order, which are called the topic-choosing algorithms.

1) First DSC Tactic: First DSC is the first different smart
contract between the two candidate topics. For topics tp1 and
tp2, the first DSC of tp1 is d(tp1, tp2, 1) or d(tp1, 1).

The first DSC tactic is that if there are multiple candidate



IEEE LATEX VERSION, VOL. X, NO. X, X X 4

tactics, we choose the topic tpc whose first DSC has the small-
est order. The algorithm 1 shows pseudocode for selecting the
first DSC between two topics.

Algorithm 1 To choose the topic with the first DSC between
two topics.
Require: t1 and t2 are two candidate topics
Ensure: the chosen topic between t1 and t2

1: Topic chooseCompletion(Topic t1, Topic t2){
2: if order(d(t1,1) <d(t2,i) then
3: return t1
4: end if
5: if order(d(t1,1) >d(t2,i) then
6: return t2
7: end if
8: //error case as different smart contracts has different orders
9: return ERROR

10: }

Algorithm 1 can be applied to scenarios between multiple
topics. The algorithm first compares different topics two by
two, and then compares the selected results, and so on. The
selection process forms a binary tree, called a comparison tree.
For example, for the four candidate topics tp1, tp2, tp3, tp4,
we can select the target topic according to the algorithm 2,
and the comparison tree is shown in the figure 2.

Meanwhile, we call the sequence of comparing different
topic pairs as iteration order. For example, the iteration order
of Figure 2 is (tp1, tp2), (tp3, tp4), (tp11, tp2).

Algorithm 2 To choose the topic with the first DSC among
four topics.
Require: t1, t2, t3, t4 are four candidate topics
Ensure: the chosen topic among them

1: Topic chooseCompletion(Topic t1, Topic t2, Topic t3,
Topic t4){

2: t11 = chooseCompletion(t1, t2)
3: t12 = chooseCompletion(t3, t4)
4: return chooseCompletion(t11, t12);
5: }

Fig. 2. Comparison tree to choose a topic among four topics, tp1, tp2, tp3,
and tp4. tp11 is the chosen topic between tp1 and tp2; and tp12 is that
between tp3 and tp4. tp0 is the finally chosen topic.

2) Last Smart Contract Tactic: In some cases, we want to
choose a topic that completes the earliest, which is equivalent

to its last smart contract completing the earliest. We use sclast
to represent the last smart contract. Since sclast is the last
smart contract, it has the highest number in topic tp.

Similarly, we choose the topic tpc with the smallest order
of sclast.

There may be cases where the last smart contract is the same
between two topics, then we further compare the completion
time of the penultimate smart contract, and so on, until a smart
contract with a different completion time is found. Meanwhile,
different topics must have a different smart contract, otherwise,
the two topics are the same. This process is shown in algorithm
3, and we first introduce a related concept.

Definition 3: The nth last smart contract pair (lastPair(n))
is the nth smart contracts from the last smart contract.

For example, two topics tp1 is {sc1, ...,scn−2,..., scn−1,
scn}, and tp2 is {sc′1, ...,sc′n−2, sc′n−1, sc′n}. The first last
smart contract pair (lastPair(1)) is scn and sc′n. The penulti-
mate smart contract pair (lastPair(2)) is scn−1 and sc′n−1.

Algorithm 3 To choose the topic with the last smart contract
tactic between two topics.
Require: t1, t2 are two candidate topics
Ensure: the chosen topic between t1 and t2

1: Topic chooseCompletion(Topic t1, Topic t2){
2: //length(tp) is a function that returns the number of smart

contract in topic tp
3: ln = min(length(t1), length(t2))
4: for i = 1 to ln do
5: if order(lastPari(i, t1)) >order(lastPari(i, t2)) then
6: return t2
7: end if
8: if order(lastPari(i, t1)) <order(lastPari(i, t2)) then
9: return t1

10: end if
11: end for
12: }

D. Deterministic Results and Turning-complete Logics of P2P
Smart Contract

1) Deterministic Results:
Lemma 1: A topic-choosing algorithm is deterministic if it

gives the same results from the same input.
Proof 2.1: First, the input to the topic-choosing algorithm

is deterministic because when the containing blocks of smart
contracts are put into the main chain, their order is fixed.
Therefore, when the topic-choosing algorithm matches the
conditions (gives the same result for the same input), the
chosen topic is deterministic.

Lemma 2: The first DSC outputs deterministic topics re-
gardless of iteration order.

