
P
os

te
d

on
9

M
ar

20
20

|C
C

-B
Y

4.
0

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

36
22

7/
te

ch
rx

iv
.1

41
59

18
3.

v1
|e

-P
ri

nt
s

po
st

ed
on

T
ec

hR
xi

v
ar

e
pr

el
im

in
ar

y
re

po
rt

s
th

at
ar

e
no

t
pe

er
re

vi
ew

ed
.

T
he

y
sh

ou
ld

no
t

b.
..

Towards a systematic approach to manual annotation of code
smells

Nikola Luburić 1, Simona Prokić 1, Katarina-Glorija Grujić 1, Jelena Slivka 2, Aleksandar
Kovačević 1, Goran Sladić 1, and Dragan Vidaković 1

1Affiliation not available
2Faculty of Technical Sciences

October 30, 2023

Abstract
Code smells are structures in code that indicate the presence of maintainability issues. A significant problem with code smells
is their ambiguity. They are challenging to define, and software engineers have a different understanding of what a code smell
is and which code suffers from code smells.

A solution to this problem could be an AI digital assistant that understands code smells and can detect (and perhaps resolve)
them. However, it is challenging to develop such an assistant as there are few usable datasets of code smells on which to train
and evaluate it. Furthermore, the existing datasets suffer from issues that mostly arise from an unsystematic approach used for
their construction.

Through this work, we address this issue by developing a procedure for the systematic manual annotation of code smells. We use
this procedure to build a dataset of code smells. During this process, we refine the procedure and identify recommendations and
pitfalls for its use. The primary contribution is the proposed annotation model and procedure and the annotators’ experience
report. The dataset and supporting tool are secondary contributions of our study. Notably, our dataset includes open-source
projects written in the C# programming language, while almost all manually annotated datasets contain projects written in
Java.

1

1

Towards a systematic approach to manual
annotation of code smells

Nikola Luburića, Simona Prokića, Katarina-Glorija Grujića, Jelena Slivkaa,*, Aleksandar Kovačevića,

Goran Sladića, and Dragan Vidakovića

a Faculty of Technical Sciences, University of Novi Sad, Serbia.

* Corresponding author, email: slivkaje@uns.ac.rs

Abstract

Code smells are structures in code that indicate the presence of maintainability issues. A significant

problem with code smells is their ambiguity. They are challenging to define, and software engineers

have a different understanding of what a code smell is and which code suffers from code smells.

A solution to this problem could be an AI digital assistant that understands code smells and can detect

(and perhaps resolve) them. However, it is challenging to develop such an assistant as there are few

usable datasets of code smells on which to train and evaluate it. Furthermore, the existing datasets

suffer from issues that mostly arise from an unsystematic approach used for their construction.

Through this work, we address this issue by developing a procedure for the systematic manual

annotation of code smells. We use this procedure to build a dataset of code smells. During this process,

we refine the procedure and identify recommendations and pitfalls for its use. The primary contribution

is the proposed annotation model and procedure and the annotators’ experience report. The dataset

and supporting tool are secondary contributions of our study. Notably, our dataset includes open-source

projects written in the C# programming language, while almost all manually annotated datasets contain

projects written in Java.

Keywords: code smell, refactoring, clean code, dataset, manual annotation

1 Introduction
Software code is written to answer specific requirements and enable use cases required of the complete

software solution. These requirements state what the code must do (e.g., what output should it produce

for the given input) but do not care for how it is designed or implemented. This abstraction, coupled

with the software’s softness, has the following consequence – a requirement can be fulfilled by a near-

infinite set of different code configurations. Even when limited to a single programming language and a

simple requirement, it is easy to list many code samples that fulfill the requirement using different

coding styles and language features.

While many code solutions can fulfill a requirement, not all of them are acceptable. Some solutions

cause subtle bugs, performance loss, or expose security vulnerabilities. Furthermore, a significant

mailto:slivkaje@uns.ac.rs

2

portion of the possible solutions present another severe but less obvious problem. Code that is hard to

understand and modify harms the software’s maintainability, evolvability, reliability, and testability [1].

Such code requires more significant mental effort to process and understand before a programmer can

reliably modify it. Consequently, the programmer’s morale and productivity decline as they spend more

time and energy reading old code [2], increasing the overall cost of development [1]. Researchers [1][3]

and industry leaders [4][5] note that such solutions suffer from code smells – properties of the code that

might harm its readability and understandability, and as a consequence, the related software quality

attributes. Removal of harmful code smells results in sustainable software development [1][3][4][5].

Unfortunately, removing code smells is not easy, as many code smell definitions are vague and lack a

concrete heuristic that can unambiguously determine the smell’s presence. For example, the Long

Method code smell [4] is present in functions that try to do too many things [5], requiring the

programmer to analyze regions of the function to understand their intent before understanding the

overall function. By addressing the Long Method smell, programmers reduce the semantic distance

between what the method does and how it does it [4]. However, this smell is not strictly tied to the

method’s length. Notably, functions with 30 lines of code might not suffer from the Long Method smell,

while functions with 10 lines might require refactoring to address this issue. As noted in [4], even a

single code line might be suitable for extraction into a separate function if its intent is unclear.

Because of this ambiguity, it would be helpful if code smells could be automatically detected and even

resolved. However, without a clear definition and set of heuristics, it is impossible to rely on simple rules

based on metrics and thresholds (e.g., the number of code lines is higher than 10) to automatically

identify code smells. Such solutions result in many false positives when the threshold is too low or poor

recall when it is high [1]. More sophisticated artificial intelligence (machine learning) models are needed

to understand the code’s semantics or provide more advanced smell detection rules.

Azeem et al. [6] conducted a systematic literature review that analyzes machine learning (ML)

approaches used for code smell detection. They concluded that ML models generally outperformed

heuristics-based approaches. However, the authors note that the reviewed studies are affected by

several threats to validity. Notably, most studies used small or poorly constructed datasets to train and

test their models, limiting their generalizability.

