
P
os
te
d
on

5
M
ar

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
41
29
08
1.
v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
09
/T

E
D
.2
02
1.
30
94
77
6

Element Edge Based Discretization for TCAD Device Simulation

Juan Sanchez 1 and Qiusong Chen 2

1DEVSIM LLC
2Affiliation not available

October 30, 2023

Abstract

Technology computer-aided design (TCAD) semiconductor device simulators solve partial differential equations (PDE) using

the finite volume method (FVM), or related methods. While this approach has been in use over several decades, its methods

continue to be extended, and are still applicable for investigating novel devices. In this paper, we present an element edge based

(EEB) FVM discretization approach suitable for capturing vector-field effects. Drawing from a 2D approach in the literature,

we have extended this method to 3D. We implemented this method in a TCAD semiconductor device simulator, which uses a

generalized PDE (GPDE) approach to simulate devices with the FVM. We describe how our EEB method is compatible with

the GPDE approach, allowing the modeling of vector effects using scripting. As an example, this method is applied to solve

polarization effects in ferroelectric materials, with examples of a 3D ferro capacitor and a 2D ferroelectric field-effect transistor.

1

1

Element Edge Based Discretization for TCAD
Device Simulation

Juan E. Sanchez, Senior Member, IEEE , and Qiusong Chen

Abstract—Technology computer-aided design (TCAD)
semiconductor device simulators solve partial differential
equations (PDE) using the finite volume method (FVM), or
related methods. While this approach has been in use over
several decades, its methods continue to be extended, and
are still applicable for investigating novel devices. In this
paper, we present an element edge based (EEB) FVM dis-
cretization approach suitable for capturing vector-field ef-
fects. Drawing from a 2D approach in the literature, we have
extended this method to 3D. We implemented this method
in a TCAD semiconductor device simulator, which uses a
generalized PDE (GPDE) approach to simulate devices with
the FVM. We describe how our EEB method is compatible
with the GPDE approach, allowing the modeling of vector
effects using scripting. As an example, this method is ap-
plied to solve polarization effects in ferroelectric materials,
with examples of a 3D ferro capacitor and a 2D ferroelectric
field-effect transistor.

Index Terms— Device Simulation, FeFET, Semiconduc-
tor, TCAD

I. INTRODUCTION

T
ECHNOLOGY computer-aided design (TCAD) semicon-

ductor device simulators solve continuum partial dif-

ferential equations (PDEs) of the drift-diffusion model for

semiconductors on a discretized mesh [1]. The finite volume

method (FVM) is the most widely used approach for assem-

bling the PDEs. In the TCAD device simulation literature,

the FVM is referred as finite boxes or control volume and is

closely related to finite differences [2].

The popularity of the FVM is due to the success of the

Scharfetter-Gummel method (SGM) in calculating the electron

and hole current densities from exponentially varying carrier

densities [3], which exhibits superior numerical stability than

other approaches [1], [4]. While the finite element method

(FEM) presents advantages in some circumstances [5], [6],

the lack of an equivalent to the SGM often leads to hybrid

FVM/FEM approaches when solving the device equations with

an otherwise FEM solver [7]–[9]. While sharing some of the

methods of device simulators, TCAD process simulators are

more amenable to FEM-based approaches for the set of PDEs

they are meant to solve [6].

Standard simulation models fit well into a node based

approach, as volume integration and surface integration of the

J. E. Sanchez is with DEVSIM LLC, PO Box 50096, Austin, TX 78763,
USA (e-mail: jsanchez@devsim.com)

Q. Chen, is with the Department of Materials Science, Fudan
University, 220 Handan Road, Shanghai 200433, China (e-mail:
chenqiusong@gmail.com)

PDEs are accounted for in the calculation of quantities at the

mesh nodes, and at the edges connecting to adjacent mesh

nodes.

Advanced simulation models use vector fields and require

information from node quantities off of the edge. For mobility

models, this requires knowledge of electric field parallel

and normal to the direction of current flow [10]. For the

ferroelectric effect, the vector components of electric field and

polarization are considered [11], [12]. Nodal approaches have

been proposed for evaluation of these models, which consider

all adjacent nodes to the node of interest [13], [14]. These

approaches consider a constant field over the entire control

volume bounded by these nodes.