Proof 2.2: Suppose the candidate tactics are tp1, ..., tpi, ...,
tpn. For any two candidate topics, tpi and tpj , at least one
different smart contract exists; otherwise, they are the same
tactic. The min function will return a deterministic result (the
one with the lesser order) between tpi and tpj . This iterates
through all candidate topics, and in each iteration, the first



IEEE LATEX VERSION, VOL. X, NO. X, X X 5

subject with the smaller DSC is selected. Therefore, the last
selected topic is the first one with the smallest DSC.

For example, there are three topics tp1 (sc1, sc3, sc8),
tp2 (sc1, sc4, sc7) and tp3 (sc2, sc5, sc8). If the order
is min(min(tp1, tp2), tp3), tp1 and tp2 are compared first,
and tp3 is compared finally. The result is tp1. If the order
is min(min(tp1, tp3), tp2), tp1, tp3 are compared first, and
tp2 is compared last. The result is also tp1. Similarly, for
min(min(tp2, tp3), tp1), the result is tp1. Although the itera-
tion order is different, the results are the same.

Then no matter what the iteration order is, the first DSC
algorithm outputs a deterministic topic.

Lemma 3: No matter what the iteration order is, the last
smart contract tactic outputs a deterministic topic.

Proof 2.3: We still assume that there are several topics, tp1,
..., tpi, ..., tpn. The algorithm compares the order of smart
contracts in reverse order until it finds a smart contract with
a different order, and picks a topic with a smaller order.

(1) Assuming the smallest one is the last smart contract,
no matter what order the paired smart contracts are selected
for comparison, the topic containing the smallest order will be
selected.

(2) If the last smart contract in all topics is the same and
we delete the last smart contract, it is the same as (1).

(3) If the last two smart contracts are the same, we can
remove the last two smart contracts. The case is also similar
to (1). This can be iterated if more smart contracts are the
same.

(4) After deleting some smart contracts in step (2) or (3), if
a topic has no elements, the topic will be selected. Meanwhile,
no more than one topic will be empty at the same time;
otherwise, they will be the same topic. Therefore, the results
are deterministic.

Theorem 1: The proposed model outputs deterministic re-
sults.

Proof 2.4: In the proposed model, there are two topic-
choosing tactics, the first DSC tactic and the last smart
contract tactic. From the above analysis, we know that both
are deterministic. Therefore, the results of the proposed model
are deterministic.

2) Turning-complete Interaction:
Lemma 4: If a blockchain supports a Turning-complete

smart contract, a user can interact with others in a Turning-
complete way with a P2P smart contract.

Proof 2.5: When a blockchain supports (1) the Turning-
complete smart contacts and (2) the P2P smart contract model,
a user can specify its condition to interact with others in its
own smart contract. And the P2P model does not conflict with
any Turning-complete condition, then the user can interact
with others in a Turning-complete way.

III. VERIFICATION

A. Test Environment and Test Scenarios

Currently available blockchains do not provide a running
environment for P2P smart contracts, and then a self-developed
blockchain is used for verification. The verification blockchain
provides support for P2P smart contracts. (1) Miners check

TABLE I
PEER 2 PEER EXCHANGE

device id requirement data exchange identifier test case

u1 5 assets 1 asset 101 e1
u2 6 assets 2 asset 102 e2
u3 7 assets 3 asset 103 e3
u4 8 assets 4 asset 104 e4
u5 1 asset 5 asset 101 e5
u6 2 assets 6 asset 102 e6
u7 3 assets 7 asset 103 e7
u8 4 assets 8 asset 104 e8

whether a smart contract is a P2P smart contract; (2) If it is a
P2P smart contract, miners try to find a topic through one of
the choosing algorithms; (3) If a topic is formed, then all P2P
smart contracts continue to run. The consensus algorithm for
this blockchain is PoW (Proof of Work), and the difficulty is
set to the degree that a block’s hash starts with at least 6 zeros,
which results in an average mining cycle of tens of seconds
in the verification environment.

Verification scenarios are asset exchanges between IoT
devices that use their own assets to exchange other assets.
These assets are different digital coins in the blockchain. This
can be done in either the centralized way or the P2P way. The
exchange has two parts: part 1, how much asset it wants to
offer, and part 2, how much asset it wants to get from the
paired exchanger. In the centralized way, one smart contract
is used to manage the exchange process. IoT devices specify
part 1 and part 2 of the exchange through parameters. In the
P2P approach, each IoT device specifies its exchange through
a P2P smart contract, where the smart contract’s requirements
are part2 and the status part is part1.

There are four paired exchanges (with the same exchange
identifier), as shown in table I. The requirement part is what
the device expects from its peer, and the data part is what the
device promises to provide to its peer. In the P2P approach,
each exchange is identified by an identifier, the exchange
identifier. The stoe code part of the code is very simple, it
only logs a success message when the exchange is complete.