Manually annotating code smells is time-consuming [6] and challenging [3], where a high disagreement

exists between software engineers on which code snippets suffer from some code smell [3]. In [9], the

authors presented code snippets that suffer from some code smell to engineers and found that only

29% of them could name the smell, while 41% could describe the problem imposed by the smell. to

Because of this, there are no large-scale manually constructed datasets.

Many larger code smell datasets are automatically labeled using heuristic-based tools [6]. Such datasets

exclude instances that do not satisfy some threshold, eliminating positive instances that would

otherwise be identified by an expert. While some studies manually filter the generated dataset to

remove false positives, there is no way of knowing the number of false negatives [10][14]. This issue is

especially relevant for code smells such as Long Method and Large Class that significantly depend on the

code’s semantics and not on, for example, the number of code lines.

While the lack of large datasets is a problem in and of itself, a more severe issue is that most of the

available datasets lack a systematic approach to their construction. As mentioned, some annotation

3

procedures heavily rely on automated tools and ignore false negatives [6][10][12][18]. Others do not

sufficiently train the annotators [7][14]. Notably, most studies start with vague definitions of what they

are annotating [3] and produce datasets that are not published in a form that can be used for reliable

reproduction, as pointed out in [7].

In this study, we work towards developing a systematic approach to creating a code smell dataset that is

useful for training machine learning smell detectors. The primary contribution is the proposed

annotation model and procedure and the annotators’ experience report. By surveying the literature, we

defined an initial version of the annotation model and procedure, which we the refined while building a

medium-sized corpus1 for the Long Method and Large Class code smells [4]. We report on our

annotation experience while following the proposed procedure, highlighting any tips, tricks, pitfalls, and

risks we identified.

We developed an acquisition tool to simplify the process of collecting data for annotation. The tool is

open-sourced as part of the Clean CaDET2 platform and supports data acquisition from C# and Java

projects. We have also published documentation and tutorial videos to help other researchers benefit

from our tool3. The dataset and supporting tool are secondary contributions of our study. Notably, our

dataset includes open-source projects written in the C# programming language, while almost all

manually annotated datasets contain projects written in Java.

The rest of the paper is structured as follows: Section 2 presents the related work. We examine

procedures used to create existing datasets and comment on the threats to validity we look to address.

In Section 3, we present our annotation model, which includes a generic conceptual model applicable to

all code smells, and its concretization for the Long Method and Large Class smells. Section 4 describes

our annotation procedure and its composing steps. In Section 5, we present our findings, including the

annotators’ experience reports, the characteristics of the constructed dataset, and our study’s

limitations. Finally, Section 6 concludes our work and lists opportunities for future work.

2 Related Annotation Procedures
Experimental studies on source code usually rely on data from three sources, including commercial

projects, academic projects, and open-source projects [8]. Researchers favor open-source projects, as

the study results are relatively easy to reproduce, validate, and compare with other studies [10]. We

reviewed the studies that produced code smell datasets from open-source code snippets and analyzed

their annotation procedure.

Walter et al. [10] developed a dataset from 92 Java open-source projects, which are part of the qualitas

corpus [11] curated Java code collection for empirical studies. They used 11 automated tools for smell

detection, which could collectively identify 14 code smells. They ran each code snippet through a set of

tools that could identify a particular smell and defined a label for the percentile agreement (grouped to

25%, 50%, 75%, and 100%) of the tools for the smell. The authors note that the descriptions of code

smells are usually vague, and detectors interpret them differently. A dataset generated by heuristics-

1 The dataset is available at to be defined.
2 The Clean CaDET Platform can be examined at https://github.com/Clean-CaDET/platform
3 The Dataset Explorer tools, along with the documentation, is available at https://github.com/Clean-
CaDET/platform-documentation/wiki/Dataset-Explorer

https://github.com/Clean-CaDET/platform
https://github.com/Clean-CaDET/platform-documentation/wiki/Dataset-Explorer
https://github.com/Clean-CaDET/platform-documentation/wiki/Dataset-Explorer

4

based tools can be useful as a training set. However, manual annotation is necessary to produce better

results.

Fontana et al. [12] also worked on the qualitas corpus [11]. They used five automated detectors to

identify four code smells, where at least two detectors could identify each smell. This automated

annotation identified a set of code smell candidates. Following a semi-random sampling procedure,

three MSc students selected code snippets and manually validated 1986 instances, determining that

over half (1160) were incorrectly classified. They finally produced a dataset of 420 instances for each

smell, where one third included positive instances, while the rest were negative instances. The authors

purposefully selected this distribution for their final dataset to enable machine learning models to work

with a more balanced dataset. However, this unrealistic distribution might affect the generalizability of

machine learning models trained on this dataset, as pointed out in [13]. Concretely, the dataset instance

distribution responsible for the model’s high performance significantly differs from a realistic software

project [16].

Palomba et al. [14] built a dataset by annotating 20 open-source Java projects for five different code

smell instances, defining 243 positive instances. One author examined the projects to identify the initial

set of code smell candidates. A second author validated the set of candidates and discarded any false

positives. While such a procedure increases the likelihood that the remaining positive instances are

correctly classified, it does not account for the false negatives the first author might have made. This

issue is particularly relevant for annotating code smells. Other studies have shown a high subjectivity

and disagreement among engineers for determining the presence of a code smell in code [3][15].

Another study conducted by the same group [16] presents a dataset made from 30 open-source Java

projects, where the authors manually validated 17350 positive instances of 13 different code smells. The

authors used an automatic detection tool to gather a list of code smell candidates. Two annotators have

manually validated the candidate code smells. The detection tool uses simple rules with low thresholds

that overestimate the presence of code smells to ensure a high recall. Significantly, a Long Method smell

candidate is selected if a function’s number of lines of code (LOC) exceeds the average of the project,

while a God Class is detected if a class has LOC above 500 and its cohesion is lower than the average of

the project. These rules can vary greatly depending on what the average LOC for the project is. For

projects with inexperienced engineers, the average can quickly go above the conventional

recommendations from the industry and other research, where functions with LOC above 30 [3][4][5]

and classes with LOC above 100 [17] might be affected by a smell. Furthermore, even functions with LOC

above 10 can impose a readability issue if the code is sufficiently complex [4][5].