In contrast, an element edge based (EEB) approach has

the advantage that the control volume is bounded by the sub

volume along each edge of the element being considered.

This makes it possible to consider phenomena occurring over

smaller scales, such as for impact ionization models [15].

Laux used a 2D EEB approach to model generalized mobil-

ity [10] and impact ionization [15], where vector fields are

calculated for each edge of a triangular element. In [16], this

discretization was compared with other approaches for impact

ionization, and it was found to be less susceptible to changes

in mesh size than the other methods they considered. This

was attributed to the EEB approach using a smaller effective

control volume for each element edge. In this paper, we adopt

this approach for 2D and extend it for tetrahedral elements in

3D.

Generalized PDE (GPDE) simulators use an equation de-

scription as input from the user [4], [6], [14], [17], [18].

The goal is to allow the rapid development of new models

and applications for the continuum based approach. Model

development time is reduced when the model fits into the

existing capabilities of the simulator and is done through a

scripting interface. This is in contrast to using a compiled

computer language, like C++.

Many GPDE simulators do not consider vector effects, as

equation assembly is often restricted to node or edge based

quantities [4]. Other simulators do not completely model

equation sensitivities to vector effects. Some may provide

problem specific operators, limiting the general purpose nature

of their approach. One group compared 3 TCAD simulation

approaches to model the ferroelectric capacitance effect [14].

They report better convergence for methods where more

complete model sensitivities are considered, such as ensuring

that the electric field is fully coupled with the field dependent

polarization model.

2

In this paper, we describe an EEB approach to model-

ing vector-field effects in DEVSIM, an open source GPDE

semiconductor device simulator, for both 2D and 3D device

simulation [19]. We describe the approach in Section II. In

Section III, present a simulation examples for the hysteresis

effects in a ferroelectric capacitor in 3D and a ferroelectric

field effect transistor (FeFET) simulation results in 2D.

II. SIMULATOR METHODS

A. Equation Assembly

1) Newton Method: The Newton method requires the eval-

uation of the model equations, as well as the derivatives

with respect to the solution variable [1]. This results in a

formulation:

J∆x = −F (1)

where J is the Jacobian, ∆X is update to the solution vector,

and F is referred to as the right-hand side (RHS) vector. As the

method converges at each iteration, |F | → 0 and |∆x| → 0,

to the limits of floating point precision. For TCAD simulation,

the nonlinear nature of the PDEs often require a reasonable

initial guess, and accurate derivatives, to get convergence or a

good convergence rate.

The PDEs considered in this paper fit in the form

F a : ∇ ·
−→
C +∇ ·

−→
A +B = 0 (2)

where
−→
C is an EEB quantity,

−→
A is an edge quantity, and B

is a node quantity. The label F a refers to equation a being

considered, as there are multiple simultaneously coupled PDEs

in semiconductor simulation1.

2) Node Assembly: Fig. 1 shows a mesh node in 2D

surrounded by triangular elements. The B term is integrated

over the NodeVolume. Using the Newton method, the RHS

entry for this scalar quantity:

F ai += Bi · NodeVolumei (3)

for each node i on the simulation mesh. In this, and subsequent

equations, += represents addition of the term to an existing

matrix or vector entry. Similarly, −= represents the subtraction

from matrix and vector entries.

Similarly for the Jacobian:

Ja,xi,i +=
∂Bi
∂xi

· NodeVolumei (4)

where xi is a simulation variable on the same node. The

Jacobian entry is placed in the row corresponding to equation

a and the column corresponding to simulation variable x.

3) Edge Assembly : Fig. 2 shows the EdgeCouple over

which flux is integrated for the
−→
A term in (2). The calculation

of EdgeCouple is described in Section II-A.4.

For each edge consisting of nodes 〈i, j〉

F ai +=Ai,j · EdgeCouplei,j (5)

F aj −=Ai,j · EdgeCouplei,j (6)

1The case where B involves a time-derivative is also handled by the
simulator. This paper does not consider our approach to time integration
methods or boundary conditions.

