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Abstract

Technology computer-aided design (TCAD) semiconductor device simulators solve partial differential equations (PDE) using

the finite volume method (FVM), or related methods. While this approach has been in use over several decades, its methods

continue to be extended, and are still applicable for investigating novel devices. In this paper, we present an element edge based

(EEB) FVM discretization approach suitable for capturing vector-field effects. Drawing from a 2D approach in the literature,

we have extended this method to 3D. We implemented this method in a TCAD semiconductor device simulator, which uses

a generalized PDE (GPDE) approach to simulate de- vices with the FVM. We describe how our EEB method is compatible

with the GPDE approach, allowing the modeling of vector effects using scripting. This method is applied to solve polarization

effects in a 3D ferro capacitor, and a 2D ferroelectric field-effect transistor. An example for field- dependent mobility in a 3D

MOSFET is also presented.
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Element Edge Based Discretization for TCAD
Device Simulation

Juan E. Sanchez, Senior Member, IEEE , and Qiusong Chen

Abstract— Technology computer-aided design (TCAD)
semiconductor device simulators solve partial differential
equations (PDE) using the finite volume method (FVM),
or related methods. While this approach has been in use
over several decades, its methods continue to be extended,
and are still applicable for investigating novel devices. In
this paper, we present an element edge based (EEB) FVM
discretization approach suitable for capturing vector-field
effects. Drawing from a 2D approach in the literature, we
have extended this method to 3D. We implemented this
method in a TCAD semiconductor device simulator, which
uses a generalized PDE (GPDE) approach to simulate de-
vices with the FVM. We describe how our EEB method is
compatible with the GPDE approach, allowing the modeling
of vector effects using scripting. This method is applied
to solve polarization effects in a 3D ferro capacitor, and a
2D ferroelectric field-effect transistor. An example for field-
dependent mobility in a 3D MOSFET is also presented.

Index Terms— Device Simulation, FeFET, MOSFET, Semi-
conductor, TCAD

I. INTRODUCTION

TECHNOLOGY computer-aided design (TCAD) semicon-
ductor device simulators solve continuum partial dif-

ferential equations (PDEs) of the drift-diffusion model for
semiconductors on a discretized mesh [1]. The finite volume
method (FVM) is the most widely used approach for assem-
bling the PDEs. In the TCAD device simulation literature,
the FVM is referred as finite boxes or control volume and is
closely related to finite differences [2].

The popularity of the FVM is due to the success of the
Scharfetter-Gummel method (SGM) in calculating the electron
and hole current densities from exponentially varying carrier
densities [3], which exhibits superior numerical stability than
other approaches [1], [4]. While the finite element method
(FEM) presents advantages in some circumstances [5], [6],
the lack of an equivalent to the SGM often leads to hybrid
FVM/FEM approaches when solving the device equations with
an otherwise FEM solver [7]–[9].

Standard simulation models fit well into a node based
approach, as volume integration and surface integration of the
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PDEs are accounted for in the calculation of quantities at the
mesh nodes, and at the edges connecting to adjacent mesh
nodes.

Advanced simulation models use vector fields and require
information from node quantities off of the edge. For mobility
models, this requires knowledge of electric field parallel
and normal to the direction of current flow [10]. For the
ferroelectric effect, the vector components of electric field and
polarization are considered [11], [12]. Nodal approaches have
been proposed for evaluation of these models, which consider
all adjacent nodes to the node of interest [13], [14]. These
approaches consider a constant field over the entire control
volume bounded by these nodes.

In contrast, an element edge based (EEB) approach has
the advantage that the control volume is bounded by the sub
volume along each edge of the element being considered.
This makes it possible to consider phenomena occurring over
smaller scales, such as for impact ionization models [15].
Laux used a 2D EEB approach to model generalized mobil-
ity [10] and impact ionization [15], where vector fields are
calculated for each edge of a triangular element. In [16], this
discretization was compared with other approaches for impact
ionization, and it was found to be less susceptible to changes
in mesh size than the other methods they considered. This
was attributed to the EEB approach using a smaller effective
control volume for each element edge. In this paper, we adopt
this approach for 2D and extend it for tetrahedral elements in
3D.