Madeyski and Lewowski [7] developed a dataset from 792 open-source Java projects. A total of 26

software engineers looked for four different code smells and annotated 4770 code snippets, randomly

selected from the project pool. As multiple engineers labeled each code snippet, the dataset includes

14739 independent annotations. Notably, 16 annotators individually labeled less than 300 instances

(positive and negative) of the four smells collectively. This means that each of the 16 engineers might

have labeled less than 50 instances for a specific smell. In our experience, the annotators had to

examine many instances for each smell (e.g., over a hundred) before they could annotate it reliably and

consistently, regardless of their previous experience. Therefore, the labels made by these annotators

might present a threat to the dataset’s validity. To the study’s credit, the five most active annotators

had an average of 10 years of professional programming experience.

5

To the best of our knowledge, Rasool and Arshad [18] present the only study that includes an open-

source dataset of code smells found in C# projects. However, this dataset has several limitations, as it

includes four C# projects where the annotation was done automatically using simple heuristics. A single

MSc student subsequently validated the candidates to produce the final set of code smell instances.

The chief threat to the validity of many studies is the starting premise – the definition of a code smell,

which is used to train the annotators. Most studies briefly define a code smell, usually with a few high-

level sentences, and in the best case with an illustrative example. Furthermore, the studies either

purposefully avoid training the annotators or list a short workshop. This preparation might be

problematic, as manual code smell detection is subjective [15], produces high disagreement among

experienced software engineers [3][9], and significantly differs between the scientific literature [17] and

industry best practices [4][5]. Another common limitation is the lack of a usable and easily accessible

dataset. Many datasets are not published in a form that can be used for reliable reproduction, missing

vital information such as source code revision and URLs to code snippets, as pointed out in [7]. Finally,

almost all available datasets focus on the Java programming language.

3 Annotation Model
The most important consideration for developing a code smell dataset is the definition of the code

smell. Without a good understanding of what is being annotated, it is impossible to produce a useful

dataset. We explored the industry’s guidelines regarding code smells from books, whitepapers, and

blogs authored by notable subject matter experts [4][5][23] and tool vendors that specialize in code

quality analysis [25]. We noted what engineers look for when doing code reviews and which metrics the

quality analysis tools calculate for their smell detection engines. Next, we explored the scientific

literature for related research, including:

• Studies of automated smell detection. We examined studies gathered in the systematic

literature review on the topic [17] to extract the domain knowledge researchers strived to

encode in their algorithms.

• Studies that examine engineer perception of code smells. We examined these studies

[3][9][21][22][24][26] to extract the guidelines stemming from human intuition regarding code

smell annotation and smell severity.

• Dataset annotation studies. We examined the literature described in the previous section to

extract any annotation guidelines useful to our context.

From this literature we developed a conceptual model of code smells, which we describe in Section 3.1.

To provide a concrete example of this abstraction and precisely define what we annotated, we examine

the annotation model for the Long Method (Section 3.2) and Large Class (Section 3.3) code smells. We

focus on the Long Method and Large Class code smells due to their prevalence in all software types [16],

extensive research body from which we can derive heuristics [1][6], and the negative impact they have

on software quality attributes [19]. We consider severe instances of the Large Class code smell to be

akin to the God Class [24].

3.1 Conceptual Model
Figure 1 describes our code smell annotation conceptual model, where we denote the entities and their

relationships.

6

Figure 1 Code smell annotation conceptual model

3.1.1 Code smell model
Our code smell entity is a high-level concept that denotes a category of issues that harm the code’s

maintainability by making the code difficult to understand or change to fulfill new requirements. We

derive these entities from catalogs of code smells, such as [4].

Smell heuristics decompose code smells into less vague properties of the code and are closely related to

the software engineer’s cognitive load, thinking process, or experienced issues when working with the

code [3]. For example, we define the “method is too complex” heuristic for the Long Method code smell.

This heuristic applies to a code snippet when the engineer spends much time processing a line of code

or region of a function to determine its intended behavior. For the Shotgun Surgery code smell [4], a

heuristic might be “supporting a change to an existing functionality requires opening too many source

files”. We determine heuristics for a specific code smell by examining industry recommendations (e.g.,

from books [4][5], blog posts, tutorials) and empirical research related to the engineer’s perception of

code smells [3][15].

Importantly, both the code smell and its related heuristics are inherently subjective, which means that

Listing 1 Code examples that illustrate code smell heuristic subjectivity

//Example 1

private List<CaDETParameter> GetMethodParams1()
{

 List<CaDETParameter> memberParams = new List<CaDETParameter>();
 var paramLists = cSharpMember.DescendantNodes().OfType<ParameterListSyntax>().ToList();

 if (!paramLists.Any()) return memberParams;

 var parameters = paramLists.First().Parameters;

 foreach (var parameter in parameters)
 {

 var symbol = semanticModel.GetDeclaredSymbol(parameter);

 memberParams.Add(new CaDETParameter { Name = symbol.Name });
 }

 return memberParams;
}

//Example 2

private List<CaDETParameter> GetMethodParams2()
{

 List<CaDETParameter> memberParams = new List<CaDETParameter>();
 var paramLists = cSharpMember.DescendantNodes().OfType<ParameterListSyntax>().ToList();

 if (!paramLists.Any()) return memberParams;

 var parameters = paramLists.First().Parameters;

 memberParams.AddRange(parameters

 .Select(parameter => semanticModel.GetDeclaredSymbol(parameter))

 .Select(symbol => new CaDETParameter { Name = symbol.Name }));

 return memberParams;
}

//Example 3

private List<CaDETParameter> GetMethodParams()
{

 var paramLists = cSharpMember.DescendantNodes().OfType<ParameterListSyntax>().ToList();

 if (!paramLists.Any()) return new List<CaDETParameter>();

 return CreateCaDETParams(paramList);
}

7

one engineer might claim that a method is too complex, while another might not. To illustrate this point,

we examine three simple code solutions that solve the same requirement in Listing 1.