NodeVolume

EdgeCouple

Fig. 1. The 2D mesh cell with an arbitrary number of triangle elements
connected to node. The volume of a node is bounded by the perpendic-
ular bisectors of each triangle [20].

EdgeLength

EdgeCouple

n1n0

Fig. 2. The 2D mesh cell depicting how flux is integrated along each
edge [20]. The EdgeCouple is the length of the perpendicular bisectors
for the 2 triangles along the edge connecting nodes 〈n0, n1〉.

where Ai,j is the vector quantity evaluated on a mesh edge,

and EdgeCouplei,j is the cross section of the mesh edge.

The Jacobian entries are:

Ja,xi,k +=
∂Ai,j
∂xk

· EdgeCouplei,j (7)

Ja,xj,k −=
∂Ai,j
∂xk

· EdgeCouplei,j (8)

where xk is the simulation variable on one of the 2 nodes on

the edge.

The data structures for this approach require the location of

nodes in the mesh, and the edges connecting them to adjacent

nodes. In this approach, the element type or dimension is

not relevant to the assembly process, other than to calculate

J. E. SANCHEZ AND Q. CHEN: ELEMENT EDGE BASED DISCRETIZATION FOR TCAD DEVICE SIMULATION 3

ElementNodeVolume

en1

en2

en0

EdgeLength

ElementEdgeCouple

Fig. 3. The mesh cell in 2D. Each triangle is subdivided into 3
subvolumes. The labels for nodes 〈en0, en1, en2〉 are specific to the
element edge in the sub element bounded by the solid line [20].

en0

en1

en2

en3

Fig. 4. The element cell in 3D. The tetrahedron is subdivided into 6
subvolumes along each element edge. The element edge has the edge
nodes labeled 〈en0, en1〉. The other nodes are labeled 〈en2, en3〉.

EdgeCouple and NodeVolume.

4) Element Edge Assembly: We consider the
−→
C contribu-

tion to (2), which is an EEB contribution, which is dependent

on variables on all of element nodes.

Fig. 3 shows a 2D representation of the volume

and area over which the integration occurs. In 2D, the

ElementEdgeCouple around each node is from the cen-

ter of the triangle circumcenter to the center of the edge.

Fig. 4 shows the element edge volume in 3D, where the

ElementEdgeCouple is from the circumcenter of the tetra-

hedral element, to the circumcenters of the element triangles

connected to the element edge, to the center of the element

edge. In both 2D and 3D, the EdgeCouple (Section II-A.3)

is calculated by summing up the ElementEdgeCouple for all

element edges connected to the edge being considered.

Similar to (5)–(6), the right hand side contribution of the

additional term is:

F ai +=Cti,j · ElementEdgeCouple
t
i,j (9)

F aj −=Cti,j · ElementEdgeCouple
t
i,j (10)

where index t refers to the element containing the edge. In

2D, the triangle has 3 sub volumes over which to perform

the integration. In 3D, the tetrahedron has 6 sub volumes

contributing to these equations.

Similar to (7)–(8), the Jacobian entries are:

Ja,xi,k +=
∂Cti,j
∂xk

· ElementEdgeCoupleti,j (11)

Ja,xj,k −=
∂Cti,j
∂xk

· ElementEdgeCoupleti,j (12)

where xk is a simulation variable on one of the nodes on the

element. In 2D, this is the 2 nodes, 〈en0, en1〉, on the element

edge being considered, and a third node, en2, on a triangular

element as shown in Fig. 3. In 3D, there are 2 nodes on the

each element edge, 〈en0, en1〉, as well as 2 additional nodes

on the tetrahedral element 〈en2, en3〉, as shown in Fig. 4.

5) Edge Volume Assembly : It is also possible to do a

volume integration using either the edge based or EEB as-

sembly. This is useful for models such as the density gradient

model [21] or impact ionization model [15].

To perform volume integration along an edge we consider

F ai +=Xi,j · EdgeNodeVolumei,j (13)

F aj +=Xi,j · EdgeNodeVolumei,j (14)

where Xi,j is an edge model based on quantities at nodes

〈i, j〉. The EdgeNodeVolumei,j (see Fig. 2) is the volume

along the edge connected by the same nodes.