Generalized PDE (GPDE) simulators use an equation de-
scription as input from the user [4], [6], [14], [17]. The goal is
to allow the rapid development of new models and applications
for the continuum based approach.

Many GPDE simulators do not consider vector effects,
and equation assembly is often restricted to node or edge
based quantities [4]. Other simulators do not completely
model equation sensitivities to vector effects. Some provide
problem specific operators, limiting the general purpose nature
of their approach. One group compared 3 TCAD simulation
approaches to model the ferroelectric capacitance effect [14].
They report better convergence for methods where more
complete model sensitivities are considered, such as ensuring
that the electric field is fully coupled with the field dependent
polarization model.

In this paper, we describe an EEB approach to model-
ing vector-field effects in DEVSIM, an open source GPDE
semiconductor device simulator, for both 2D and 3D device
simulation [18]. We describe the approach in Section II. In
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Section III, we present simulation examples for hysteresis
effects in a ferroelectric capacitor in 3D and in a ferroelectric
field effect transistor (FeFET) in 2D. In addition, we present
simulation results for transverse electric field effects on mo-
bility in a 3D MOSFET.

II. SIMULATOR METHODS

A. Equation Assembly

1) Newton Method: The Newton method requires the eval-
uation of the model equations, as well as the derivatives
with respect to the solution variable [1]. This results in a
formulation:

J∆x = −F (1)

where J is the Jacobian, ∆x is update to the solution vector,
and F is referred to as the right-hand side (RHS) vector. As the
method converges at each iteration, |F | → 0 and |∆x| → 0,
to the limits of floating point precision. For TCAD simulation,
the nonlinear nature of the PDEs requires a reasonable initial
guess, and accurate derivatives, to get convergence or a good
convergence rate.

The PDEs considered in this paper fit in the form

F a : ∇ ·Ca +∇ ·Aa +Ba = 0 (2)

where Ca is an EEB quantity, Aa is an edge quantity, and
Ba is a node quantity. The label F a refers to PDE a being
considered, as there are multiple simultaneously coupled PDEs
in semiconductor simulation1.

2) Node Assembly: Fig. 1 shows a mesh node in 2D
surrounded by triangular elements. The Ba term is integrated
over the NodeVolume. The RHS entry for this scalar quantity
is then:

Fai += Bai · NodeVolumei (3)

for each node i on the simulation mesh. In this, and subsequent
equations, += represents addition of the term to an existing
matrix or vector entry. Similarly, −= represents subtraction.

For the Jacobian:

Jai,xj
+=

∂Bai
∂xj

· NodeVolumei (4)

where xi is a simulation variable on the same node. The
Jacobian entry is placed in the row corresponding to equation
a and the column corresponding to simulation variable x.

3) Edge Assembly : Fig. 2 shows the EdgeCouple over
which flux is integrated for the Aa term in (2). The calculation
of EdgeCouple is described in Section II-A.4.

For each edge between adjacent nodes 〈i, j〉

Fai +=Aai,j · EdgeCouplei,j (5)

Faj −=Aai,j · EdgeCouplei,j (6)

where Aai,j is the vector quantity evaluated on a mesh edge,
and EdgeCouplei,j is the cross section of the mesh edge.

1This paper does not consider our approach to time integration methods or
boundary conditions.

NodeVolume

EdgeCouple

Fig. 1. The 2D mesh cell with an arbitrary number of triangle elements
connected to node. The volume of a node is bounded by the perpendic-
ular bisectors of each triangle [19].

EdgeLength

EdgeCouple

n1n0

EdgeNodeVolume

Fig. 2. The 2D mesh cell depicting how flux is integrated along each
edge [19]. The EdgeCouple is the length of the perpendicular bisectors
for the 2 triangles along the edge connecting nodes 〈n0, n1〉.