Few engineers would apply the “method is too complex” heuristic to the third example. However, based

on the engineer’s experience, knowledge, and even cognitive traits such as working memory capacity

[20], the first or second snippet might be labeled with this heuristic. For example, an engineer not

familiar with language-integrated queries might prefer no or simple queries and suffer cognitive load

when faced with multiple Select statements, like in the second example. On the other hand, engineers

with higher working memory capacity and familiarity with the language might label all three examples as

non-smelly code.

3.1.2 Label model
Once we select the code smells and determine heuristics that signal their presence, we can instantiate

the label model for a set of code snippets. We use the term code snippet to define any piece of code

that can be affected by a code smell, such as functions and classes. An annotator instantiates a smell

annotation entity for each code snippet that is examined for a specific smell.

The annotator determines the presence and severity of a particular code smell. We used the severity

scale defined in [12], where:

0. means there is no smell or that is very mildly present and negligible. The code snippet does not

require refactoring regarding this code smell. This does not mean that the code is perfect, and a

code snippet can have room for minor enhancement and still have a severity of 0.

1. means there is a minor presence of the smell that slightly reduces the snippet’s readability.

Usually, one or two refactoring operations can resolve the issue. In terms of prioritizing work,

we note that such code is “good enough”, and effort should be funneled to other development

activities.

2. means there is a notable issue that hampers readability. It should be resolved by applying a

series of refactoring operations. We consider such refactoring a high-priority activity when the

code snippet is part of a module under active development, as it negatively impacts daily tasks.

3. means there is a critical issue that severely harms the readability of the code snippet. Resolving

this issue requires dedicated work to redesign the code snippet and entails many refactoring

operations. We consider refactoring mandatory for such code snippets, provided they are part

of a module under active development.

Before determining the severity of a code smell, the annotator labels any applicable heuristics regarding

the smell. For each heuristic annotation, they provide reasoning why the heuristic is applicable. This

reasoning provides insight into the thinking process of the annotator and helps guide the annotation

procedure. For example, an annotator might apply the “method is too complex” heuristic while giving

reasoning that “the method has many long expressions and message chains” or “the method has several

complex conditional expressions that include literal values with unclear meaning”.

Notably, the final severity is not the sum of the applicable heuristics. For example, we annotated code

snippets that have two applicable heuristics with a severity of 3, while another had four applicable

heuristics and a severity of 2. This can occur because a heuristic might present a minor violation (e.g.,

“method does multiple things” applies because it does three things), a major violation (e.g., “method

8

does multiple things” applies because it does thirty things), and everything in between. We do not

model the severity of each heuristic, as this overly complicates the annotation procedure.

3.1.3 Code characteristics
Significantly, our smell heuristics differ from the heuristics defined by Martin [5] and a significant

portion of industry best practice authors. Martin’s heuristics focus on code characteristics instead of the

engineer’s perception. They are much more concrete, as most can easily map to a specific code

structure. For example, Martin defines a heuristic around “magic numbers” where the goal is to identify

any token with a value that is not self-describing (e.g., a literal number with a strange value), and

replace it with a descriptive variable or constant. In general, these low-level concepts can be traced to

specific lines of code, structural metrics, or concern metrics [21] of the code snippet.

We model Martin’s heuristics as code characteristics. These low-level concepts can explain why our

heuristic is applicable for the given code smell. For example, an annotator might find the heuristic

“method does multiple things” applicable when they find several code regions in a function that are

delimited by newline characters and comments that explain what the next region of code does. In this

case, the comments and newline characters are the code characteristic. Likewise, for the “method is too

complex” heuristic, an annotator might determine that the reason behind this complexity are several

sophisticated conditional expressions that are hard to process mentally.

We differentiate two categories of code characteristics, including structural indicators tied to structural

metrics and semantic indicators related to concern metrics [21]. Unlike metrics that give a concrete

number (e.g., how many lines of code a function has or how many responsibilities a class has), our

indicators are subjective assessments of the contribution of the given code characteristic to the

applicability of the related heuristic. As an example, an annotator might explain that a “method is too

complex” because of high cyclomatic complexity combined with several long conditional expressions

that use magic numbers and fields with mysterious names. When taken to the extreme, these code

characteristics might be sufficient to set the Long Method’s smell severity to 2 or 3, even though the

function might have less than thirty lines of code.

Notably, we relate these code characteristics to our heuristic annotations very loosely, through the

“Reasoning” free-form description. We do not explicitly annotate these indicators, as that would

significantly reduce the speed of annotation. Instead, we list notable instances of these indicators during

the annotation procedure to refine it and align the annotators’ understanding.

3.2 Long Method
Here we denote the sources that influenced our heuristic selection for the Long Method code smell. For

each heuristic, we discuss the literature findings that support the use of the heuristic for smell

identification and examine the related code characteristics. We supplement this set of code

characteristics with our experience from the proof-of-concept annotation.

For the Long Method code smell, we defined the following set of heuristics:

• Method is too long.

• Method is too complex.

• Method does multiple things.

9

3.2.1 Method is too long
Literature. A method’s length is a simple characteristic that can quickly signal if a method requires

refactoring. Experienced industry leaders [4][5] advocate for short, focused functions. Likewise,

engineers of various seniority use the length of the method to determine the Long Method smell [3]. A

recent literature review [17] examined rule-engines and other code smell detectors. For Long Method,

they found that the most relaxed rule (with the highest number of true and false positives) checked if

the function had more than 50 lines of code.

Our Findings. The annotators agreed that examining a method for which this heuristic applied produced

a sense of exploration, where the method needed to be researched to understand its purpose. Such

methods required focus to track which intermediate results were relevant for later code. They also

required scrolling through the function, which were often more than two screens in height. The number

of lines of code was an important structural indicator for our annotators and a high number usually

indicated the applicability of this heuristic. Exceptions to this rule included repeated logic that was not

duplicate code (e.g., validation checks for many fields, the logic that transforms one data structure into

another). We noted two other code characteristics that made this heuristic applicable:

• Repeated expressions related to the Duplicate Code [4] smell. This usually occurred with

branching control flow, where expressions were duplicated in multiple branches instead of

placed before or after the branching.