Similarly, for element edges:

F ai +=Y t,0i,j · ElementNodeVolumeti,j (15)

F aj +=Y t,1i,j · ElementNodeVolumeti,j (16)

where Y t,0i,j , Y
t,1
i,j are models evaluated on the element

edge connected by nodes 〈i, j〉 on the element t. The

ElementNodeVolumeti,j (see Fig. 3) is the volume along the

element edge connected by the same nodes. The superscripts

0, 1 represents that the model may be different for the first or

second node of the element edge.

The Jacobian entries are then calculated in a manner anal-

ogous to (7)–(8) and (11)–(12)

B. Element Edge Based Fields

1) Calculating the Vector Field: Consider a vector field that

we wish to calculate for an edge of a tetrahedral element. We

begin by calculating the components along each mesh edge in

the device region. For the case of electric field, this is

Ei,j = (ψi − ψj) /Lj,i (17)

where ψi and ψj are the potentials at nodes 〈i, j〉, and Lj,i
is the distance between them. The derivatives with respect to

the node potentials are:

∂Ei,j

∂ψi
= 1/Lj,i

∂Ei,j

∂ψj
= −1/Lj,i (18)

4

E0, 1

E0, 2
E0, 3

0

1

2

3

Fig. 5. Depiction on how vector field is calculated from the scalar fields
calculated along the 3 edges connected to node 0.

If the electric field on the element,
−→
E , is known, this is

equivalent to

Ei,j = ŝi,j ·
−→
E (19)

where ŝi,j is the unit vector along the edge connecting nodes

〈i, j〉. In Fig. 5, we show how these scalar fields are used to

calculate the vector field on node 0.

For tetrahedra with nodes 〈0, 1, 2, 3〉, we use the compo-

nents of the unit vectors to calculate the electric field for all

edges connected to node 0

ŝx
0,1 ŝy

0,1 ŝz
0,1

ŝx
0,2 ŝy

0,2 ŝz
0,2

ŝx
0,3 ŝy

0,3 ŝz
0,3

−→
E 0x−→
E 0y−→
E 0z

=

E0,1

E0,2

E0,3

 (20)

or

S0 ×
−→
E0 =

(

E0,1 E0,2 E0,3

)T
(21)

so that the computed field is then:

−→
E0 = S−1

0
×
(

E0,1 E0,2 E0,3

)T
(22)

It should be noted that each row in (20) may swap the order

of indexes for each edge, depending on the node ordering of

each edge stored in the simulator. This is correct as long as

the ordering between the unit vector and the scalar field in

(19) are consistent since Ei,j = −Ej,i and ŝi,j = −ŝj,i.
The derivatives with respect to the node potentials are then

∂
−→
E0

∂ψ0

= S−1

0
×
(

∂E0,1

∂ψ0

∂E0,2

∂ψ0

∂E0,3

∂ψ0

)T

(23)

∂
−→
E0

∂ψ1

= S−1

0
×
(

∂E0,1

∂ψ1

0 0
)T

(24)

∂
−→
E0

∂ψ2

= S−1

0
×
(

0
∂E0,2

∂ψ2

0
)T

(25)

∂
−→
E0

∂ψ3

= S−1

0
×
(

0 0
∂E0,3

∂ψ3

)T

(26)

In 3D, we treat the field for the edge between nodes 〈0, 1〉
using an average:

−−→
E0,1 = 0.5

(−→
E0 +

−→
E1

)

(27)

where
−→
E1 is calculated by considering node 1 as the node of

interest in (20)–(26).

−→
E1 = S−1

1
×
(

E1,0 E1,2 E1,3

)T
(28)

The derivative with respect to the node potential is then:

∂
−−→
E0,1

∂ψk
= 0.5

(

∂
−→
E0

∂ψk
+ ∂

−→
E1

∂ψk

)

(29)

where k refers to one of the 4 nodes on the element. We

assume that the average employed in (27)–(29) is appropriate

for creating vectors from edge based models. It can be shown

for electric field that
−→
E0 =

−→
E1. In a case like current density,

which do not have such a property, then (29) appears to be an

acceptable average.

In 2D, we use an edge average from [10], [15], based on

the perpendicular bisectors of the triangular elements.