The Jacobian entries are:

Jai,xk
+=

∂Aai,j
∂xk

· EdgeCouplei,j (7)

Jaj ,xk
−=

∂Aai,j
∂xk

· EdgeCouplei,j (8)

where xk is the simulation variable on one of the two nodes
on the edge.

4) Element Edge Assembly: We consider the Ca contribu-
tion to (2), which is EEB, and is dependent on variables on
all element nodes.

Fig. 3 shows a 2D representation of the volume
and area over which the integration occurs. In 2D, the
ElementEdgeCouple on each edge is from the triangle cir-
cumcenter to the center of the edge. Fig. 4 shows the element
edge volume in 3D, where the ElementEdgeCouple is from
the circumcenter of the tetrahedral element, to the circumcen-
ters of the element triangles connected to the element edge,
to the center of the element edge. In both 2D and 3D, the
EdgeCouple in Section II-A.3 is calculated by summing the
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ElementNodeVolume

en1

en2

en0

EdgeLength

ElementEdgeCouple

Fig. 3. The mesh cell in 2D. Each triangle is subdivided into 3
sub volumes. The labels for nodes 〈en0, en1, en2〉 are specific to the
element edge in the sub element bounded by the solid line [19].

en0

en1

en2

en3

Fig. 4. The element cell in 3D. The tetrahedron is subdivided into 6
subvolumes along each edge. The element edge of interest has the
nodes labeled 〈en0, en1〉. The other nodes are labeled 〈en2, en3〉.

ElementEdgeCouple for all elements connected to the edge
being considered.

Similar to (5)–(6), the RHS contribution for Ca is:

Fai +=Ctai,j · ElementEdgeCouple
t
i,j (9)

Faj −=Ctai,j · ElementEdgeCouple
t
i,j (10)

where t is the index of the element containing the edge.
Similar to (7)–(8), the Jacobian entries are:

Jai,xk
+=

∂Ctai,j
∂xk

· ElementEdgeCoupleti,j (11)

Jaj ,xk
−=

∂Ctai,j
∂xk

· ElementEdgeCoupleti,j (12)

where xk is a simulation variable on one of the nodes on the
element. In 2D, this is the 2 nodes, 〈en0, en1〉, on the element
edge being considered, and a third node, en2, on a triangular
element, as shown in Fig. 3. In 3D, there are 2 nodes on the
each element edge, 〈en0, en1〉, as well as 2 additional nodes
on the tetrahedral element 〈en2, en3〉, as shown in Fig. 4.

5) Edge Volume Assembly : It is also possible to do a
volume integration using either the edge based or EEB as-
sembly. This is useful for models such as the density gradient
model [20] or impact ionization model [15]. In equations, (9)–
(12), the ElementNodeVolume in Fig. 3 is substituted for
ElementEdgeCouple and the assembly is only done with the
+= operation.

B. Element Edge Based Fields

1) Calculating the Vector Field: To calculate a vector field
on an edge of a tetrahedral element, we begin by calculating
the components along each mesh edge in the device region.
For the case of electric field, this is

Ei,j = (ψi − ψj) /EdgeLengthi,j (13)

where ψi and ψj are the potentials at nodes 〈i, j〉, and
EdgeLengthi,j is the distance between them, as shown in
Fig. 2. The derivatives with respect to the node potentials are:
∂Ei,j

∂ψi
= 1/EdgeLengthi,j

∂Ei,j

∂ψj
= −1/EdgeLengthi,j

(14)
In Fig. 5, we show how these scalar fields are used to

calculate Et0 , the vector field based on all edges connect to
node 0. The electric field on each edge is assumed to be

Ei,j = si,j ·Et0 (15)

where Et0 is the field over the entire element, and si,j is the
unit vector along the edge connecting nodes 〈i, j〉.