• Redundant or unnecessary expressions. This usually accompanied redundant validation or null

checks or calculations whose results were never used (e.g., variables that were assigned a value,

but never read).

3.2.2 Method is too complex
Literature. Fowler and Kent note that conditionals and loops can be indicators of the Long Method code

smell [4]. Further research found that engineers examine the complexity of a method’s control structure

(e.g., number of branches and loops) to determine if it suffers from the Long Method smell [3]. The

cyclomatic complexity structural metric counts branches, loops, and several other code constructs to

determine a method’s complexity. This metric is used in several smell detectors [17] to determine the

Long Method smell, where a complexity above 5 signals the presence of this smell.

Our Findings. Methods for which this heuristic applied required much cognitive processing to

understand the intermediate results of sophisticated expressions for which the intent was not clear.

Structural indicators based on high cognitive complexity [25] or the maximum number of branches

helped us determine if this heuristic is applicable for a given function. Exceptions to this rule included

functions with many short branches with simple conditional expressions (e.g., multiple null checks or

simple validation rules). We defined two other code characteristics that helped us make conclusions

regarding a method’s complexity:

• Use of “magic numbers” [5]. Functions that used literal values (especially numbers that were not

equal to 0 or 1) increased the cognitive load required to understand the code.

• Long and/or complex single lines of code. This occurred when many expressions were nested or

chained (e.g., arithmetic operations conducted inline of several function arguments, a Message

Chain smell [4] in conditional expressions, or nested ternary operators).

10

3.2.3 Method does multiple things
Literature. Industry leaders have championed various forms of the single responsibility principle [23],

which is often associated with classes but is also applicable to functions. Clean code leaders state that a

function should do one thing or focus on a single task [5]. In the empirical research presented in [3],

software engineers noted that they examine if a method does multiple things to determine the Long

Method smell’s presence. Comments and newline characters that divide the function into segments are

recognized by industry leaders [4] and researchers [22] as semantic indicators that support this

heuristic.

Our Findings. Determining the “things” that a method does was highly subjective due to the ambiguity

of the term. Furthermore, a distinct piece of logic, such as exception handling or input validation, might

be considered a separate thing in one code snippet, and part of another thing in a different snippet. The

main criteria for determining if a piece of logic is a thing was its semantic difference from the

surrounding code and standalone complexity (where trivial code was ignored). The presence of newline

characters and comments was a strong indicator of the applicability of this heuristic during our

annotation. We found three other factors that contributed to the function doing multiple things:

• Feature Envy [4], where a function would be charged with changing state or performing some

logic that should be encapsulated in another class.

• Duplicate Code [4], where a function had repeated regions of code with slight variation.

• Different levels of abstraction [5], where out of place low-level expressions were nested among

higher-level method calls, signaling either misplaced logic or a missing higher-level function.

Finally, some methods did not display obvious signs of doing multiple things. We had to examine and

understand the function’s semantic intent to separate any hidden concerns it had. Such cases were hard

to discover and were usually brought to light by a single annotator, usually the one with the most

experience in the subject matter.

3.3 Large Class
Like the previous section, we define the sources that influenced our heuristic selection for the Large

Class code smell. We discuss the literature findings that support the heuristics and their related code

characteristics. We supplement this set of code characteristics with our experience from the proof-of-

concept annotation.

We defined the following set of heuristics:

• Class is too long.

• Class is too complex.

• Class has multiple concerns.

3.3.1 Class is too long
Literature. Fowler [4] states that a Large Class has too many fields, where most methods use a subset of

the field set. Likewise, engineers use the length of the class to determine the presence of the Large Class

smell [3][21]. A recent literature review [17] examined rule-engines and other code smell detectors. For

Large Class, they found that the most relaxed rule (with the highest number of true and false positives)

checked if the class had more than 100 lines of code. They also considered classes with more than 14

methods or 8 fields as Large Classes.

11

Our Findings. Our annotators experienced a sense of exploration while examining classes that were too

long. Such classes required significant scrolling through the code to understand their meaning and the

services they offered. A high number of code lines and fields and methods was a strong structural

indicator of the applicability of this heuristic. Another indicator was the presence and length of any inner

classes that contributed to the length of the outer class.

3.3.2 Class is too complex
Literature. Software engineers perceive that a class is too complicated when they have difficulties in

creating a mental model of how the class works [26]. They state that a Large Class is a class that is too

complex or that some of its methods are too complex [24]. [17] found that rule engines detect the Large

Class smell by considering the total cyclomatic complexity of the class’ methods. The most relaxed

threshold for this metric (known as WMC – weighted methods per class) was 47.

Our Findings. A significant portion of the labeled classes had their complexity stem from one or more

complex methods. Notably, we avoided labeling a class as too complex when it only contained a single

complex method and trivial code (e.g., a few fields or simple methods). However, classes that had

multiple complex methods, a single complex method with many fields, or a single complex method with

a sophisticated inner class were labeled as too complex. Inner classes in general contributed to the

complexity of a class, especially when there were multiple non-trivial inner classes. We found two other

factors that contributed to a class’ complexity:

• Mysterious names [4] played a significant role in obscuring the class’ intent. On the other hand,

classes with sophisticated logic that followed good naming significantly reduced the cognitive

burden required to understand how they work.

• Classes that were coupled to static fields and methods (i.e., global state) were difficult to

understand, as the logic was distributed and it was unclear what the responsibility of the

examined class was.