−−→
E0,1 = dt

1,0,2 ·
−→
E0 + dt

0,1,2 ·
−→
E1 (30)

where

dti,j,k =
ElementEdgeCoupleti,k

ElementEdgeCoupleti,k + ElementEdgeCoupletj,k
(31)

so that the averaging is weighted, based on the open angle of

the edge pairs associated with each node. The simulator also

provides the ability to customize the weighting of
−→
E0 and

−→
E1

in (27) and (30), so that the average may be problem specific.

Once the vector fields are attained, the vector components

are used to calculate the components for the element edge

assembly in (9)–(12). For example, the electric field in the

direction of current flow can be calculated from [10]:

E
‖
i,j =

−→
J i,j ·

−→
Ei,j

∣

∣

∣

−→
J i,j

∣

∣

∣

(32)

This scalar value can evaluated in the model and added to the

matrix and RHS vector. Scalar models defined as an edge or

element edge model, can also be used in calculations with the

vector field components. This will be described in Section II-

C, where the approach is applied to the polarization vector.

2) Computational Cost: In practice, the S0 term in (21) is

calculated once for each node of a tetrahedral element and is

assigned as S0 or S1, based on the element edge of interest.

The factorization of S0 is an O(n3) operation where n = 3
in 3D and n = 2 in 2D). Since only geometric information is

stored, the factorization is only done once at the beginning of

the simulation, and is shared across all model equations and

derivatives across all iterations of the simulation. The number

of scalar evaluations for edge quantities for models like (17)–

(18) would be 1 per edge in the simulation mesh. The cost of

the field evaluation, (22), at each iteration is O(n2) for each

element node, and the result is averaged along each connected

element edge.

One of the advantages of this approach is the ability to

take advantage of high performance math routines, so that the

matrix factorization and solution can be done in an efficient

manner [22].

In a control volume approach, on an unstructured mesh, the

field would be averaged over an arbitrary number of edges

J. E. SANCHEZ AND Q. CHEN: ELEMENT EDGE BASED DISCRETIZATION FOR TCAD DEVICE SIMULATION 5

connected to the node of interest. The cost of evaluating the

effects of the derivatives would depend on the algorithm in

use, but is sometimes limited strictly to nodes on the edge

quantity being evaluated. If the derivatives are incomplete,

this could lead to additional solver iterations, or possible non

convergence.

3) Limitations on Element Type: In our approach, we have

restricted the method to triangular elements in 2D and tetrahe-

dral elements in 3D. The original finite box methods restricted

themselves to box and cube elements [1], and were later

expanded [2]. While it is possible that other element types

may be compatible with our method, this is the subject of

further investigation.

It is necessary that the tetrahedra are Delaunay, where the

center of the circumsphere is inside the element, so that the

volume and surface integrals inside the simulator are calcu-

lated correctly [23]. While there are methods to accommodate

non-Delaunay elements, their presence often leads to less

accurate results and convergence difficulties [2].

4) Derivative Accuracy: The best convergence behavior is

dependent on having accurate derivatives for the simulation

models [1]. In the first simulation example (Section III-A),

we compare the convergence behavior when having the full

set of element derivatives versus having only a partial set

of derivatives available, as is the case with many GPDE

simulators [4]. Accurate derivatives are also important for

methods using linearization around the device solution, such

as small-signal ac [24], and impedance field methods for noise

analysis [25] and random dopant fluctuations [26].

C. Generalized PDE Approach

In DEVSIM, models are implemented as symbolic expres-

sions, and they are assembled and solved [18], [20]. Symbolic

differentiation is employed to get the required derivatives. The

simulator accepts equations in the form of:

Node models on each node (Section II-A.2)

Edge models on each edge (Section II-A.3)

Element edge models on each element edge (Section II-

A.4)

The GPDE equations are input by calling commands from

a Python script [27]. The simulator is a module loaded by

the interpreter and it is written in C++, and utilizes third party

libraries for the direct solver and dense matrix operations [18].

In this section, we discuss how to the EEB method is used

for modeling polarization effects. A ferroelectric model may

be implemented directly, using scripting. For a ferroelectric

insulator, the equation is:

∇ ·
(

ε
−→
E +

−→
P
)

= 0 (33)

where
−→
P is the polarization.