For tetrahedra with nodes 〈0, 1, 2, 3〉, we use the x, y, z
components of the unit vectors to calculate the electric field
for all edges connected to node 0sx0,1 sy0,1 sz0,1

sy0,2 sy0,2 sz0,2
sz0,3 sy0,3 sz0,3

Etx0Et
y
0

Et
z
0

 =

E0,1

E0,2

E0,3

 (16)

which can be written more compactly as

St0 ·Et0 =
(
E0,1 E0,2 E0,3

)T
(17)

so that Et0 is found by solving this small linear system.
The derivatives with respect to the node potentials are then

St0 ·
∂Et0

∂ψ0
=
(
∂E0,1

∂ψ0

∂E0,2

∂ψ0

∂E0,3

∂ψ0

)T
(18)

St0 ·
∂Et0

∂ψ1
=
(
∂E0,1

∂ψ1
0 0

)T
(19)

St0 ·
∂Et0

∂ψ2
=
(
0

∂E0,2

∂ψ2
0
)T

(20)

St0 ·
∂Et0

∂ψ3
=
(
0 0

∂E0,3

∂ψ3

)T
(21)

In 3D, we treat the field for the edge between nodes 〈0, 1〉
using an average:

Et0,1 = 0.5 · (Et0 +Et1) (22)

where Et1 is calculated by considering node 1 as the node of
interest in (16)–(21).
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E0, 1

E0, 2
E0, 3

0

1

2

3

Fig. 5. Depiction on how vector field is calculated from the scalar fields
calculated along the 3 edges connected to node 0.

The derivative with respect to the node potential is then:

∂Et0,1

∂ψk
= 0.5 ·

(
∂Et0

∂ψk
+
∂Et1

∂ψk

)
(23)

where k refers to one of the 4 nodes on the element.
We assume that the average employed in (22)–(23) is

appropriate for creating vectors from edge based models. It
can be shown for electric field that Et0 = Et1 , so the average
is valid. For cases like current density, which does not have
this property, this assumption appears valid for the simulations
in Section III-C.

In 2D, we use an edge average from [10], [15], based
on a weighting the length of perpendicular bisectors of the
triangular elements. Our simulator also provides the ability to
customize the weighting.

Once the vector fields are attained, they are used to calculate
the components for the element edge assembly in (9)–(12), by
first converting to a scalar value, and then adding to J and F .
Scalar models defined as an edge or element edge model, can
also be used in calculations with the vector field components.
This will be described in Section II-C, where the approach is
described for the polarization vector in ferroelectric materials,
as well as for the transverse electric field used for mobility
models.

2) Computation: In practice, the St0 term in (17) is cal-
culated once for each node of a tetrahedral element and
is assigned as St0 or St1 , based on the element edge of
interest. Since only geometric information is stored, the matrix
factorization is done once at the beginning of the simulation,
and is solved for all EEB field calculations across all iterations
of the simulation. It is possible to take advantage of high
performance math routines, so that the matrix factorization
and back substitution is done in an efficient manner [21].

3) Limitations on Element Type : In our approach, we have
restricted the method to triangular elements in 2D and tetrahe-
dral elements in 3D. The original finite box methods restricted
themselves to box and cube elements [1], and were later
expanded [2].

In 3D, it is necessary that the centers of the tetrahedra
circumspheres are inside the element, so that the volume
and surface integrals are calculated correctly [2]. In 2D, the
circumcenter of triangular elements should also be inside the
circumcircle, or equivalently not obtuse [1]. While there are
methods to accommodate elements violating this condition,
their presence often leads to less accurate results and conver-
gence difficulties.

4) Derivative Accuracy: Good convergence behavior is often
dependent on having accurate derivatives for the simulation
models [1]. We demonstrate this with the simulation example
in Section III-A. Accurate derivatives are also important small-
signal analysis, and the impedance field method [22]–[24].