3.3.3 Class has multiple concerns
Literature. The Single Responsibility Principle states that a class should group all the things that change

for a single reason or single category of requirement changes [23]. Software engineers consider this

principle when identifying Large Classes [3]. They try to summarize the class’ responsibility in a sentence

while avoiding conjunctions that uncover multiple concerns [3][5][27]. Concern metrics, such as concern

diffusion over lines of code, are considered good indicators of the Large Class smell [21]. Notably, “being

concerned/responsible” for a piece of logic means knowing the details of that logic [23]. This means that

coordinator classes that encapsulate multiple objects do not necessarily have multiple concerns,

provided they only know the details of the coordination logic. Classes that only delegate minor tasks to

other classes are an indicator of a Large Class [24][27].

Our Findings. Like determining the things that a method does, defining the concerns of a class was a

highly subjective activity. Our annotators looked for semantic differences to identify subsets of fields

and methods that could meaningfully be extracted into a separate class, ignoring trivial subsets such as

those containing a single field or simple method. Class-level comments and whitespace between the

members proved to be useful semantic indicators of the different responsibilities of the class. Likewise,

shared prefixes in the names of fields and methods helped determine hidden concerns. Notably, we had

12

to examine long and complex methods to determine if they contained a hidden class within their logic,

which was challenging and time-consuming.

4 Data Annotation Procedure
Starting from the annotation model described in the previous section, we created a dataset of Long

Method and Large Class code smells, where we annotated C# code snippets from 10 open-source

projects. Figure 2 presents the main activities of the annotation procedure used to create our dataset.

The initial annotation model and procedure was constructed by three authors of the paper (NL, JS, AK).

One of them (NL) then followed the annotation procedure, along with two other authors (SP, KGG) to

create the final dataset. NL has five years of experience in the software engineering industry and is a

professor on several clean code courses. SP and KGG are Ph.D. students researching code quality and

code smells with several small-scale industry projects behind them. From the initial annotation model,

we conducted two one-hour workshops to further train the annotators through theory and exercises

and reach a common understanding of the smells and heuristics.

Figure 2 Annotation procedure

As part of the proof-of-concept annotation, we annotated a set of code snippets to test the chosen

heuristics’ validity, streamline the annotation procedure, and further develop the understanding of code

smells among the annotators. This activity resulted in most of the changes to the annotation model. We

describe the proof-of-concept annotation in Section 4.1. Then we performed the full annotation of code

snippets to create the complete dataset. We describe the details of this activity in Section 4.2.

4.1 Proof of Concept Annotation
We used the proof-of-concept annotation to test the annotation model and procedure and gather

insight for their improvement. We conducted the proof-of-concept annotation in three rounds over four

software projects listed in Table 1.

At the start of each round, we selected code that we would annotate. We chose a simple student

project developed by four third-year undergraduate students as part of their software engineering

semester project for the first round. For the second round, we selected a random subset of code

snippets from an open-source project. Finally, we selected a random subset of code snippets from two

open-source projects for the third round. In the second and third rounds, we chose a random 10% of

classes and functions, excluding any functions that had less than 5 lines of code to avoid trivial code

13

snippets, as recommended in [7]. We also excluded test-related classes and functions (i.e., integration

and unit tests) to focus on functional code smells and not test smells.

Table 1 Summary of selected projects for the proof-of-concept annotation

Name Software type
Total

classes
Selected
classes

Total methods and
constructors

Selected methods and
constructors

Student Project Administrative application 81 81 263 263

BurningKnight Video game 1626 79 6669 305

ShopifySharp Integration library 254 25 450 20

Core2D 2D diagram editor 304 30 1850 121

Three annotators independently annotated the presence of a code smell, its severity, and applicable

heuristics for each code snippet. When annotating a single instance of our dataset, we adhered to the

following algorithm:

1. For each heuristic, determine if it is applicable. For example, declare if a “method is too long” by

answering the question, “In your opinion, does the method’s length harm its readability?”.

2. For each applicable heuristic, provide brief reasoning behind the decision. We used the

reasoning to understand which code characteristics are related to each heuristic. We describe

the findings we made through this reasoning in the previous section.

3. Considering the applicable heuristics and the code snippet’s overall structure, determine the

presence and severity of a particular code smell.

During each round, the annotators met several times to discuss their progress and observations

regarding the annotation procedure. They also used an instant messaging application to communicate

observations and align understanding in real-time. Additionally, each round ended with a retrospective

discussion. Here we summarized these findings to enhance the annotation model and streamline the

procedure for the next round. For example, the student project’s simplistic nature guided us to select

larger open-source projects. Then, to increase the variety of examined coding styles, we opted to select

a smaller percentile of random code snippets from a single project to have time to cover more projects.

By the end of the third round, each annotator labeled 155 classes and 709 methods and constructors.

We refined the annotation procedure, conceptualized the final annotation model, and achieved a

common understanding of the code smells and heuristics between the annotators. We made a final

review of the labels and contributed the annotations related to the open-source projects to the final

dataset (excluding the student project).

4.2 Full Annotation
We followed a similar approach for the full annotation as with the third round of the proof-of-concept

annotation with several differences.

We expanded the code selection strategy to exclude classes with less than two methods or less than

four fields. We determined that such classes are too trivial to suffer from the Large Class code smell.

Furthermore, we searched GitHub for sufficiently sophisticated projects developed in C#. Using the

advanced search, we looked for moderately popular projects (i.e., over 5000 stars) that had undergone

sufficient development (i.e., over 1000 commits) and had development activity within the past six

months. This search criterion helped us avoid simplistic and under-developed projects that might not

represent a typical active open-source project. Table 2 lists the selected projects for the full annotation.

14

Finally, we selected different types of projects (e.g., video games, graphic frameworks, AI frameworks,

security libraries, media systems…) to cover a wide variety of coding styles and flavors of code smells.

Table 2 Summary of selected projects for the full annotation

Name Software type
Total

classes
Selected
classes

Total methods
and constructors

Selected methods
and constructors

ShareX Screen capture and media sharing library 810 81 3180 194

OpenRA Strategy game engine 2192 219 8215 441

Jellyfin Software media system TODO

MonoGame Video game development framework

osu! Video game

Ocelot API gateway and security proxy

MachineLearning Machine learning framework

We divided the snippets into subsets, where two of the three annotators independently annotated

each subset. The third annotator examined code snippets where the two annotators were not in

agreement regarding the presence of the code smell or its severity. Without looking at the individual

annotations, the third annotator would submit a third opinion for the code snippet. This disagreement

resolution is like the cross-check performed in [7].