We first start with the edge model for electric field and its
derivatives

EF, EF:psi@n0, EF:psi@n1

where EF is evaluated using an expression for (17) and the rest

are calculated using (18) for nodes 〈0, 1〉, respectively. The

user defines the model and its derivatives using the symbolic

differentiation engine in the simulator.
From the edge model and its derivatives, the

element from edge model command is used to create
element edge models as:

EF_x, EF_y, EF_z

for each vector component using (27) and their derivatives
using (29)

EF_x:psi@en0, EF_y:psi@en0 EF_z:psi@en0

EF_x:psi@en1, EF_y:psi@en1 EF_z:psi@en1

EF_x:psi@en2, EF_y:psi@en2 EF_z:psi@en2

EF_x:psi@en3, EF_y:psi@en3 EF_z:psi@en3

The first term represents the derivative of EF x with respect to

the potential at node 0, and the other terms follow in a similar

fashion.

During evaluation, indexes 〈en0, en1〉 reference nodes on

the element edge and 〈en2, en3〉 reference the other element

nodes on the tetrahedron. The simulator tracks the element

edge indexes on a per element edge basis, so that the same

PDE expression will work for each element edge being con-

sidered.
The simulator then evaluates the symbolic expression

for (33) using

(PX+Permittivity*EF_x)*unitx +

(PY+Permittivity*EF_y)*unity +

(PZ+Permittivity*EF_z)*unitz

where unitx, unity, and unitz are the unit vector

components along the element edge and Permittivity

is a parameter. The terms PX, PY, and PZ are components

which computed in using expressions involving the current

and previous solutions for the electric field. We utilized a

widely accepted empirical function of hyperbolic tangent to

simulate the hysteresis loop [11], [12], [28]. Scripting was used

to generate these terms for all of the x, y, and z components

and the derivatives of the polarization vector and electric fields.

III. SIMULATION EXAMPLES

A. Ferrocapacitor Simulation

We used TetGen [29] to generate a mesh of a cube and

boundary conditions on the top and bottom. TetGen performs

a constrained Delaunay tetrahedralization (CDT), which does

not guarantee that all elements meet the Delaunay criterion.

A script was written to read the mesh and mark the non-

Delaunay elements for refinement. Using this background

mesh approach, it was possible to achieve a Delaunay mesh.

The mesh and physics are loaded via scripts into the

simulator. Fig. 6 shows the compensated charge versus the

applied voltage for a ferroelectric capacitor. From the initial

zero bias condition, the voltage is ramped over the range

between ±15 V . The hysteresis in the charge due to the

polarization is apparent in the figure.

As a test of the accuracy of our approach, we repeated the

simulations with derivative terms with respect to 〈en2, en3〉
set to 0. This emulates the condition in GPDE simulators

which evaluate vector effects over all adjacent nodes, but may

restrict their derivative information on edges [4], [14].

6

−10 −5 0 5 10
Bias (V)

−4

−2

0

2

4

Co
m
pe

ns
at
ed

 C
ha

rg
e
(C
)

×10−16

Fig. 6. The ferro capacitor 3D simulation.

1 2 3 4 5 6 7 8
Iteration Number

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Re
la
tiv

e
Er
ro
r

full
edge

Fig. 7. The relative error versus iteration number. The solid line is for
derivatives for all nodes on the element. The dashed line is when only
nodes on the edge are considered.

Fig. 7 shows relative error versus iteration number for one

of the bias points. With all derivatives accounted for, it takes

2 iterations to get a relative error near 10−15, which is the

limit of accuracy for double precision floating point arithmetic.

This number of iterations for this equation system is expected,

since the equation derivatives are constant with respect to bias.

When the off edge derivatives are neglected, the iteration count

is higher to to attain a relative error within 10−10.