C. Generalized PDE Approach
In DEVSIM, models are implemented as symbolic expres-

sions, and they are assembled and solved [17], [19]. Symbolic
differentiation is employed to get the required derivatives. The
simulator accepts equations in the form of:

Node models on nodes (Section II-A.2)
Edge models on edges (Section II-A.3)
Element edge models on element edges (Section II-A.4)

The GPDE equations are input by calling commands from
a Python script [25]. The simulator is a module loaded by the
interpreter, mostly written in C++ [17].

1) Ferroelectric Model: A ferroelectric model may be imple-
mented directly, using scripting. For a ferroelectric insulator,
the equation is:

∇ · (εE + P ) = 0 (24)

where P is the polarization.
We first start with the edge model for electric field and its

derivatives

EF, EF:psi@n0, EF:psi@n1

where EF is evaluated using an expression for (13) and the
rest using (14) for nodes 〈0, 1〉, respectively. The user defines
the model and its derivatives using the symbolic math engine
in the simulator.

From the edge model and its derivatives, the
element from edge model command is used to create
element edge models as:

EF_x, EF_y, EF_z

for each vector component using (22) and their derivatives
using (23)

EF_x:psi@en0, EF_y:psi@en0 EF_z:psi@en0
EF_x:psi@en1, EF_y:psi@en1 EF_z:psi@en1
EF_x:psi@en2, EF_y:psi@en2 EF_z:psi@en2
EF_x:psi@en3, EF_y:psi@en3 EF_z:psi@en3

The first term represents the derivative of EF x with respect to
the potential at node 0, and the other terms follow in a similar
fashion.

During evaluation, indexes 〈en0, en1〉 reference nodes on
the element edge and 〈en2, en3〉 reference the other element
nodes on the tetrahedron. The simulator tracks the element
edge indexes on a per element edge basis, so that the same
PDE expression will work for each element edge being con-
sidered.
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The simulator then evaluates the symbolic expression
for (24) using

(PX+Permittivity*EF_x)*unitx +
(PY+Permittivity*EF_y)*unity +
(PZ+Permittivity*EF_z)*unitz

where unitx, unity, and unitz are the unit vector
components along the element edge and Permittivity
is a parameter. The terms PX, PY, and PZ are components
which computed in using expressions involving the current
and previous solutions for the electric field. We utilized a
widely accepted empirical function of hyperbolic tangent to
simulate the hysteresis loop [11], [12], [26]. Scripting was used
to generate these terms for all of the x, y, and z components
and the derivatives of the polarization vector and electric fields.

2) Field Dependent Mobility: To calculate the surface mobil-
ity for the simulations in Section III-C, we first calculate the
electric field parallel to current flow as:

E
‖
t0,1 = jt0,1 ·Et0,1/|jt0,1 | (25)

where jti,j is the current density vector calculated using

St0 · jt0 =
(
j0,1 j0,2 j0,3

)T
(26)

where j0,1, j0,2, and j0,3 are edge current densities using a
suitable low field mobility, and then averaged onto the element
edge using the same average as (22). The vector jt0,1 is used
to find the direction of current flow, and is not the final current
density. The transverse electric field is then calculated using:

|E⊥ti,j | =
√
|Et0,1 |2 − |E‖

t0,1 |2 (27)

The expressions for |E⊥ti,j | are then used to calculate the
surface components of the mobility model [27]. The bulk
and surface mobility components are then averaged together,
and the velocity saturation model is applied to get the EEB
mobility. The EEB current densities are then integrated using
(9)–(12), having been calculated using the SGM applied on
each element edge.

III. SIMULATION EXAMPLES

A. Ferrocapacitor Simulation
TetGen [28] was used to generate a tetrahedral mesh of

a cube and contacts on the top and bottom. Not all of the
elements met the requirements mentioned in Section II-B.3.
A script was written to mark bad elements for refinement,
and it was possible to achieve a mesh meeting the simulator’s
requirements.

The mesh and physics are loaded via scripts into the
simulator. Fig. 6 shows the compensated charge versus the
applied voltage for a ferroelectric capacitor. From the initial
zero bias condition, the voltage is ramped over the range
between ±15 V . The hysteresis in the charge due to the
polarization is apparent in the figure.