Annotating each project ended with the retrospective discussion. The annotators discussed new code

characteristics that helped them determine the presence and severity of a smell, expanding the previous

section’s findings.

5 Discussion
In this section, we discuss the outcomes of our work and present the related findings and limitations.

Section 5.1 describes the annotators’ observations and experience of annotating the dataset of code

smells. We explore tips, pitfalls, and risks regarding building the annotation model and conducting the

procedure. We group these takeaways into an annotation guideline to support researchers in building

their datasets. Section 5.2 details the characteristics of our dataset, including its structure and basic

statistical analysis. Finally, in Section 5.3, we discuss the limitations of our study and potential threats to

validity.

5.1 Annotator Observations
Due to the ambiguity of the subject matter, annotators were instructed to pay close attention to the

procedure and annotation model and write down all observations they made along the way. High-level

observations were concerned with the procedure’s format and workflow, which we examined during the

retrospective discussions to make them more effective. Low-level observations were related to the

annotation model and particular code snippets. We systematically examined the Reasoning fields

(described in Section 3.1.2) during each retrospective discussion and expanded our annotation model

(summarized in Sections 3.2 and 3.3) when appropriate.

Apart from expanding the annotation model, frequent discussions enabled us to define how we treat

certain code constructs. For example, we agreed to treat anonymous inline functions as part of the

containing method. We also agreed that inner classes could be independently annotated while also

contributing to the outer class’s complexity and length.

Recommendation 1: While frequent discussions and retrospectives are useful for any data

annotation, they are essential for data with ambiguous meaning, such as code smells. We

15

recommend annotators take the time to align their understanding of the subject matter and

discuss all observations, especially in the starting rounds of the annotation procedure.

5.1.1 Determining code smell severity
While annotating various projects, we discovered that annotation experience could affect the labels.

Familiarity with the project affected our labeling. Once we started annotating a new project, the novel

domain, coding style, and constructs introduced cognitive overhead that might increase the severity

score by a grade. As we got familiar with the project, the code snippets were generally easier to

understand, affecting the heuristics related to complexity.

Recommendation 2: Engineers familiar with the code might have a different perception of the

presence and especially the severity of a code smell than somebody who has never seen the

code [9]. This phenomenon affects annotators as well. We recommend annotators consider this

familiarity factor and discard, give less weight to, or revisit their first annotations for a given

project.

Regardless of previous experience, all three annotators had to go through several projects (about 100

code snippets per smell) to stabilize their labeling strategies and severity scores. Each annotator had to

look at different projects, coding styles, and smell severities through the heuristics lens and to

contemplate and discuss their applicability to develop a consistent mental model. The initial lack of

consistency is one reason we excluded the first project we annotated (the student project) from the

dataset and why we reexamined the second project at the end of the proof-of-concept annotation.

Recommendation 3: While software engineering experience contributes to the quality of code

smell detection and resolution [7][9], annotating code smells appears to be a loosely related

skill. We recommend annotators label snippets from several different projects and coding styles

to stabilize their labeling strategy. They should then discard, give less weight to, or revisit earlier

annotations once they become confident in their labeling consistency.

After overcoming the initial labeling inconsistency and considering the familiarity factor, we found two

more factors that influenced our labeling consistency. First, all three annotators reported a maximum of

two hours per day spent on labeling. It was not easy to maintain focus after that, and the quality and

speed of the annotation significantly declined. Second, all three annotators reported a subjective feeling

of “annotating too fast, at the cost of quality” after annotating code snippets over a more extended

period (e.g., two-three weeks).

Recommendation 4: Annotating code smells following our annotation model is mentally taxing

and becomes tedious when practiced over an extended period (i.e., over a few hours a day or

several weeks in a row). We recommend annotators spread out their dataset construction and

integrate extended periods of downtime to refresh their perspective and patience.

5.1.2 Code smell heuristics
Before the proof-of-concept annotation, our initial set of Long Method and Large Class heuristics was

larger than the one reported in Section 3. For Long Method, we examined the applicability of the

“method has expressions at different levels of abstraction” and “method has side-effects” heuristics. We

quickly found that the first heuristic always applies when the heuristic “method does multiple things”

applies. As it was a subset, we declared the “abstraction levels” heuristic to be a code characteristic of

16

the “multiple things” heuristic. Regarding side-effects, we found it was too difficult to identify and

consistently annotate this heuristic. Similarly, the Large Class contained two additional heuristics that

we discarded because they were too difficult to examine and consistently label.

Recommendation 5: It is not easy to define a good set of heuristics due to the ambiguity of code

smells. We recommend that annotators remain flexible with their annotation model. They

should be aware of heuristics that rarely get selected and remove them. They should also look

for heuristics that are tightly correlated with other heuristics and consider demoting them to

code characteristics of the superset heuristic. Finally, while our experience did not include such

cases, annotators should examine if any heuristic could benefit from being divided into multiple

heuristics.

Over time, we refined rules that would exclude trivial code snippets that had no chance of suffering

from a code smell. We inherited one rule from [7] by excluding methods with less than five lines of code

(including method header). We then modified this rule to exclude methods with less than three effective

lines of code to eliminate short methods that were expanded because of whitespace or comments.

Likewise, we introduced a rule to eliminate class code snippets with less than two methods or four

fields.

Recommendation 6: Over time, annotators will discover that certain combinations of code

characteristics will always result in a zero-severity score for some smell. We recommend

annotators filter-out such instances while providing thorough justification behind this exclusion.

Importantly, annotators should avoid the pitfall made by previous studies that use too generous

thresholds (e.g., LOC > 100), as discussed in Section 2.