B. FeFET Simulation

We simulated a 2D p-type FeFET with a top contact/bottom

gate architecture. Ohmic contacts were set at the source

and drain electrodes. A triangular mesh was generated using

Gmsh [30]. Extended precision math mode was enabled in

the equation assembly to prevent numerical noise in the off

−30 −20 −10 0 10 20 30
Gate Bias (V)

10−17

10−15

10−13

10−11

10−9

10−7

Dr
ai
n
Cu

rre
nt
 (|
A|
))

Fig. 8. The p-type FeFET 2D simulation.

state current results. Fig. 8 shows the drain current versus

gate voltage. The simulation details and an analysis of the

switching processes of FeFET with respect to its structure will

be presented in a separate publication [31].

IV. CONCLUSION

In this paper, we presented an approach for modeling vector

effects on element edges. The algorithm evaluates models

and their derivatives in both 2D and 3D. We describe how

the approach works within a GPDE simulator. Simulation

examples for the ferroelectric effect were presented.

REFERENCES

[1] S. Selberherr, Analysis and simulation of semiconductor devices. NY:
Springer-Verlag, 1984.

[2] M. R. Pinto, “Comprehensive semiconductor device simulation for
silicon ULSI,” Ph.D. dissertation, Stanford University, 1990.

[3] D. L. Scharfetter and H. K. Gummel, “Large-signal analysis of a silicon
Read diode oscillator,” IEEE Trans Electron Devices, vol. ED-16, no. 1,
pp. 64–77, Jan. 1969, 10.1109/T-ED.1969.16566.

[4] K. M. Kramer and W. N. G. Hitchon, Semiconductor Devices: A

Simulation Approach. Up Saddle River, NJ: Prentice Hall PTR, 1997.

[5] D. J. Cummings, M. E. Law, S. Cea, and T. Linton, “Comparison of
discretization methods for device simulation,” in 2009 Int Conf SISPAD,
2009, pp. 1–4, DOI: 10.1109/SISPAD.2009.5290236.

[6] E. Patrick, N. Rowsey, and M. E. Law, “Total dose radiation damage: A
simulation framework,” IEEE Trans Nucl Sci, vol. 62, no. 4, pp. 1650–
1657, 2015, DOI: 10.1109/TNS.2015.2425226.

[7] P. Bochev, K. Peterson, and X. Gao, “A new control volume finite
element method for the stable and accurate solution of the drift-diffusion
equations on general unstructured grids,” Comput Methods Appl Mech

Eng, vol. 254, pp. 126–145, 02 2013, DOI: 10.1016/j.cma.2012.10.009.

[8] COMSOL, “Analyze semiconductor devices at the fundamental level
with the semiconductor module,” last accessed 09/15/2020. [Online].
Available: https://www.comsol.com/semiconductor-module

[9] L. Chen and H. Bagci, “Steady-state simulation of semiconductor
devices using discontinuous Galerkin methods,” IEEE Access, vol. 8,
pp. 16 203–16 215, 2020, DOI: 10.1109/ACCESS.2020.2967125.

[10] S. E. Laux and R. G. Byrnes, “Semiconductor device simulation using
generalized mobility models,” IBM J. Res. Dev., vol. 29, no. 3, pp. 289–
301, May 1985, DOI: 10.1147/rd.293.0289.

J. E. SANCHEZ AND Q. CHEN: ELEMENT EDGE BASED DISCRETIZATION FOR TCAD DEVICE SIMULATION 7

[11] S. L. Miller, R. D. Nasby, J. R. Schwank, M. S. Rodgers, and P. V.
Dressendorfer, “Device modeling of ferroelectric capacitors,” J Appl

Phys, vol. 68, no. 12, pp. 6463–6471, 1990, DOI: 10.1063/1.346845.
[12] M. Ghittorelli, T. Lenz, H. Sharifi Dehsari, D. Zhao, K. Asadi,

P. W. M. Blom, Z. M. Kovács-Vajna, D. M. de Leeuw, and F. Torricelli,
“Quantum tunnelling and charge accumulation in organic ferroelec-
tric memory diodes,” Nat Commun, vol. 8, no. 1, p. 15741, 2017,
DOI: 10.1038/ncomms15841.