The sequence of interaction with the blockchain is from
device u1 to device u8. When proposal devices (i.e. devices
from u1 to u4) send their exchange first, paired devices (i.e.
devices from u5 to u8) send their exchange. This sequence
helps to see if an exchange affects others.

To compare robustness, we set a smart contract out of
service in each round of testing. In the P2P smart contract
approach, we choose one of P2P smart contracts from device
u1 to device u8 to be out of service. In the centralized way,
the centralized smart contract goes out of service when the
chosen device interacts with it. Therefore, there are 8 test cases
(named e1, e2 to e8) in both the P2P way and the centralized
way.

B. Comparison between Peer to Peer Smart Contract Method
with Centralized Method

The comparison is between the p2p smart contract approach
(p2p approach) and the centralized smart contract approach



IEEE LATEX VERSION, VOL. X, NO. X, X X 6

0

1

e8

2

e7

a
m

o
u

n
t 

o
f 

d
e

v
ic

e
s
 i
n

 e
x
c
h

a
n

g
e

e6 8

3

7e5

P2P

test cases

4

6
e4

step

5

5

e3 4
3e2

2e1 1

0

1

e8

2

e7

a
m

o
u

n
t 

o
f 

d
e

v
ic

e
s
 i
n

 e
x
c
h

a
n

g
e

e6 8

3

7e5

centralized

test cases

4

6
e4

step

5

5

e3 4
3e2

2e1 1

Fig. 3. The number of affected device during the process. In P2P method, failure of a participant only affect its paired exchanger. In the centralized method,
all successive participants are affected when the failure of the centralized smart contract.

0

1

2

e8

3

e7

4

5

a
m

o
u

n
t 

o
f 

d
e

v
ic

e
s
 i
n

 e
x
c
h

a
n

g
e

e6 8

6

7e5

P2P

test cases

7

6
e4

8

step

5

9

e3 4
3e2

2e1 1

centralized

1
2

3
4

5
6

7
8

step
e1

e2
e3

e4
e5

e6
e7

e8

test cases

0

1

2

a
m

o
u

n
t 

o
f 

d
e

v
ic

e
s
 i
n

 e
x
c
h

a
n

g
e

Fig. 4. Number of separately processing programs.

(centralized approach). The purpose is to verify that P2P smart
contracts are more feasible to express logic and have higher
fault tolerance than centralized methods.

The comparison is in two aspects, the affected device, and
the number of separately processing programs. The affected
device help to understand the difference between the P2P
method the centralized method. The number of separately pro-
cessing programs help to understand the background reason.

1) Affected Devices: P2P methods isolate the actions of
different participants. The failure of one participant does not

affect the actions of the other participants. In this section,
we will focus on the affected devices. Affected devices are
those that interact with the blockchain and cannot be processed
further because their associated smart contracts are out of
service. Figure 3 shows the results for the number of affected
devices (in test cases from e1 to e8).

From the Figure 3, we see that the affected device also has
two distinct phases. The first stage is the period when the fault
occurs from device u1 to device u5 (test cases from e1 to e5).
In the centralized approach, the number of affected devices



IEEE LATEX VERSION, VOL. X, NO. X, X X 7

is accumulated from 0 to 4. Comparatively, no devices were
affected in the P2P approach. Even the device sending the
faulty smart contract will not be affected because its smart
contract is out of service.

The second stage is from the moment when the faults hap-
pen when device u6 joins (test cases from e6 to e8). As some
exchanges are done, the number of affected devices decreased.
However, with a centralized approach, when the smart contract
fails, other unfinished cannot successfully exchange. Then the
number of affected devices is 3, 2, and 1 for e6, e7, and
e8, respectively. In the P2P approach, there is 1 affected
device, the paired exchanger of the faulty smart contract.
Therefore, we conclude that fewer devices are affected in the
P2P approach than in the centralized approach.

2) Separately Processing Programs: Separately processing
programs are smart contracts that process device requests inde-
pendently. The failure of one does not affect the processing of
another. It helps to further understand the difference between
affected assets and affected devices.

There are 4 exchanges in this verification. In a central-
ized approach, one smart contract processes all exchanges,
therefore, there is only one processing program. If this one
fails, no further exchanges can be made. Comparatively, the
P2P approach has 8 processing programs, with paired smart
contracts forming an exchange.

In this verification, each smart contract records the cor-
responding information to a separate log file when it starts,
which is intended to facilitate counting the number of sepa-
rately processing smart contracts. The log files are cleaned
up at the beginning of the test case, and we count the
number of log files after each device sends its request either
by a P2P smart contract or its parameters. The results are
shown in Figure 4. There are more separately processing
programs in the P2P approach (up to 8 programs) than in
the centralized approach (1 program). Therefore, when one
separately processing program is out of service, there are other
separately processing programs to handle service in the P2P
way, which indicates higher robustness.