5.2 Data Set Characteristics
We will provide the Data sheet, major statistical characteristics, and discussion once the rest of the

datasets are annotated and run through our procedure.

5.3 Limitations
We will complete the threats to validity discussion once the rest of the datasets are annotated and run

through our procedure.

6 Conclusion
Our concluding remarks once the rest of the datasets are annotated and run through our procedure.

Acknowledgments
This research was supported by the Science Fund of the Republic of Serbia, Grant No 6521051, AI-Clean

CaDET.

References
[1] Sharma, T. and Spinellis, D., 2018. A survey on software smells. Journal of Systems and Software,

138, pp.158-173.

[2] Tom, E., Aurum, A. and Vidgen, R., 2013. An exploration of technical debt. Journal of Systems

and Software, 86(6), pp.1498-1516.

17

[3] Hozano, M., Garcia, A., Fonseca, B. and Costa, E., 2018. Are you smelling it? Investigating how

similar developers detect code smells. Information and Software Technology, 93, pp.130-146.

[4] Fowler, M., 2018. Refactoring: improving the design of existing code. Addison-Wesley

Professional.

[5] Martin, R.C., 2009. Clean code: a handbook of agile software craftsmanship. Pearson Education.

[6] Azeem, M.I., Palomba, F., Shi, L. and Wang, Q., 2019. Machine learning techniques for code

smell detection: A systematic literature review and meta-analysis. Information and Software

Technology, 108, pp.115-138.

[7] Madeyski, L. and Lewowski, T., 2020. MLCQ: Industry-Relevant Code Smell Data Set. In

Proceedings of the Evaluation and Assessment in Software Engineering (pp. 342-347).

[8] Malhotra, R., 2016. Empirical research in software engineering: concepts, analysis, and

applications. CRC Press.

[9] Taibi, D., Janes, A. and Lenarduzzi, V., 2017. How developers perceive smells in source code: A

replicated study. Information and Software Technology, 92, pp.223-235.

[10] Walter, B., Fontana, F.A. and Ferme, V., 2018. Code smells and their collocations: A large-scale

experiment on open-source systems. Journal of Systems and Software, 144, pp.1-21.

[11] Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H. and Noble, J., 2010,

December. The Qualitas Corpus: A curated collection of Java code for empirical studies. In 2010

Asia Pacific Software Engineering Conference (pp. 336-345). IEEE.

[12] Fontana, F.A., Mäntylä, M.V., Zanoni, M. and Marino, A., 2016. Comparing and experimenting

machine learning techniques for code smell detection. Empirical Software Engineering, 21(3),

pp.1143-1191.

[13] Di Nucci, D., Palomba, F., Tamburri, D.A., Serebrenik, A. and De Lucia, A., 2018, March. Detecting

code smells using machine learning techniques: are we there yet?. In 2018 ieee 25th

international conference on software analysis, evolution and reengineering (saner) (pp. 612-

621). IEEE.

[14] Palomba, F., Di Nucci, D., Tufano, M., Bavota, G., Oliveto, R., Poshyvanyk, D. and De Lucia, A.,

2015, May. Landfill: An open dataset of code smells with public evaluation. In 2015 IEEE/ACM

12th Working Conference on Mining Software Repositories (pp. 482-485). IEEE.

[15] Mantyla, M.V., Vanhanen, J. and Lassenius, C., 2004, September. Bad smells-humans as code

critics. In 20th IEEE International Conference on Software Maintenance, 2004. Proceedings. (pp.

399-408). IEEE.

[16] Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R. and De Lucia, A., 2018. On the

diffuseness and the impact on maintainability of code smells: a large scale empirical

investigation. Empirical Software Engineering, 23(3), pp.1188-1221.

[17] Bafandeh Mayvan, B., Rasoolzadegan, A. and Javan Jafari, A., 2020. Bad smell detection using

quality metrics and refactoring opportunities. Journal of Software: Evolution and Process,

p.e2255.

[18] Rasool, G. and Arshad, Z., 2017. A lightweight approach for detection of code smells. Arabian

Journal for Science and Engineering, 42(2), pp.483-506.

[19] Kaur, A., 2020. A systematic literature review on empirical analysis of the relationship between

code smells and software quality attributes. Archives of Computational Methods in Engineering,

27(4), pp.1267-1296.

18

[20] Hofmeister, J., Siegmund, J. and Holt, D.V., 2017, February. Shorter identifier names take longer

to comprehend. In 2017 IEEE 24th International conference on software analysis, evolution and

reengineering (SANER) (pp. 217-227). IEEE.

[21] Padilha, J., Pereira, J., Figueiredo, E., Almeida, J., Garcia, A. and Sant’Anna, C., 2014, June. On the

effectiveness of concern metrics to detect code smells: An empirical study. In International

Conference on Advanced Information Systems Engineering (pp. 656-671). Springer, Cham.

[22] Palomba, F., Panichella, A., Zaidman, A., Oliveto, R. and De Lucia, A., 2017. The scent of a smell:

An extensive comparison between textual and structural smells. IEEE Transactions on Software

Engineering, 44(10), pp.977-1000.

[23] Martin, R.C., 2002. Agile software development: principles, patterns, and practices. Prentice

Hall.

[24] Santos, J.A.M. and de Mendonça, M.G., 2015, April. Exploring decision drivers on god class

detection in three controlled experiments. In Proceedings of the 30th Annual ACM Symposium

on Applied Computing (pp. 1472-1479).

[25] Campbell, G.A., 2018, May. Cognitive complexity: An overview and evaluation. In Proceedings of

the 2018 international conference on technical debt (pp. 57-58).

[26] Palomba, F.; Bavota, G.; Penta, M.D.; Oliveto, R.; Lucia, A.D. Do They Really Smell Bad? A Study

on Developers’ Perception of Bad Code Smells. In Proceedings of the IEEE International

Conference on Software Maintenance and Evolution, 2014.

[27] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, M. Shaw, Building empirical support for

automated code smell detection, in: Proceedings of the 2010 ACM–IEEE International

Symposium on Empirical Software Engineering and Measurement.