As a test of the accuracy of our approach, we repeated
the simulations with derivative terms with respect to nodes
〈en2, en3〉 set to 0. This emulates the condition in GPDE sim-
ulators which evaluate vector effects over all adjacent nodes,
but may restrict their derivative information on edges [4], [14].
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Fig. 6. The ferro capacitor 3D simulation.
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Fig. 7. The relative error versus iteration number. The solid line is for
derivatives for all nodes on the element. The dashed line is when only
nodes on the edge are considered.

The primary convergence criteria in our simulator is relative
error, which is calculated at each node i as:

rmi =
|ψmi − ψ

m−1
i |

|ψm−1i |+ 10−10
(28)

where m is the iteration number, and ψmi is the new solution
value after the update. The relative error is taken at the node
with the largest value of r.

Fig. 7 shows relative error versus iteration number for one
of the bias points. With all derivatives accounted for, it takes 2
iterations to get a relative error near 10−15, which is the limit
of accuracy for double precision floating point arithmetic. This
number of iterations is expected, since the equation derivatives
are constant with respect to bias. When the off edge derivatives
are neglected, the iteration count is higher to to attain a relative
error within 10−10.

B. FeFET Simulation

We simulated a 2D p-type FeFET with a top contact/bottom
gate architecture. Ohmic contacts were set at the source
and drain electrodes. A triangular mesh was generated using
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Fig. 8. The p-type FeFET 2D simulation.

Gmsh [29]. Extended precision math mode was enabled in
the equation assembly to prevent numerical noise in the off
state current results. Fig. 8 shows the drain current versus
gate voltage. The simulation details and an analysis of the
switching processes of FeFET with respect to its structure
will be presented in [30]. It is important to note that when the
derivative off the edge on node en2 was set to 0, the simulation
failed before the sweep of biases could finish. Therefore, the
full set of derivatives we implemented using the EEB approach
was necessary to run the simulations.

C. MOSFET Simulation
We simulated a 3D MOSFET, based on a doping profile and

2D structure for a 90 nm n-channel MOSFET archived in [31].
For the simulations, we created a 3D mesh using Cubit [32].
The structure is shown in Fig. 9.

Using the scripting interface, we implemented the Pois-
son, electron-continuity, and hole-continuity equations, with
SRH recombination [1]. We implemented the mobility model
from [27], with surface mobility components dependent on the
electric field normal to current flow.

After refinement, the bulk region had 270,693 tetrahedra
and 50,446 nodes. Solving this region with the oxide regions,
nitride regions, and a polysilicon gate electrode, the simulation
matrix had 166,225 rows for the fully coupled drift-diffusion
simulation.

We then compared the mobility models using these three
cases:
• Concentration dependent bulk mobility model
• Bulk mobility with velocity saturation
• Bulk and surface mobility model with velocity saturation

where the normal electric field for surface mobility was
implemented using (27).

Figure 10 show a contour plot of the velocity saturated
mobility with both the bulk and surface models enabled.
Figure 11 shows IDS versus VGS for the three cases. The IDS
versus VGS dependence is shown in Fig. 12. Consistent with
the theory, the E⊥ dependent mobility results in a lowering
of the drain current.

Fig. 9. The 90 nm 3D MOSFET. The polysilicon gate (2) is surrounded
by oxide (5) and two nitride regions (3, 4). The bulk region (1) has a 120
nm drawn gate length. The source and drain contacts are both 50 nm
underneath the nitride regions. A body contact was placed on the bottom
of the 60 nm silicon region. The oxide thickness is 4.9 nm and the device
is 25nm thick.

Fig. 10. Contour plot of the bulk and surface electron mobility with
velocity saturation for a bias of VGS = 1 V, VDS = 1 V and VSB = 0.
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Fig. 11. ID versus VGS for VDS = 0.1 V and VSB = 0.
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Fig. 12. ID versus VDS for VGS = 1 V. and VSB = 0
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