[13] Z. Yu, D. W. Yergeau, and R. W. Dutton, “Algorithm for evaluating nodal
vector quantities in device simulation and its applications to modeling
quantum mechanical effects in sub-50nm MOSFETs,” in Int Symp VLSI

Tech, Syst App, 2003, pp. 261–264, DOI: 10.1109/VTSA.2003.1252603.
[14] T. Ikegami, K. Fukuda, and J. Hattori, “Implementation of automatic

differentiation to Python-based semiconductor device simulator,” in 2019

Int Conf SISPAD, 2019, pp. 1–4, DOI: 10.1109/SISPAD.2019.8870377.
[15] S. E. Laux and B. M. Grossman, “A general control-volume for-

mulation for modeling impact ionization in semiconductor transport,”
IEEE Trans Electron Devices, vol. 32, no. 10, pp. 2076–2082, 1985,
DOI: 10.1109/T-ED.1985.22241.

[16] O. Triebl and T. Grasser, “Investigation of vector discretization schemes
for box volume methods,” in Tech Proc 2007 NSTI Nanotechnology Conf

and Trade Show, Vol 3, 2007, pp. 61–64.
[17] Y. Liu and R. Dutton, “Nano-scale device simulations using

PROPHET-Part II: PDE systems,” Jan. 2006. [Online]. Available:
http://www.nanohub.org/resources/975/

[18] J. E. Sanchez, “Semiconductor device simulation using DEVSIM,” in
Open Source TCAD/EDA for Compact Modeling, W. Grabinski and
D. Tomaszewski, Eds. New York: Springer, 2021.

[19] DEVSIM LLC, “DEVSIM TCAD semiconductor device simulator,”
Available: https://devsim.org.

[20] ——, “DEVSIM User Guide,” Available: https://devsim.net.
[21] A. Wettstein, O. Penzin, and E. Lyumkis, “Integration of

the density gradient model into a general purpose device
simulator,” VLSI Design, vol. 15, no. 4, pp. 751–759, 2002,
DOI: 10.1080/1065514021000012363.

[22] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide, 3rd ed. Philadelphia, PA: SIAM,
1999.

[23] B. Haindl, R. Kosik, P. Fleischmann, and S. Selberherr, “Comparison
of finite element and finite box discretization for three-dimensional
diffusion modeling using AMIGOS,” in 1999 Int Conf SISPAD, 1999,
pp. 131–134, DOI: 10.1109/SISPAD.1999.799278.

[24] S. E. Laux, “Techniques for small-signal analysis of semiconductor
devices,” IEEE Trans Electron Devices, vol. 32, no. 10, pp. 2028–2037,
1985, DOI: 10.1109/T-ED.1985.22235.

[25] F. Bonani, G. Ghione, M. R. Pinto, and R. K. Smith, “An efficient
approach to noise analysis through multidimensional physics-based
models,” IEEE Trans Electron Devices, vol. 45, no. 1, pp. 261–269,
1998, DOI: 10.1109/16.658840.

[26] K. El Sayed, A. Wettstein, S. D. Simeonov, E. Lyumkis, and B. Polsky,
“Investigation of the statistical variability of static noise margins of
sram cells using the statistical impedance field method,” IEEE Trans-

actions on Electron Devices, vol. 59, no. 6, pp. 1738–1744, 2012,
DOI: 10.1109/TED.2012.2189860.

[27] Python Software Foundation, “Python,” https://python.org.
[28] S. L. Miller and P. J. McWhorter, “Physics of the ferroelectric non-

volatile memory field effect transistor,” J Appl Phys, vol. 72, no. 12, pp.
5999–6010, 1992, DOI: 10.1063/1.351910.

[29] H. Si, “TetGen, a Delaunay-based quality tetrahedral mesh gen-
erator,” ACM Trans. Math. Softw., vol. 41, no. 2, Feb. 2015,
DOI: 10.1145/2629697.

[30] C. Geuzaine and J.-F. Remacle, “Gmsh: a three-dimensional finite
element mesh generator with built-in pre- and post-processing fa-
cilities,” Int J Numer Methods Eng, vol. 79, pp. 1309–1331, 2009,
DOI: 10.1002/nme.2579.

[31] Q. Chen, D. Lin, Q. Wang, J. Yang, J. Sanchez, and G. Zhu, “An
investigation of the switching processes of ferroelectric field-effect
transistors using 2D simulation,” submitted for publication.