IV. CONCLUSION

In this paper, we address the issue of how to achieve
high availability. The method is to use the fully decentralized
application model, which requires both hardware and software
to run in a P2P way. The P2P application model has more
robustness and allows customizing of different requirements of
devices. We implement the model by the P2P smart contracts
on a blockchain. Analytical and experimental results show
that we provide a fully decentralized way to achieve high
availability for IoT devices.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their
constructive comments, which help us to improve the
quality of this paper. This work was supported in part
by the National Natural Science Foundation of China
under Grant No. 61772352; the Science and Technol-
ogy Planning Project of Sichuan Province under Grant

No. 2019YFG0400, 2018GZDZX0031, 2018GZDZX0004,
2017GZDZX0003, 2018JY0182, 19ZDYF1286.

REFERENCES

[1] Norita Ahmad, Phil Laplante, and Joanna F DeFranco. Life, iot, and
the pursuit of happiness. IT Professional, 22(6):4–7, 2020.

[2] Asmae Blilat and Abdelali Ibriz. Design and implementation of p2p
based mobile app for collaborative learning in higher education. 2020.

[3] Sumendra Yogarayan, Siti Fatimah Abdul Razak, Afizan Azman, and
Mohd Fikri Azli Abdullah. A mini review of peer-to-peer (p2p) for
vehicular communication. Indonesian Journal of Electrical Engineering
and Informatics (IJEEI), 9(1):185–197, 2021.

[4] Natarajan Deepa, Quoc-Viet Pham, Dinh C Nguyen, Sweta Bhat-
tacharya, B Prabadevi, Thippa Reddy Gadekallu, Praveen Kumar Reddy
Maddikunta, Fang Fang, and Pubudu N Pathirana. A survey on
blockchain for big data: approaches, opportunities, and future directions.
Future Generation Computer Systems, 2022.

[5] Hong Su, Bing Guo, Yan Shen, and Xinhua Suo. Embedding smart
contract in blockchain transactions to improve flexibility for the iot.
IEEE Internet of Things Journal, 2022.

[6] Daojing He, Zhi Deng, Yuxing Zhang, Sammy Chan, Yao Cheng, and
Nadra Guizani. Smart contract vulnerability analysis and security audit.
IEEE Network, 34(5):276–282, 2020.

[7] Alfredo J Perez and Sherali Zeadally. Secure and privacy-preserving
crowdsensing using smart contracts: Issues and solutions. Computer
Science Review, 43:100450, 2022.

[8] Cameron McPhail, Holger R Maier, Seth Westra, Leon van der Linden,
and Jan H Kwakkel. Guidance framework and software for under-
standing and achieving system robustness. Environmental Modelling
& Software, 142:105059, 2021.

[9] Ayman Esmat, Martijn de Vos, Yashar Ghiassi-Farrokhfal, Peter Palen-
sky, and Dick Epema. A novel decentralized platform for peer-to-peer
energy trading market with blockchain technology. Applied Energy,
282:116123, 2021.

[10] Yaoqing Liu, Guchuan Sun, and Stephanie Schuckers. Enabling secure
and privacy preserving identity management via smart contract. In 2019
IEEE conference on communications and network security (CNS), pages
1–8. IEEE, 2019.

[11] Hong Su, Bing Guo, Jun Yu Lu, and Xinhua Suo. Cross-chain exchange
by transaction dependence with conditional transaction method. Soft
Computing, 26(3):961–976, 2022.

[12] Yan Zhu, Weijing Song, Di Wang, Di Ma, and William Cheng-Chung
Chu. Ta-spesc: Toward asset-driven smart contract language supporting
ownership transaction and rule-based generation on blockchain. IEEE
Transactions on Reliability, 70(3):1255–1270, 2021.

[13] Narges Shadab, Farzin Houshmand, and Mohsen Lesani. Cross-chain
transactions. In 2020 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), pages 1–9. IEEE, 2020.

[14] Qian Zhang, Sheng Cao, and Xiaosong Zhang. Enabling auction-based
cross-blockchain protocol for online anonymous payment. In 2021
IEEE 27th International Conference on Parallel and Distributed Systems
(ICPADS), pages 715–722. IEEE, 2021.

[15] Christian Gorenflo, Lukasz Golab, and Srinivasan Keshav. Xox fabric:
A hybrid approach to blockchain transaction execution. In 2020 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC),
pages 1–9. IEEE, 2020.


